summaryrefslogtreecommitdiffstats
path: root/skia/sgl/SkGeometry.cpp
diff options
context:
space:
mode:
authorinitial.commit <initial.commit@0039d316-1c4b-4281-b951-d872f2087c98>2008-07-27 00:09:42 +0000
committerinitial.commit <initial.commit@0039d316-1c4b-4281-b951-d872f2087c98>2008-07-27 00:09:42 +0000
commitae2c20f398933a9e86c387dcc465ec0f71065ffc (patch)
treede668b1411e2ee0b4e49b6d8f8b68183134ac990 /skia/sgl/SkGeometry.cpp
parent09911bf300f1a419907a9412154760efd0b7abc3 (diff)
downloadchromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.zip
chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.tar.gz
chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.tar.bz2
Add skia to the repository.
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@16 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'skia/sgl/SkGeometry.cpp')
-rw-r--r--skia/sgl/SkGeometry.cpp1072
1 files changed, 1072 insertions, 0 deletions
diff --git a/skia/sgl/SkGeometry.cpp b/skia/sgl/SkGeometry.cpp
new file mode 100644
index 0000000..65022ce
--- /dev/null
+++ b/skia/sgl/SkGeometry.cpp
@@ -0,0 +1,1072 @@
+/* libs/graphics/sgl/SkGeometry.cpp
+**
+** Copyright 2006, Google Inc.
+**
+** Licensed under the Apache License, Version 2.0 (the "License");
+** you may not use this file except in compliance with the License.
+** You may obtain a copy of the License at
+**
+** http://www.apache.org/licenses/LICENSE-2.0
+**
+** Unless required by applicable law or agreed to in writing, software
+** distributed under the License is distributed on an "AS IS" BASIS,
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+** See the License for the specific language governing permissions and
+** limitations under the License.
+*/
+
+#include "SkGeometry.h"
+#include "Sk64.h"
+#include "SkMatrix.h"
+
+/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes
+ involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul.
+ May also introduce overflow of fixed when we compute our setup.
+*/
+#ifdef SK_SCALAR_IS_FIXED
+ #define DIRECT_EVAL_OF_POLYNOMIALS
+#endif
+
+////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_SCALAR_IS_FIXED
+ static int is_not_monotonic(int a, int b, int c, int d)
+ {
+ return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31;
+ }
+
+ static int is_not_monotonic(int a, int b, int c)
+ {
+ return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31;
+ }
+#else
+ static int is_not_monotonic(float a, float b, float c)
+ {
+ float ab = a - b;
+ float bc = b - c;
+ if (ab < 0)
+ bc = -bc;
+ return ab == 0 || bc < 0;
+ }
+#endif
+
+////////////////////////////////////////////////////////////////////////
+
+static bool is_unit_interval(SkScalar x)
+{
+ return x > 0 && x < SK_Scalar1;
+}
+
+static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio)
+{
+ SkASSERT(ratio);
+
+ if (numer < 0)
+ {
+ numer = -numer;
+ denom = -denom;
+ }
+
+ if (denom == 0 || numer == 0 || numer >= denom)
+ return 0;
+
+ SkScalar r = SkScalarDiv(numer, denom);
+ SkASSERT(r >= 0 && r < SK_Scalar1);
+ if (r == 0) // catch underflow if numer <<<< denom
+ return 0;
+ *ratio = r;
+ return 1;
+}
+
+/** From Numerical Recipes in C.
+
+ Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
+ x1 = Q / A
+ x2 = C / Q
+*/
+int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2])
+{
+ SkASSERT(roots);
+
+ if (A == 0)
+ return valid_unit_divide(-C, B, roots);
+
+ SkScalar* r = roots;
+
+#ifdef SK_SCALAR_IS_FLOAT
+ float R = B*B - 4*A*C;
+ if (R < 0) // complex roots
+ return 0;
+ R = sk_float_sqrt(R);
+#else
+ Sk64 RR, tmp;
+
+ RR.setMul(B,B);
+ tmp.setMul(A,C);
+ tmp.shiftLeft(2);
+ RR.sub(tmp);
+ if (RR.isNeg())
+ return 0;
+ SkFixed R = RR.getSqrt();
+#endif
+
+ SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
+ r += valid_unit_divide(Q, A, r);
+ r += valid_unit_divide(C, Q, r);
+ if (r - roots == 2)
+ {
+ if (roots[0] > roots[1])
+ SkTSwap<SkScalar>(roots[0], roots[1]);
+ else if (roots[0] == roots[1]) // nearly-equal?
+ r -= 1; // skip the double root
+ }
+ return (int)(r - roots);
+}
+
+#ifdef SK_SCALAR_IS_FIXED
+/** Trim A/B/C down so that they are all <= 32bits
+ and then call SkFindUnitQuadRoots()
+*/
+static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2])
+{
+ int na = A.shiftToMake32();
+ int nb = B.shiftToMake32();
+ int nc = C.shiftToMake32();
+
+ int shift = SkMax32(na, SkMax32(nb, nc));
+ SkASSERT(shift >= 0);
+
+ return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots);
+}
+#endif
+
+/////////////////////////////////////////////////////////////////////////////////////
+/////////////////////////////////////////////////////////////////////////////////////
+
+static SkScalar eval_quad(const SkScalar src[], SkScalar t)
+{
+ SkASSERT(src);
+ SkASSERT(t >= 0 && t <= SK_Scalar1);
+
+#ifdef DIRECT_EVAL_OF_POLYNOMIALS
+ SkScalar C = src[0];
+ SkScalar A = src[4] - 2 * src[2] + C;
+ SkScalar B = 2 * (src[2] - C);
+ return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
+#else
+ SkScalar ab = SkScalarInterp(src[0], src[2], t);
+ SkScalar bc = SkScalarInterp(src[2], src[4], t);
+ return SkScalarInterp(ab, bc, t);
+#endif
+}
+
+static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t)
+{
+ SkScalar A = src[4] - 2 * src[2] + src[0];
+ SkScalar B = src[2] - src[0];
+
+ return 2 * SkScalarMulAdd(A, t, B);
+}
+
+static SkScalar eval_quad_derivative_at_half(const SkScalar src[])
+{
+ SkScalar A = src[4] - 2 * src[2] + src[0];
+ SkScalar B = src[2] - src[0];
+ return A + 2 * B;
+}
+
+void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent)
+{
+ SkASSERT(src);
+ SkASSERT(t >= 0 && t <= SK_Scalar1);
+
+ if (pt)
+ pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t));
+ if (tangent)
+ tangent->set(eval_quad_derivative(&src[0].fX, t),
+ eval_quad_derivative(&src[0].fY, t));
+}
+
+void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent)
+{
+ SkASSERT(src);
+
+ if (pt)
+ {
+ SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
+ SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
+ SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
+ SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
+ pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
+ }
+ if (tangent)
+ tangent->set(eval_quad_derivative_at_half(&src[0].fX),
+ eval_quad_derivative_at_half(&src[0].fY));
+}
+
+static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
+{
+ SkScalar ab = SkScalarInterp(src[0], src[2], t);
+ SkScalar bc = SkScalarInterp(src[2], src[4], t);
+
+ dst[0] = src[0];
+ dst[2] = ab;
+ dst[4] = SkScalarInterp(ab, bc, t);
+ dst[6] = bc;
+ dst[8] = src[4];
+}
+
+void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t)
+{
+ SkASSERT(t > 0 && t < SK_Scalar1);
+
+ interp_quad_coords(&src[0].fX, &dst[0].fX, t);
+ interp_quad_coords(&src[0].fY, &dst[0].fY, t);
+}
+
+void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5])
+{
+ SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
+ SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
+ SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
+ SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
+
+ dst[0] = src[0];
+ dst[1].set(x01, y01);
+ dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12));
+ dst[3].set(x12, y12);
+ dst[4] = src[2];
+}
+
+/** Quad'(t) = At + B, where
+ A = 2(a - 2b + c)
+ B = 2(b - a)
+ Solve for t, only if it fits between 0 < t < 1
+*/
+int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1])
+{
+ /* At + B == 0
+ t = -B / A
+ */
+#ifdef SK_SCALAR_IS_FIXED
+ return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue);
+#else
+ return valid_unit_divide(a - b, a - b - b + c, tValue);
+#endif
+}
+
+static void flatten_double_quad_extrema(SkScalar coords[14])
+{
+ coords[2] = coords[6] = coords[4];
+}
+
+static void force_quad_monotonic_in_y(SkPoint pts[3])
+{
+ // zap pts[1].fY to the nearest value
+ SkScalar ab = SkScalarAbs(pts[0].fY - pts[1].fY);
+ SkScalar bc = SkScalarAbs(pts[1].fY - pts[2].fY);
+ pts[1].fY = ab < bc ? pts[0].fY : pts[2].fY;
+}
+
+/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
+ stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
+*/
+int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5])
+{
+ SkASSERT(src);
+ SkASSERT(dst);
+
+#if 0
+ static bool once = true;
+ if (once)
+ {
+ once = false;
+ SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 };
+ SkPoint d[6];
+
+ int n = SkChopQuadAtYExtrema(s, d);
+ SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY);
+ }
+#endif
+
+ SkScalar a = src[0].fY;
+ SkScalar b = src[1].fY;
+ SkScalar c = src[2].fY;
+
+ if (is_not_monotonic(a, b, c))
+ {
+ SkScalar tValue;
+ if (valid_unit_divide(a - b, a - b - b + c, &tValue))
+ {
+ SkChopQuadAt(src, dst, tValue);
+ flatten_double_quad_extrema(&dst[0].fY);
+ return 1;
+ }
+ // if we get here, we need to force dst to be monotonic, even though
+ // we couldn't compute a unit_divide value (probably underflow).
+ b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
+ }
+ dst[0].set(src[0].fX, a);
+ dst[1].set(src[1].fX, b);
+ dst[2].set(src[2].fX, c);
+ return 0;
+}
+
+// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
+// F'(t) = 2 (b - a) + 2 (a - 2b + c) t
+// F''(t) = 2 (a - 2b + c)
+//
+// A = 2 (b - a)
+// B = 2 (a - 2b + c)
+//
+// Maximum curvature for a quadratic means solving
+// Fx' Fx'' + Fy' Fy'' = 0
+//
+// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
+//
+int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5])
+{
+ SkScalar Ax = src[1].fX - src[0].fX;
+ SkScalar Ay = src[1].fY - src[0].fY;
+ SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
+ SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
+ SkScalar t = 0; // 0 means don't chop
+
+#ifdef SK_SCALAR_IS_FLOAT
+ (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
+#else
+ // !!! should I use SkFloat here? seems like it
+ Sk64 numer, denom, tmp;
+
+ numer.setMul(Ax, -Bx);
+ tmp.setMul(Ay, -By);
+ numer.add(tmp);
+
+ if (numer.isPos()) // do nothing if numer <= 0
+ {
+ denom.setMul(Bx, Bx);
+ tmp.setMul(By, By);
+ denom.add(tmp);
+ SkASSERT(!denom.isNeg());
+ if (numer < denom)
+ {
+ t = numer.getFixedDiv(denom);
+ SkASSERT(t >= 0 && t <= SK_Fixed1); // assert that we're numerically stable (ha!)
+ if ((unsigned)t >= SK_Fixed1) // runtime check for numerical stability
+ t = 0; // ignore the chop
+ }
+ }
+#endif
+
+ if (t == 0)
+ {
+ memcpy(dst, src, 3 * sizeof(SkPoint));
+ return 1;
+ }
+ else
+ {
+ SkChopQuadAt(src, dst, t);
+ return 2;
+ }
+}
+
+////////////////////////////////////////////////////////////////////////////////////////
+///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
+////////////////////////////////////////////////////////////////////////////////////////
+
+static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4])
+{
+ coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0];
+ coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]);
+ coeff[2] = 3*(pt[2] - pt[0]);
+ coeff[3] = pt[0];
+}
+
+void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4])
+{
+ SkASSERT(pts);
+
+ if (cx)
+ get_cubic_coeff(&pts[0].fX, cx);
+ if (cy)
+ get_cubic_coeff(&pts[0].fY, cy);
+}
+
+static SkScalar eval_cubic(const SkScalar src[], SkScalar t)
+{
+ SkASSERT(src);
+ SkASSERT(t >= 0 && t <= SK_Scalar1);
+
+ if (t == 0)
+ return src[0];
+
+#ifdef DIRECT_EVAL_OF_POLYNOMIALS
+ SkScalar D = src[0];
+ SkScalar A = src[6] + 3*(src[2] - src[4]) - D;
+ SkScalar B = 3*(src[4] - src[2] - src[2] + D);
+ SkScalar C = 3*(src[2] - D);
+
+ return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
+#else
+ SkScalar ab = SkScalarInterp(src[0], src[2], t);
+ SkScalar bc = SkScalarInterp(src[2], src[4], t);
+ SkScalar cd = SkScalarInterp(src[4], src[6], t);
+ SkScalar abc = SkScalarInterp(ab, bc, t);
+ SkScalar bcd = SkScalarInterp(bc, cd, t);
+ return SkScalarInterp(abc, bcd, t);
+#endif
+}
+
+/** return At^2 + Bt + C
+*/
+static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t)
+{
+ SkASSERT(t >= 0 && t <= SK_Scalar1);
+
+ return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
+}
+
+static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t)
+{
+ SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
+ SkScalar B = 2*(src[4] - 2 * src[2] + src[0]);
+ SkScalar C = src[2] - src[0];
+
+ return eval_quadratic(A, B, C, t);
+}
+
+static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t)
+{
+ SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0];
+ SkScalar B = src[4] - 2 * src[2] + src[0];
+
+ return SkScalarMulAdd(A, t, B);
+}
+
+void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature)
+{
+ SkASSERT(src);
+ SkASSERT(t >= 0 && t <= SK_Scalar1);
+
+ if (loc)
+ loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t));
+ if (tangent)
+ tangent->set(eval_cubic_derivative(&src[0].fX, t),
+ eval_cubic_derivative(&src[0].fY, t));
+ if (curvature)
+ curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t),
+ eval_cubic_2ndDerivative(&src[0].fY, t));
+}
+
+/** Cubic'(t) = At^2 + Bt + C, where
+ A = 3(-a + 3(b - c) + d)
+ B = 6(a - 2b + c)
+ C = 3(b - a)
+ Solve for t, keeping only those that fit betwee 0 < t < 1
+*/
+int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2])
+{
+#ifdef SK_SCALAR_IS_FIXED
+ if (!is_not_monotonic(a, b, c, d))
+ return 0;
+#endif
+
+ // we divide A,B,C by 3 to simplify
+ SkScalar A = d - a + 3*(b - c);
+ SkScalar B = 2*(a - b - b + c);
+ SkScalar C = b - a;
+
+ return SkFindUnitQuadRoots(A, B, C, tValues);
+}
+
+static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t)
+{
+ SkScalar ab = SkScalarInterp(src[0], src[2], t);
+ SkScalar bc = SkScalarInterp(src[2], src[4], t);
+ SkScalar cd = SkScalarInterp(src[4], src[6], t);
+ SkScalar abc = SkScalarInterp(ab, bc, t);
+ SkScalar bcd = SkScalarInterp(bc, cd, t);
+ SkScalar abcd = SkScalarInterp(abc, bcd, t);
+
+ dst[0] = src[0];
+ dst[2] = ab;
+ dst[4] = abc;
+ dst[6] = abcd;
+ dst[8] = bcd;
+ dst[10] = cd;
+ dst[12] = src[6];
+}
+
+void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t)
+{
+ SkASSERT(t > 0 && t < SK_Scalar1);
+
+ interp_cubic_coords(&src[0].fX, &dst[0].fX, t);
+ interp_cubic_coords(&src[0].fY, &dst[0].fY, t);
+}
+
+void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots)
+{
+#ifdef SK_DEBUG
+ {
+ for (int i = 0; i < roots - 1; i++)
+ {
+ SkASSERT(is_unit_interval(tValues[i]));
+ SkASSERT(is_unit_interval(tValues[i+1]));
+ SkASSERT(tValues[i] < tValues[i+1]);
+ }
+ }
+#endif
+
+ if (dst)
+ {
+ if (roots == 0) // nothing to chop
+ memcpy(dst, src, 4*sizeof(SkPoint));
+ else
+ {
+ SkScalar t = tValues[0];
+ SkPoint tmp[4];
+
+ for (int i = 0; i < roots; i++)
+ {
+ SkChopCubicAt(src, dst, t);
+ if (i == roots - 1)
+ break;
+
+ SkDEBUGCODE(int valid =) valid_unit_divide(tValues[i+1] - tValues[i], SK_Scalar1 - tValues[i], &t);
+ SkASSERT(valid);
+
+ dst += 3;
+ memcpy(tmp, dst, 4 * sizeof(SkPoint));
+ src = tmp;
+ }
+ }
+ }
+}
+
+void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7])
+{
+ SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX);
+ SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY);
+ SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX);
+ SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY);
+ SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX);
+ SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY);
+
+ SkScalar x012 = SkScalarAve(x01, x12);
+ SkScalar y012 = SkScalarAve(y01, y12);
+ SkScalar x123 = SkScalarAve(x12, x23);
+ SkScalar y123 = SkScalarAve(y12, y23);
+
+ dst[0] = src[0];
+ dst[1].set(x01, y01);
+ dst[2].set(x012, y012);
+ dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123));
+ dst[4].set(x123, y123);
+ dst[5].set(x23, y23);
+ dst[6] = src[3];
+}
+
+static void flatten_double_cubic_extrema(SkScalar coords[14])
+{
+ coords[4] = coords[8] = coords[6];
+}
+
+/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
+ the resulting beziers are monotonic in Y. This is called by the scan converter.
+ Depending on what is returned, dst[] is treated as follows
+ 0 dst[0..3] is the original cubic
+ 1 dst[0..3] and dst[3..6] are the two new cubics
+ 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
+ If dst == null, it is ignored and only the count is returned.
+*/
+int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10])
+{
+ SkScalar tValues[2];
+ int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[3].fY, tValues);
+
+ SkChopCubicAt(src, dst, tValues, roots);
+ if (dst && roots > 0)
+ {
+ // we do some cleanup to ensure our Y extrema are flat
+ flatten_double_cubic_extrema(&dst[0].fY);
+ if (roots == 2)
+ flatten_double_cubic_extrema(&dst[3].fY);
+ }
+ return roots;
+}
+
+/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
+
+ Inflection means that curvature is zero.
+ Curvature is [F' x F''] / [F'^3]
+ So we solve F'x X F''y - F'y X F''y == 0
+ After some canceling of the cubic term, we get
+ A = b - a
+ B = c - 2b + a
+ C = d - 3c + 3b - a
+ (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
+*/
+int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[])
+{
+ SkScalar Ax = src[1].fX - src[0].fX;
+ SkScalar Ay = src[1].fY - src[0].fY;
+ SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
+ SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
+ SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
+ SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
+ int count;
+
+#ifdef SK_SCALAR_IS_FLOAT
+ count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues);
+#else
+ Sk64 A, B, C, tmp;
+
+ A.setMul(Bx, Cy);
+ tmp.setMul(By, Cx);
+ A.sub(tmp);
+
+ B.setMul(Ax, Cy);
+ tmp.setMul(Ay, Cx);
+ B.sub(tmp);
+
+ C.setMul(Ax, By);
+ tmp.setMul(Ay, Bx);
+ C.sub(tmp);
+
+ count = Sk64FindFixedQuadRoots(A, B, C, tValues);
+#endif
+
+ return count;
+}
+
+int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10])
+{
+ SkScalar tValues[2];
+ int count = SkFindCubicInflections(src, tValues);
+
+ if (dst)
+ {
+ if (count == 0)
+ memcpy(dst, src, 4 * sizeof(SkPoint));
+ else
+ SkChopCubicAt(src, dst, tValues, count);
+ }
+ return count + 1;
+}
+
+template <typename T> void bubble_sort(T array[], int count)
+{
+ for (int i = count - 1; i > 0; --i)
+ for (int j = i; j > 0; --j)
+ if (array[j] < array[j-1])
+ {
+ T tmp(array[j]);
+ array[j] = array[j-1];
+ array[j-1] = tmp;
+ }
+}
+
+#include "SkFP.h"
+
+// newton refinement
+#if 0
+static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root)
+{
+ // x1 = x0 - f(t) / f'(t)
+
+ SkFP T = SkScalarToFloat(root);
+ SkFP N, D;
+
+ // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2]
+ D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3);
+ D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2));
+ D = SkFPAdd(D, coeff[2]);
+
+ if (D == 0)
+ return root;
+
+ // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
+ N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]);
+ N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1]));
+ N = SkFPAdd(N, SkFPMul(T, coeff[2]));
+ N = SkFPAdd(N, coeff[3]);
+
+ if (N)
+ {
+ SkScalar delta = SkFPToScalar(SkFPDiv(N, D));
+
+ if (delta)
+ root -= delta;
+ }
+ return root;
+}
+#endif
+
+#if defined _WIN32 && _MSC_VER >= 1300 && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop
+#pragma warning ( disable : 4702 )
+#endif
+
+/* Solve coeff(t) == 0, returning the number of roots that
+ lie withing 0 < t < 1.
+ coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
+*/
+static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3])
+{
+#ifndef SK_SCALAR_IS_FLOAT
+ return 0; // this is not yet implemented for software float
+#endif
+
+ if (SkScalarNearlyZero(coeff[0])) // we're just a quadratic
+ {
+ return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
+ }
+
+ SkFP a, b, c, Q, R;
+
+ {
+ SkASSERT(coeff[0] != 0);
+
+ SkFP inva = SkFPInvert(coeff[0]);
+ a = SkFPMul(coeff[1], inva);
+ b = SkFPMul(coeff[2], inva);
+ c = SkFPMul(coeff[3], inva);
+ }
+ Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9);
+// R = (2*a*a*a - 9*a*b + 27*c) / 54;
+ R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2);
+ R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9));
+ R = SkFPAdd(R, SkFPMulInt(c, 27));
+ R = SkFPDivInt(R, 54);
+
+ SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q);
+ SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3);
+ SkFP adiv3 = SkFPDivInt(a, 3);
+
+ SkScalar* roots = tValues;
+ SkScalar r;
+
+ if (SkFPLT(R2MinusQ3, 0)) // we have 3 real roots
+ {
+#ifdef SK_SCALAR_IS_FLOAT
+ float theta = sk_float_acos(R / sk_float_sqrt(Q3));
+ float neg2RootQ = -2 * sk_float_sqrt(Q);
+
+ r = neg2RootQ * sk_float_cos(theta/3) - adiv3;
+ if (is_unit_interval(r))
+ *roots++ = r;
+
+ r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3;
+ if (is_unit_interval(r))
+ *roots++ = r;
+
+ r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3;
+ if (is_unit_interval(r))
+ *roots++ = r;
+
+ // now sort the roots
+ bubble_sort(tValues, (int)(roots - tValues));
+#endif
+ }
+ else // we have 1 real root
+ {
+ SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3));
+ A = SkFPCubeRoot(A);
+ if (SkFPGT(R, 0))
+ A = SkFPNeg(A);
+
+ if (A != 0)
+ A = SkFPAdd(A, SkFPDiv(Q, A));
+ r = SkFPToScalar(SkFPSub(A, adiv3));
+ if (is_unit_interval(r))
+ *roots++ = r;
+ }
+
+ return (int)(roots - tValues);
+}
+
+/* Looking for F' dot F'' == 0
+
+ A = b - a
+ B = c - 2b + a
+ C = d - 3c + 3b - a
+
+ F' = 3Ct^2 + 6Bt + 3A
+ F'' = 6Ct + 6B
+
+ F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
+*/
+static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4])
+{
+ SkScalar a = src[2] - src[0];
+ SkScalar b = src[4] - 2 * src[2] + src[0];
+ SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
+
+ SkFP A = SkScalarToFP(a);
+ SkFP B = SkScalarToFP(b);
+ SkFP C = SkScalarToFP(c);
+
+ coeff[0] = SkFPMul(C, C);
+ coeff[1] = SkFPMulInt(SkFPMul(B, C), 3);
+ coeff[2] = SkFPMulInt(SkFPMul(B, B), 2);
+ coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A));
+ coeff[3] = SkFPMul(A, B);
+}
+
+// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1
+//#define kMinTValueForChopping (SK_Scalar1 / 256)
+#define kMinTValueForChopping 0
+
+/* Looking for F' dot F'' == 0
+
+ A = b - a
+ B = c - 2b + a
+ C = d - 3c + 3b - a
+
+ F' = 3Ct^2 + 6Bt + 3A
+ F'' = 6Ct + 6B
+
+ F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
+*/
+int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3])
+{
+ SkFP coeffX[4], coeffY[4];
+ int i;
+
+ formulate_F1DotF2(&src[0].fX, coeffX);
+ formulate_F1DotF2(&src[0].fY, coeffY);
+
+ for (i = 0; i < 4; i++)
+ coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]);
+
+ SkScalar t[3];
+ int count = solve_cubic_polynomial(coeffX, t);
+ int maxCount = 0;
+
+ // now remove extrema where the curvature is zero (mins)
+ // !!!! need a test for this !!!!
+ for (i = 0; i < count; i++)
+ {
+ // if (not_min_curvature())
+ if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping)
+ tValues[maxCount++] = t[i];
+ }
+ return maxCount;
+}
+
+int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3])
+{
+ SkScalar t_storage[3];
+
+ if (tValues == NULL)
+ tValues = t_storage;
+
+ int count = SkFindCubicMaxCurvature(src, tValues);
+
+ if (dst)
+ {
+ if (count == 0)
+ memcpy(dst, src, 4 * sizeof(SkPoint));
+ else
+ SkChopCubicAt(src, dst, tValues, count);
+ }
+ return count + 1;
+}
+
+////////////////////////////////////////////////////////////////////////////////
+
+/* Find t value for quadratic [a, b, c] = d.
+ Return 0 if there is no solution within [0, 1)
+*/
+static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d)
+{
+ // At^2 + Bt + C = d
+ SkScalar A = a - 2 * b + c;
+ SkScalar B = 2 * (b - a);
+ SkScalar C = a - d;
+
+ SkScalar roots[2];
+ int count = SkFindUnitQuadRoots(A, B, C, roots);
+
+ SkASSERT(count <= 1);
+ return count == 1 ? roots[0] : 0;
+}
+
+/* given a quad-curve and a point (x,y), chop the quad at that point and return
+ the new quad's offCurve point. Should only return false if the computed pos
+ is the start of the curve (i.e. root == 0)
+*/
+static bool quad_pt2OffCurve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* offCurve)
+{
+ const SkScalar* base;
+ SkScalar value;
+
+ if (SkScalarAbs(x) < SkScalarAbs(y)) {
+ base = &quad[0].fX;
+ value = x;
+ } else {
+ base = &quad[0].fY;
+ value = y;
+ }
+
+ // note: this returns 0 if it thinks value is out of range, meaning the
+ // root might return something outside of [0, 1)
+ SkScalar t = quad_solve(base[0], base[2], base[4], value);
+
+ if (t > 0)
+ {
+ SkPoint tmp[5];
+ SkChopQuadAt(quad, tmp, t);
+ *offCurve = tmp[1];
+ return true;
+ } else {
+ /* t == 0 means either the value triggered a root outside of [0, 1)
+ For our purposes, we can ignore the <= 0 roots, but we want to
+ catch the >= 1 roots (which given our caller, will basically mean
+ a root of 1, give-or-take numerical instability). If we are in the
+ >= 1 case, return the existing offCurve point.
+
+ The test below checks to see if we are close to the "end" of the
+ curve (near base[4]). Rather than specifying a tolerance, I just
+ check to see if value is on to the right/left of the middle point
+ (depending on the direction/sign of the end points).
+ */
+ if ((base[0] < base[4] && value > base[2]) ||
+ (base[0] > base[4] && value < base[2])) // should root have been 1
+ {
+ *offCurve = quad[1];
+ return true;
+ }
+ }
+ return false;
+}
+
+static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = {
+ { SK_Scalar1, 0 },
+ { SK_Scalar1, SK_ScalarTanPIOver8 },
+ { SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 },
+ { SK_ScalarTanPIOver8, SK_Scalar1 },
+
+ { 0, SK_Scalar1 },
+ { -SK_ScalarTanPIOver8, SK_Scalar1 },
+ { -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 },
+ { -SK_Scalar1, SK_ScalarTanPIOver8 },
+
+ { -SK_Scalar1, 0 },
+ { -SK_Scalar1, -SK_ScalarTanPIOver8 },
+ { -SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 },
+ { -SK_ScalarTanPIOver8, -SK_Scalar1 },
+
+ { 0, -SK_Scalar1 },
+ { SK_ScalarTanPIOver8, -SK_Scalar1 },
+ { SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 },
+ { SK_Scalar1, -SK_ScalarTanPIOver8 },
+
+ { SK_Scalar1, 0 }
+};
+
+int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop,
+ SkRotationDirection dir, const SkMatrix* userMatrix,
+ SkPoint quadPoints[])
+{
+ // rotate by x,y so that uStart is (1.0)
+ SkScalar x = SkPoint::DotProduct(uStart, uStop);
+ SkScalar y = SkPoint::CrossProduct(uStart, uStop);
+
+ SkScalar absX = SkScalarAbs(x);
+ SkScalar absY = SkScalarAbs(y);
+
+ int pointCount;
+
+ // check for (effectively) coincident vectors
+ // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
+ // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
+ if (absY <= SK_ScalarNearlyZero && x > 0 &&
+ ((y >= 0 && kCW_SkRotationDirection == dir) ||
+ (y <= 0 && kCCW_SkRotationDirection == dir))) {
+
+ // just return the start-point
+ quadPoints[0].set(SK_Scalar1, 0);
+ pointCount = 1;
+ } else {
+ if (dir == kCCW_SkRotationDirection)
+ y = -y;
+
+ // what octant (quadratic curve) is [xy] in?
+ int oct = 0;
+ bool sameSign = true;
+
+ if (0 == y)
+ {
+ oct = 4; // 180
+ SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
+ }
+ else if (0 == x)
+ {
+ SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
+ if (y > 0)
+ oct = 2; // 90
+ else
+ oct = 6; // 270
+ }
+ else
+ {
+ if (y < 0)
+ oct += 4;
+ if ((x < 0) != (y < 0))
+ {
+ oct += 2;
+ sameSign = false;
+ }
+ if ((absX < absY) == sameSign)
+ oct += 1;
+ }
+
+ int wholeCount = oct << 1;
+ memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint));
+
+ const SkPoint* arc = &gQuadCirclePts[wholeCount];
+ if (quad_pt2OffCurve(arc, x, y, &quadPoints[wholeCount + 1]))
+ {
+ quadPoints[wholeCount + 2].set(x, y);
+ wholeCount += 2;
+ }
+ pointCount = wholeCount + 1;
+ }
+
+ // now handle counter-clockwise and the initial unitStart rotation
+ SkMatrix matrix;
+ matrix.setSinCos(uStart.fY, uStart.fX);
+ if (dir == kCCW_SkRotationDirection) {
+ matrix.preScale(SK_Scalar1, -SK_Scalar1);
+ }
+ if (userMatrix) {
+ matrix.postConcat(*userMatrix);
+ }
+ matrix.mapPoints(quadPoints, pointCount);
+ return pointCount;
+}
+
+
+/////////////////////////////////////////////////////////////////////////////////////////
+/////////////////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_DEBUG
+
+void SkGeometry::UnitTest()
+{
+#ifdef SK_SUPPORT_UNITTEST
+ SkPoint pts[3], dst[5];
+
+ pts[0].set(0, 0);
+ pts[1].set(100, 50);
+ pts[2].set(0, 100);
+
+ int count = SkChopQuadAtMaxCurvature(pts, dst);
+ SkASSERT(count == 1 || count == 2);
+#endif
+}
+
+#endif
+
+