diff options
author | brettw@google.com <brettw@google.com@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-12-03 16:22:10 +0000 |
---|---|---|
committer | brettw@google.com <brettw@google.com@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-12-03 16:22:10 +0000 |
commit | 83c9e65546312a8d70df850a82f390f190fe4413 (patch) | |
tree | 347e411c8bcd9769f6e8a50252c607e9699c5046 /skia/ext/convolver.cc | |
parent | bd974b6c13642d8c98496fc1fc06ddff1665b4ac (diff) | |
download | chromium_src-83c9e65546312a8d70df850a82f390f190fe4413.zip chromium_src-83c9e65546312a8d70df850a82f390f190fe4413.tar.gz chromium_src-83c9e65546312a8d70df850a82f390f190fe4413.tar.bz2 |
Move convolver and image_operations from base/gfx to skia/ext. This is just
like my previous change except does no namespace renaming and doesn't touch
skia_utils.
Review URL: http://codereview.chromium.org/13080
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@6290 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'skia/ext/convolver.cc')
-rw-r--r-- | skia/ext/convolver.cc | 335 |
1 files changed, 335 insertions, 0 deletions
diff --git a/skia/ext/convolver.cc b/skia/ext/convolver.cc new file mode 100644 index 0000000..f5a429a --- /dev/null +++ b/skia/ext/convolver.cc @@ -0,0 +1,335 @@ +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include <algorithm> + +#include "base/basictypes.h" +#include "base/logging.h" +#include "skia/ext/convolver.h" + +namespace gfx { + +namespace { + +// Converts the argument to an 8-bit unsigned value by clamping to the range +// 0-255. +inline uint8 ClampTo8(int32 a) { + if (static_cast<uint32>(a) < 256) + return a; // Avoid the extra check in the common case. + if (a < 0) + return 0; + return 255; +} + +// Stores a list of rows in a circular buffer. The usage is you write into it +// by calling AdvanceRow. It will keep track of which row in the buffer it +// should use next, and the total number of rows added. +class CircularRowBuffer { + public: + // The number of pixels in each row is given in |source_row_pixel_width|. + // The maximum number of rows needed in the buffer is |max_y_filter_size| + // (we only need to store enough rows for the biggest filter). + // + // We use the |first_input_row| to compute the coordinates of all of the + // following rows returned by Advance(). + CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, + int first_input_row) + : row_byte_width_(dest_row_pixel_width * 4), + num_rows_(max_y_filter_size), + next_row_(0), + next_row_coordinate_(first_input_row) { + buffer_.resize(row_byte_width_ * max_y_filter_size); + row_addresses_.resize(num_rows_); + } + + // Moves to the next row in the buffer, returning a pointer to the beginning + // of it. + uint8* AdvanceRow() { + uint8* row = &buffer_[next_row_ * row_byte_width_]; + next_row_coordinate_++; + + // Set the pointer to the next row to use, wrapping around if necessary. + next_row_++; + if (next_row_ == num_rows_) + next_row_ = 0; + return row; + } + + // Returns a pointer to an "unrolled" array of rows. These rows will start + // at the y coordinate placed into |*first_row_index| and will continue in + // order for the maximum number of rows in this circular buffer. + // + // The |first_row_index_| may be negative. This means the circular buffer + // starts before the top of the image (it hasn't been filled yet). + uint8* const* GetRowAddresses(int* first_row_index) { + // Example for a 4-element circular buffer holding coords 6-9. + // Row 0 Coord 8 + // Row 1 Coord 9 + // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. + // Row 3 Coord 7 + // + // The "next" row is also the first (lowest) coordinate. This computation + // may yield a negative value, but that's OK, the math will work out + // since the user of this buffer will compute the offset relative + // to the first_row_index and the negative rows will never be used. + *first_row_index = next_row_coordinate_ - num_rows_; + + int cur_row = next_row_; + for (int i = 0; i < num_rows_; i++) { + row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; + + // Advance to the next row, wrapping if necessary. + cur_row++; + if (cur_row == num_rows_) + cur_row = 0; + } + return &row_addresses_[0]; + } + + private: + // The buffer storing the rows. They are packed, each one row_byte_width_. + std::vector<uint8> buffer_; + + // Number of bytes per row in the |buffer_|. + int row_byte_width_; + + // The number of rows available in the buffer. + int num_rows_; + + // The next row index we should write into. This wraps around as the + // circular buffer is used. + int next_row_; + + // The y coordinate of the |next_row_|. This is incremented each time a + // new row is appended and does not wrap. + int next_row_coordinate_; + + // Buffer used by GetRowAddresses(). + std::vector<uint8*> row_addresses_; +}; + +// Convolves horizontally along a single row. The row data is given in +// |src_data| and continues for the num_values() of the filter. +template<bool has_alpha> +void ConvolveHorizontally(const uint8* src_data, + const ConvolusionFilter1D& filter, + unsigned char* out_row) { + // Loop over each pixel on this row in the output image. + int num_values = filter.num_values(); + for (int out_x = 0; out_x < num_values; out_x++) { + // Get the filter that determines the current output pixel. + int filter_offset, filter_length; + const int16* filter_values = + filter.FilterForValue(out_x, &filter_offset, &filter_length); + + // Compute the first pixel in this row that the filter affects. It will + // touch |filter_length| pixels (4 bytes each) after this. + const uint8* row_to_filter = &src_data[filter_offset * 4]; + + // Apply the filter to the row to get the destination pixel in |accum|. + int32 accum[4] = {0}; + for (int filter_x = 0; filter_x < filter_length; filter_x++) { + int16 cur_filter = filter_values[filter_x]; + accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; + accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; + accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; + if (has_alpha) + accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; + } + + // Bring this value back in range. All of the filter scaling factors + // are in fixed point with kShiftBits bits of fractional part. + accum[0] >>= ConvolusionFilter1D::kShiftBits; + accum[1] >>= ConvolusionFilter1D::kShiftBits; + accum[2] >>= ConvolusionFilter1D::kShiftBits; + if (has_alpha) + accum[3] >>= ConvolusionFilter1D::kShiftBits; + + // Store the new pixel. + out_row[out_x * 4 + 0] = ClampTo8(accum[0]); + out_row[out_x * 4 + 1] = ClampTo8(accum[1]); + out_row[out_x * 4 + 2] = ClampTo8(accum[2]); + if (has_alpha) + out_row[out_x * 4 + 3] = ClampTo8(accum[3]); + } +} + +// Does vertical convolusion to produce one output row. The filter values and +// length are given in the first two parameters. These are applied to each +// of the rows pointed to in the |source_data_rows| array, with each row +// being |pixel_width| wide. +// +// The output must have room for |pixel_width * 4| bytes. +template<bool has_alpha> +void ConvolveVertically(const int16* filter_values, + int filter_length, + uint8* const* source_data_rows, + int pixel_width, + uint8* out_row) { + // We go through each column in the output and do a vertical convolusion, + // generating one output pixel each time. + for (int out_x = 0; out_x < pixel_width; out_x++) { + // Compute the number of bytes over in each row that the current column + // we're convolving starts at. The pixel will cover the next 4 bytes. + int byte_offset = out_x * 4; + + // Apply the filter to one column of pixels. + int32 accum[4] = {0}; + for (int filter_y = 0; filter_y < filter_length; filter_y++) { + int16 cur_filter = filter_values[filter_y]; + accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; + accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; + accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; + if (has_alpha) + accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; + } + + // Bring this value back in range. All of the filter scaling factors + // are in fixed point with kShiftBits bits of precision. + accum[0] >>= ConvolusionFilter1D::kShiftBits; + accum[1] >>= ConvolusionFilter1D::kShiftBits; + accum[2] >>= ConvolusionFilter1D::kShiftBits; + if (has_alpha) + accum[3] >>= ConvolusionFilter1D::kShiftBits; + + // Store the new pixel. + out_row[byte_offset + 0] = ClampTo8(accum[0]); + out_row[byte_offset + 1] = ClampTo8(accum[1]); + out_row[byte_offset + 2] = ClampTo8(accum[2]); + if (has_alpha) { + uint8 alpha = ClampTo8(accum[3]); + + // Make sure the alpha channel doesn't come out larger than any of the + // color channels. We use premultipled alpha channels, so this should + // never happen, but rounding errors will cause this from time to time. + // These "impossible" colors will cause overflows (and hence random pixel + // values) when the resulting bitmap is drawn to the screen. + // + // We only need to do this when generating the final output row (here). + int max_color_channel = std::max(out_row[byte_offset + 0], + std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); + if (alpha < max_color_channel) + out_row[byte_offset + 3] = max_color_channel; + else + out_row[byte_offset + 3] = alpha; + } else { + // No alpha channel, the image is opaque. + out_row[byte_offset + 3] = 0xff; + } + } +} + +} // namespace + +// ConvolusionFilter1D --------------------------------------------------------- + +void ConvolusionFilter1D::AddFilter(int filter_offset, + const float* filter_values, + int filter_length) { + FilterInstance instance; + instance.data_location = static_cast<int>(filter_values_.size()); + instance.offset = filter_offset; + instance.length = filter_length; + filters_.push_back(instance); + + DCHECK(filter_length > 0); + for (int i = 0; i < filter_length; i++) + filter_values_.push_back(FloatToFixed(filter_values[i])); + + max_filter_ = std::max(max_filter_, filter_length); +} + +void ConvolusionFilter1D::AddFilter(int filter_offset, + const int16* filter_values, + int filter_length) { + FilterInstance instance; + instance.data_location = static_cast<int>(filter_values_.size()); + instance.offset = filter_offset; + instance.length = filter_length; + filters_.push_back(instance); + + DCHECK(filter_length > 0); + for (int i = 0; i < filter_length; i++) + filter_values_.push_back(filter_values[i]); + + max_filter_ = std::max(max_filter_, filter_length); +} + +// BGRAConvolve2D ------------------------------------------------------------- + +void BGRAConvolve2D(const uint8* source_data, + int source_byte_row_stride, + bool source_has_alpha, + const ConvolusionFilter1D& filter_x, + const ConvolusionFilter1D& filter_y, + uint8* output) { + int max_y_filter_size = filter_y.max_filter(); + + // The next row in the input that we will generate a horizontally + // convolved row for. If the filter doesn't start at the beginning of the + // image (this is the case when we are only resizing a subset), then we + // don't want to generate any output rows before that. Compute the starting + // row for convolusion as the first pixel for the first vertical filter. + int filter_offset, filter_length; + const int16* filter_values = + filter_y.FilterForValue(0, &filter_offset, &filter_length); + int next_x_row = filter_offset; + + // We loop over each row in the input doing a horizontal convolusion. This + // will result in a horizontally convolved image. We write the results into + // a circular buffer of convolved rows and do vertical convolusion as rows + // are available. This prevents us from having to store the entire + // intermediate image and helps cache coherency. + CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, + filter_offset); + + // Loop over every possible output row, processing just enough horizontal + // convolusions to run each subsequent vertical convolusion. + int output_row_byte_width = filter_x.num_values() * 4; + int num_output_rows = filter_y.num_values(); + for (int out_y = 0; out_y < num_output_rows; out_y++) { + filter_values = filter_y.FilterForValue(out_y, + &filter_offset, &filter_length); + + // Generate output rows until we have enough to run the current filter. + while (next_x_row < filter_offset + filter_length) { + if (source_has_alpha) { + ConvolveHorizontally<true>( + &source_data[next_x_row * source_byte_row_stride], + filter_x, row_buffer.AdvanceRow()); + } else { + ConvolveHorizontally<false>( + &source_data[next_x_row * source_byte_row_stride], + filter_x, row_buffer.AdvanceRow()); + } + next_x_row++; + } + + // Compute where in the output image this row of final data will go. + uint8* cur_output_row = &output[out_y * output_row_byte_width]; + + // Get the list of rows that the circular buffer has, in order. + int first_row_in_circular_buffer; + uint8* const* rows_to_convolve = + row_buffer.GetRowAddresses(&first_row_in_circular_buffer); + + // Now compute the start of the subset of those rows that the filter + // needs. + uint8* const* first_row_for_filter = + &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; + + if (source_has_alpha) { + ConvolveVertically<true>(filter_values, filter_length, + first_row_for_filter, + filter_x.num_values(), cur_output_row); + } else { + ConvolveVertically<false>(filter_values, filter_length, + first_row_for_filter, + filter_x.num_values(), cur_output_row); + } + } +} + +} // namespace gfx + |