diff options
author | initial.commit <initial.commit@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-07-27 00:09:42 +0000 |
---|---|---|
committer | initial.commit <initial.commit@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-07-27 00:09:42 +0000 |
commit | ae2c20f398933a9e86c387dcc465ec0f71065ffc (patch) | |
tree | de668b1411e2ee0b4e49b6d8f8b68183134ac990 /skia/sgl/SkGeometry.cpp | |
parent | 09911bf300f1a419907a9412154760efd0b7abc3 (diff) | |
download | chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.zip chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.tar.gz chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.tar.bz2 |
Add skia to the repository.
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@16 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'skia/sgl/SkGeometry.cpp')
-rw-r--r-- | skia/sgl/SkGeometry.cpp | 1072 |
1 files changed, 1072 insertions, 0 deletions
diff --git a/skia/sgl/SkGeometry.cpp b/skia/sgl/SkGeometry.cpp new file mode 100644 index 0000000..65022ce --- /dev/null +++ b/skia/sgl/SkGeometry.cpp @@ -0,0 +1,1072 @@ +/* libs/graphics/sgl/SkGeometry.cpp +** +** Copyright 2006, Google Inc. +** +** Licensed under the Apache License, Version 2.0 (the "License"); +** you may not use this file except in compliance with the License. +** You may obtain a copy of the License at +** +** http://www.apache.org/licenses/LICENSE-2.0 +** +** Unless required by applicable law or agreed to in writing, software +** distributed under the License is distributed on an "AS IS" BASIS, +** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +** See the License for the specific language governing permissions and +** limitations under the License. +*/ + +#include "SkGeometry.h" +#include "Sk64.h" +#include "SkMatrix.h" + +/** If defined, this makes eval_quad and eval_cubic do more setup (sometimes + involving integer multiplies by 2 or 3, but fewer calls to SkScalarMul. + May also introduce overflow of fixed when we compute our setup. +*/ +#ifdef SK_SCALAR_IS_FIXED + #define DIRECT_EVAL_OF_POLYNOMIALS +#endif + +//////////////////////////////////////////////////////////////////////// + +#ifdef SK_SCALAR_IS_FIXED + static int is_not_monotonic(int a, int b, int c, int d) + { + return (((a - b) | (b - c) | (c - d)) & ((b - a) | (c - b) | (d - c))) >> 31; + } + + static int is_not_monotonic(int a, int b, int c) + { + return (((a - b) | (b - c)) & ((b - a) | (c - b))) >> 31; + } +#else + static int is_not_monotonic(float a, float b, float c) + { + float ab = a - b; + float bc = b - c; + if (ab < 0) + bc = -bc; + return ab == 0 || bc < 0; + } +#endif + +//////////////////////////////////////////////////////////////////////// + +static bool is_unit_interval(SkScalar x) +{ + return x > 0 && x < SK_Scalar1; +} + +static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) +{ + SkASSERT(ratio); + + if (numer < 0) + { + numer = -numer; + denom = -denom; + } + + if (denom == 0 || numer == 0 || numer >= denom) + return 0; + + SkScalar r = SkScalarDiv(numer, denom); + SkASSERT(r >= 0 && r < SK_Scalar1); + if (r == 0) // catch underflow if numer <<<< denom + return 0; + *ratio = r; + return 1; +} + +/** From Numerical Recipes in C. + + Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C]) + x1 = Q / A + x2 = C / Q +*/ +int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) +{ + SkASSERT(roots); + + if (A == 0) + return valid_unit_divide(-C, B, roots); + + SkScalar* r = roots; + +#ifdef SK_SCALAR_IS_FLOAT + float R = B*B - 4*A*C; + if (R < 0) // complex roots + return 0; + R = sk_float_sqrt(R); +#else + Sk64 RR, tmp; + + RR.setMul(B,B); + tmp.setMul(A,C); + tmp.shiftLeft(2); + RR.sub(tmp); + if (RR.isNeg()) + return 0; + SkFixed R = RR.getSqrt(); +#endif + + SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2; + r += valid_unit_divide(Q, A, r); + r += valid_unit_divide(C, Q, r); + if (r - roots == 2) + { + if (roots[0] > roots[1]) + SkTSwap<SkScalar>(roots[0], roots[1]); + else if (roots[0] == roots[1]) // nearly-equal? + r -= 1; // skip the double root + } + return (int)(r - roots); +} + +#ifdef SK_SCALAR_IS_FIXED +/** Trim A/B/C down so that they are all <= 32bits + and then call SkFindUnitQuadRoots() +*/ +static int Sk64FindFixedQuadRoots(const Sk64& A, const Sk64& B, const Sk64& C, SkFixed roots[2]) +{ + int na = A.shiftToMake32(); + int nb = B.shiftToMake32(); + int nc = C.shiftToMake32(); + + int shift = SkMax32(na, SkMax32(nb, nc)); + SkASSERT(shift >= 0); + + return SkFindUnitQuadRoots(A.getShiftRight(shift), B.getShiftRight(shift), C.getShiftRight(shift), roots); +} +#endif + +///////////////////////////////////////////////////////////////////////////////////// +///////////////////////////////////////////////////////////////////////////////////// + +static SkScalar eval_quad(const SkScalar src[], SkScalar t) +{ + SkASSERT(src); + SkASSERT(t >= 0 && t <= SK_Scalar1); + +#ifdef DIRECT_EVAL_OF_POLYNOMIALS + SkScalar C = src[0]; + SkScalar A = src[4] - 2 * src[2] + C; + SkScalar B = 2 * (src[2] - C); + return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); +#else + SkScalar ab = SkScalarInterp(src[0], src[2], t); + SkScalar bc = SkScalarInterp(src[2], src[4], t); + return SkScalarInterp(ab, bc, t); +#endif +} + +static SkScalar eval_quad_derivative(const SkScalar src[], SkScalar t) +{ + SkScalar A = src[4] - 2 * src[2] + src[0]; + SkScalar B = src[2] - src[0]; + + return 2 * SkScalarMulAdd(A, t, B); +} + +static SkScalar eval_quad_derivative_at_half(const SkScalar src[]) +{ + SkScalar A = src[4] - 2 * src[2] + src[0]; + SkScalar B = src[2] - src[0]; + return A + 2 * B; +} + +void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) +{ + SkASSERT(src); + SkASSERT(t >= 0 && t <= SK_Scalar1); + + if (pt) + pt->set(eval_quad(&src[0].fX, t), eval_quad(&src[0].fY, t)); + if (tangent) + tangent->set(eval_quad_derivative(&src[0].fX, t), + eval_quad_derivative(&src[0].fY, t)); +} + +void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent) +{ + SkASSERT(src); + + if (pt) + { + SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); + SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); + SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); + SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); + pt->set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); + } + if (tangent) + tangent->set(eval_quad_derivative_at_half(&src[0].fX), + eval_quad_derivative_at_half(&src[0].fY)); +} + +static void interp_quad_coords(const SkScalar* src, SkScalar* dst, SkScalar t) +{ + SkScalar ab = SkScalarInterp(src[0], src[2], t); + SkScalar bc = SkScalarInterp(src[2], src[4], t); + + dst[0] = src[0]; + dst[2] = ab; + dst[4] = SkScalarInterp(ab, bc, t); + dst[6] = bc; + dst[8] = src[4]; +} + +void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) +{ + SkASSERT(t > 0 && t < SK_Scalar1); + + interp_quad_coords(&src[0].fX, &dst[0].fX, t); + interp_quad_coords(&src[0].fY, &dst[0].fY, t); +} + +void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) +{ + SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); + SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); + SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); + SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); + + dst[0] = src[0]; + dst[1].set(x01, y01); + dst[2].set(SkScalarAve(x01, x12), SkScalarAve(y01, y12)); + dst[3].set(x12, y12); + dst[4] = src[2]; +} + +/** Quad'(t) = At + B, where + A = 2(a - 2b + c) + B = 2(b - a) + Solve for t, only if it fits between 0 < t < 1 +*/ +int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) +{ + /* At + B == 0 + t = -B / A + */ +#ifdef SK_SCALAR_IS_FIXED + return is_not_monotonic(a, b, c) && valid_unit_divide(a - b, a - b - b + c, tValue); +#else + return valid_unit_divide(a - b, a - b - b + c, tValue); +#endif +} + +static void flatten_double_quad_extrema(SkScalar coords[14]) +{ + coords[2] = coords[6] = coords[4]; +} + +static void force_quad_monotonic_in_y(SkPoint pts[3]) +{ + // zap pts[1].fY to the nearest value + SkScalar ab = SkScalarAbs(pts[0].fY - pts[1].fY); + SkScalar bc = SkScalarAbs(pts[1].fY - pts[2].fY); + pts[1].fY = ab < bc ? pts[0].fY : pts[2].fY; +} + +/* Returns 0 for 1 quad, and 1 for two quads, either way the answer is + stored in dst[]. Guarantees that the 1/2 quads will be monotonic. +*/ +int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) +{ + SkASSERT(src); + SkASSERT(dst); + +#if 0 + static bool once = true; + if (once) + { + once = false; + SkPoint s[3] = { 0, 26398, 0, 26331, 0, 20621428 }; + SkPoint d[6]; + + int n = SkChopQuadAtYExtrema(s, d); + SkDebugf("chop=%d, Y=[%x %x %x %x %x %x]\n", n, d[0].fY, d[1].fY, d[2].fY, d[3].fY, d[4].fY, d[5].fY); + } +#endif + + SkScalar a = src[0].fY; + SkScalar b = src[1].fY; + SkScalar c = src[2].fY; + + if (is_not_monotonic(a, b, c)) + { + SkScalar tValue; + if (valid_unit_divide(a - b, a - b - b + c, &tValue)) + { + SkChopQuadAt(src, dst, tValue); + flatten_double_quad_extrema(&dst[0].fY); + return 1; + } + // if we get here, we need to force dst to be monotonic, even though + // we couldn't compute a unit_divide value (probably underflow). + b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c; + } + dst[0].set(src[0].fX, a); + dst[1].set(src[1].fX, b); + dst[2].set(src[2].fX, c); + return 0; +} + +// F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2 +// F'(t) = 2 (b - a) + 2 (a - 2b + c) t +// F''(t) = 2 (a - 2b + c) +// +// A = 2 (b - a) +// B = 2 (a - 2b + c) +// +// Maximum curvature for a quadratic means solving +// Fx' Fx'' + Fy' Fy'' = 0 +// +// t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2) +// +int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) +{ + SkScalar Ax = src[1].fX - src[0].fX; + SkScalar Ay = src[1].fY - src[0].fY; + SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX; + SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY; + SkScalar t = 0; // 0 means don't chop + +#ifdef SK_SCALAR_IS_FLOAT + (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t); +#else + // !!! should I use SkFloat here? seems like it + Sk64 numer, denom, tmp; + + numer.setMul(Ax, -Bx); + tmp.setMul(Ay, -By); + numer.add(tmp); + + if (numer.isPos()) // do nothing if numer <= 0 + { + denom.setMul(Bx, Bx); + tmp.setMul(By, By); + denom.add(tmp); + SkASSERT(!denom.isNeg()); + if (numer < denom) + { + t = numer.getFixedDiv(denom); + SkASSERT(t >= 0 && t <= SK_Fixed1); // assert that we're numerically stable (ha!) + if ((unsigned)t >= SK_Fixed1) // runtime check for numerical stability + t = 0; // ignore the chop + } + } +#endif + + if (t == 0) + { + memcpy(dst, src, 3 * sizeof(SkPoint)); + return 1; + } + else + { + SkChopQuadAt(src, dst, t); + return 2; + } +} + +//////////////////////////////////////////////////////////////////////////////////////// +///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS ///// +//////////////////////////////////////////////////////////////////////////////////////// + +static void get_cubic_coeff(const SkScalar pt[], SkScalar coeff[4]) +{ + coeff[0] = pt[6] + 3*(pt[2] - pt[4]) - pt[0]; + coeff[1] = 3*(pt[4] - pt[2] - pt[2] + pt[0]); + coeff[2] = 3*(pt[2] - pt[0]); + coeff[3] = pt[0]; +} + +void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]) +{ + SkASSERT(pts); + + if (cx) + get_cubic_coeff(&pts[0].fX, cx); + if (cy) + get_cubic_coeff(&pts[0].fY, cy); +} + +static SkScalar eval_cubic(const SkScalar src[], SkScalar t) +{ + SkASSERT(src); + SkASSERT(t >= 0 && t <= SK_Scalar1); + + if (t == 0) + return src[0]; + +#ifdef DIRECT_EVAL_OF_POLYNOMIALS + SkScalar D = src[0]; + SkScalar A = src[6] + 3*(src[2] - src[4]) - D; + SkScalar B = 3*(src[4] - src[2] - src[2] + D); + SkScalar C = 3*(src[2] - D); + + return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D); +#else + SkScalar ab = SkScalarInterp(src[0], src[2], t); + SkScalar bc = SkScalarInterp(src[2], src[4], t); + SkScalar cd = SkScalarInterp(src[4], src[6], t); + SkScalar abc = SkScalarInterp(ab, bc, t); + SkScalar bcd = SkScalarInterp(bc, cd, t); + return SkScalarInterp(abc, bcd, t); +#endif +} + +/** return At^2 + Bt + C +*/ +static SkScalar eval_quadratic(SkScalar A, SkScalar B, SkScalar C, SkScalar t) +{ + SkASSERT(t >= 0 && t <= SK_Scalar1); + + return SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C); +} + +static SkScalar eval_cubic_derivative(const SkScalar src[], SkScalar t) +{ + SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; + SkScalar B = 2*(src[4] - 2 * src[2] + src[0]); + SkScalar C = src[2] - src[0]; + + return eval_quadratic(A, B, C, t); +} + +static SkScalar eval_cubic_2ndDerivative(const SkScalar src[], SkScalar t) +{ + SkScalar A = src[6] + 3*(src[2] - src[4]) - src[0]; + SkScalar B = src[4] - 2 * src[2] + src[0]; + + return SkScalarMulAdd(A, t, B); +} + +void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc, SkVector* tangent, SkVector* curvature) +{ + SkASSERT(src); + SkASSERT(t >= 0 && t <= SK_Scalar1); + + if (loc) + loc->set(eval_cubic(&src[0].fX, t), eval_cubic(&src[0].fY, t)); + if (tangent) + tangent->set(eval_cubic_derivative(&src[0].fX, t), + eval_cubic_derivative(&src[0].fY, t)); + if (curvature) + curvature->set(eval_cubic_2ndDerivative(&src[0].fX, t), + eval_cubic_2ndDerivative(&src[0].fY, t)); +} + +/** Cubic'(t) = At^2 + Bt + C, where + A = 3(-a + 3(b - c) + d) + B = 6(a - 2b + c) + C = 3(b - a) + Solve for t, keeping only those that fit betwee 0 < t < 1 +*/ +int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]) +{ +#ifdef SK_SCALAR_IS_FIXED + if (!is_not_monotonic(a, b, c, d)) + return 0; +#endif + + // we divide A,B,C by 3 to simplify + SkScalar A = d - a + 3*(b - c); + SkScalar B = 2*(a - b - b + c); + SkScalar C = b - a; + + return SkFindUnitQuadRoots(A, B, C, tValues); +} + +static void interp_cubic_coords(const SkScalar* src, SkScalar* dst, SkScalar t) +{ + SkScalar ab = SkScalarInterp(src[0], src[2], t); + SkScalar bc = SkScalarInterp(src[2], src[4], t); + SkScalar cd = SkScalarInterp(src[4], src[6], t); + SkScalar abc = SkScalarInterp(ab, bc, t); + SkScalar bcd = SkScalarInterp(bc, cd, t); + SkScalar abcd = SkScalarInterp(abc, bcd, t); + + dst[0] = src[0]; + dst[2] = ab; + dst[4] = abc; + dst[6] = abcd; + dst[8] = bcd; + dst[10] = cd; + dst[12] = src[6]; +} + +void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) +{ + SkASSERT(t > 0 && t < SK_Scalar1); + + interp_cubic_coords(&src[0].fX, &dst[0].fX, t); + interp_cubic_coords(&src[0].fY, &dst[0].fY, t); +} + +void SkChopCubicAt(const SkPoint src[4], SkPoint dst[], const SkScalar tValues[], int roots) +{ +#ifdef SK_DEBUG + { + for (int i = 0; i < roots - 1; i++) + { + SkASSERT(is_unit_interval(tValues[i])); + SkASSERT(is_unit_interval(tValues[i+1])); + SkASSERT(tValues[i] < tValues[i+1]); + } + } +#endif + + if (dst) + { + if (roots == 0) // nothing to chop + memcpy(dst, src, 4*sizeof(SkPoint)); + else + { + SkScalar t = tValues[0]; + SkPoint tmp[4]; + + for (int i = 0; i < roots; i++) + { + SkChopCubicAt(src, dst, t); + if (i == roots - 1) + break; + + SkDEBUGCODE(int valid =) valid_unit_divide(tValues[i+1] - tValues[i], SK_Scalar1 - tValues[i], &t); + SkASSERT(valid); + + dst += 3; + memcpy(tmp, dst, 4 * sizeof(SkPoint)); + src = tmp; + } + } + } +} + +void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) +{ + SkScalar x01 = SkScalarAve(src[0].fX, src[1].fX); + SkScalar y01 = SkScalarAve(src[0].fY, src[1].fY); + SkScalar x12 = SkScalarAve(src[1].fX, src[2].fX); + SkScalar y12 = SkScalarAve(src[1].fY, src[2].fY); + SkScalar x23 = SkScalarAve(src[2].fX, src[3].fX); + SkScalar y23 = SkScalarAve(src[2].fY, src[3].fY); + + SkScalar x012 = SkScalarAve(x01, x12); + SkScalar y012 = SkScalarAve(y01, y12); + SkScalar x123 = SkScalarAve(x12, x23); + SkScalar y123 = SkScalarAve(y12, y23); + + dst[0] = src[0]; + dst[1].set(x01, y01); + dst[2].set(x012, y012); + dst[3].set(SkScalarAve(x012, x123), SkScalarAve(y012, y123)); + dst[4].set(x123, y123); + dst[5].set(x23, y23); + dst[6] = src[3]; +} + +static void flatten_double_cubic_extrema(SkScalar coords[14]) +{ + coords[4] = coords[8] = coords[6]; +} + +/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that + the resulting beziers are monotonic in Y. This is called by the scan converter. + Depending on what is returned, dst[] is treated as follows + 0 dst[0..3] is the original cubic + 1 dst[0..3] and dst[3..6] are the two new cubics + 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics + If dst == null, it is ignored and only the count is returned. +*/ +int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) +{ + SkScalar tValues[2]; + int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY, src[3].fY, tValues); + + SkChopCubicAt(src, dst, tValues, roots); + if (dst && roots > 0) + { + // we do some cleanup to ensure our Y extrema are flat + flatten_double_cubic_extrema(&dst[0].fY); + if (roots == 2) + flatten_double_cubic_extrema(&dst[3].fY); + } + return roots; +} + +/** http://www.faculty.idc.ac.il/arik/quality/appendixA.html + + Inflection means that curvature is zero. + Curvature is [F' x F''] / [F'^3] + So we solve F'x X F''y - F'y X F''y == 0 + After some canceling of the cubic term, we get + A = b - a + B = c - 2b + a + C = d - 3c + 3b - a + (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0 +*/ +int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) +{ + SkScalar Ax = src[1].fX - src[0].fX; + SkScalar Ay = src[1].fY - src[0].fY; + SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX; + SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY; + SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX; + SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY; + int count; + +#ifdef SK_SCALAR_IS_FLOAT + count = SkFindUnitQuadRoots(Bx*Cy - By*Cx, Ax*Cy - Ay*Cx, Ax*By - Ay*Bx, tValues); +#else + Sk64 A, B, C, tmp; + + A.setMul(Bx, Cy); + tmp.setMul(By, Cx); + A.sub(tmp); + + B.setMul(Ax, Cy); + tmp.setMul(Ay, Cx); + B.sub(tmp); + + C.setMul(Ax, By); + tmp.setMul(Ay, Bx); + C.sub(tmp); + + count = Sk64FindFixedQuadRoots(A, B, C, tValues); +#endif + + return count; +} + +int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) +{ + SkScalar tValues[2]; + int count = SkFindCubicInflections(src, tValues); + + if (dst) + { + if (count == 0) + memcpy(dst, src, 4 * sizeof(SkPoint)); + else + SkChopCubicAt(src, dst, tValues, count); + } + return count + 1; +} + +template <typename T> void bubble_sort(T array[], int count) +{ + for (int i = count - 1; i > 0; --i) + for (int j = i; j > 0; --j) + if (array[j] < array[j-1]) + { + T tmp(array[j]); + array[j] = array[j-1]; + array[j-1] = tmp; + } +} + +#include "SkFP.h" + +// newton refinement +#if 0 +static SkScalar refine_cubic_root(const SkFP coeff[4], SkScalar root) +{ + // x1 = x0 - f(t) / f'(t) + + SkFP T = SkScalarToFloat(root); + SkFP N, D; + + // f' = 3*coeff[0]*T^2 + 2*coeff[1]*T + coeff[2] + D = SkFPMul(SkFPMul(coeff[0], SkFPMul(T,T)), 3); + D = SkFPAdd(D, SkFPMulInt(SkFPMul(coeff[1], T), 2)); + D = SkFPAdd(D, coeff[2]); + + if (D == 0) + return root; + + // f = coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] + N = SkFPMul(SkFPMul(SkFPMul(T, T), T), coeff[0]); + N = SkFPAdd(N, SkFPMul(SkFPMul(T, T), coeff[1])); + N = SkFPAdd(N, SkFPMul(T, coeff[2])); + N = SkFPAdd(N, coeff[3]); + + if (N) + { + SkScalar delta = SkFPToScalar(SkFPDiv(N, D)); + + if (delta) + root -= delta; + } + return root; +} +#endif + +#if defined _WIN32 && _MSC_VER >= 1300 && defined SK_SCALAR_IS_FIXED // disable warning : unreachable code if building fixed point for windows desktop +#pragma warning ( disable : 4702 ) +#endif + +/* Solve coeff(t) == 0, returning the number of roots that + lie withing 0 < t < 1. + coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3] +*/ +static int solve_cubic_polynomial(const SkFP coeff[4], SkScalar tValues[3]) +{ +#ifndef SK_SCALAR_IS_FLOAT + return 0; // this is not yet implemented for software float +#endif + + if (SkScalarNearlyZero(coeff[0])) // we're just a quadratic + { + return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues); + } + + SkFP a, b, c, Q, R; + + { + SkASSERT(coeff[0] != 0); + + SkFP inva = SkFPInvert(coeff[0]); + a = SkFPMul(coeff[1], inva); + b = SkFPMul(coeff[2], inva); + c = SkFPMul(coeff[3], inva); + } + Q = SkFPDivInt(SkFPSub(SkFPMul(a,a), SkFPMulInt(b, 3)), 9); +// R = (2*a*a*a - 9*a*b + 27*c) / 54; + R = SkFPMulInt(SkFPMul(SkFPMul(a, a), a), 2); + R = SkFPSub(R, SkFPMulInt(SkFPMul(a, b), 9)); + R = SkFPAdd(R, SkFPMulInt(c, 27)); + R = SkFPDivInt(R, 54); + + SkFP Q3 = SkFPMul(SkFPMul(Q, Q), Q); + SkFP R2MinusQ3 = SkFPSub(SkFPMul(R,R), Q3); + SkFP adiv3 = SkFPDivInt(a, 3); + + SkScalar* roots = tValues; + SkScalar r; + + if (SkFPLT(R2MinusQ3, 0)) // we have 3 real roots + { +#ifdef SK_SCALAR_IS_FLOAT + float theta = sk_float_acos(R / sk_float_sqrt(Q3)); + float neg2RootQ = -2 * sk_float_sqrt(Q); + + r = neg2RootQ * sk_float_cos(theta/3) - adiv3; + if (is_unit_interval(r)) + *roots++ = r; + + r = neg2RootQ * sk_float_cos((theta + 2*SK_ScalarPI)/3) - adiv3; + if (is_unit_interval(r)) + *roots++ = r; + + r = neg2RootQ * sk_float_cos((theta - 2*SK_ScalarPI)/3) - adiv3; + if (is_unit_interval(r)) + *roots++ = r; + + // now sort the roots + bubble_sort(tValues, (int)(roots - tValues)); +#endif + } + else // we have 1 real root + { + SkFP A = SkFPAdd(SkFPAbs(R), SkFPSqrt(R2MinusQ3)); + A = SkFPCubeRoot(A); + if (SkFPGT(R, 0)) + A = SkFPNeg(A); + + if (A != 0) + A = SkFPAdd(A, SkFPDiv(Q, A)); + r = SkFPToScalar(SkFPSub(A, adiv3)); + if (is_unit_interval(r)) + *roots++ = r; + } + + return (int)(roots - tValues); +} + +/* Looking for F' dot F'' == 0 + + A = b - a + B = c - 2b + a + C = d - 3c + 3b - a + + F' = 3Ct^2 + 6Bt + 3A + F'' = 6Ct + 6B + + F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB +*/ +static void formulate_F1DotF2(const SkScalar src[], SkFP coeff[4]) +{ + SkScalar a = src[2] - src[0]; + SkScalar b = src[4] - 2 * src[2] + src[0]; + SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0]; + + SkFP A = SkScalarToFP(a); + SkFP B = SkScalarToFP(b); + SkFP C = SkScalarToFP(c); + + coeff[0] = SkFPMul(C, C); + coeff[1] = SkFPMulInt(SkFPMul(B, C), 3); + coeff[2] = SkFPMulInt(SkFPMul(B, B), 2); + coeff[2] = SkFPAdd(coeff[2], SkFPMul(C, A)); + coeff[3] = SkFPMul(A, B); +} + +// EXPERIMENTAL: can set this to zero to accept all t-values 0 < t < 1 +//#define kMinTValueForChopping (SK_Scalar1 / 256) +#define kMinTValueForChopping 0 + +/* Looking for F' dot F'' == 0 + + A = b - a + B = c - 2b + a + C = d - 3c + 3b - a + + F' = 3Ct^2 + 6Bt + 3A + F'' = 6Ct + 6B + + F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB +*/ +int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) +{ + SkFP coeffX[4], coeffY[4]; + int i; + + formulate_F1DotF2(&src[0].fX, coeffX); + formulate_F1DotF2(&src[0].fY, coeffY); + + for (i = 0; i < 4; i++) + coeffX[i] = SkFPAdd(coeffX[i],coeffY[i]); + + SkScalar t[3]; + int count = solve_cubic_polynomial(coeffX, t); + int maxCount = 0; + + // now remove extrema where the curvature is zero (mins) + // !!!! need a test for this !!!! + for (i = 0; i < count; i++) + { + // if (not_min_curvature()) + if (t[i] > kMinTValueForChopping && t[i] < SK_Scalar1 - kMinTValueForChopping) + tValues[maxCount++] = t[i]; + } + return maxCount; +} + +int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3]) +{ + SkScalar t_storage[3]; + + if (tValues == NULL) + tValues = t_storage; + + int count = SkFindCubicMaxCurvature(src, tValues); + + if (dst) + { + if (count == 0) + memcpy(dst, src, 4 * sizeof(SkPoint)); + else + SkChopCubicAt(src, dst, tValues, count); + } + return count + 1; +} + +//////////////////////////////////////////////////////////////////////////////// + +/* Find t value for quadratic [a, b, c] = d. + Return 0 if there is no solution within [0, 1) +*/ +static SkScalar quad_solve(SkScalar a, SkScalar b, SkScalar c, SkScalar d) +{ + // At^2 + Bt + C = d + SkScalar A = a - 2 * b + c; + SkScalar B = 2 * (b - a); + SkScalar C = a - d; + + SkScalar roots[2]; + int count = SkFindUnitQuadRoots(A, B, C, roots); + + SkASSERT(count <= 1); + return count == 1 ? roots[0] : 0; +} + +/* given a quad-curve and a point (x,y), chop the quad at that point and return + the new quad's offCurve point. Should only return false if the computed pos + is the start of the curve (i.e. root == 0) +*/ +static bool quad_pt2OffCurve(const SkPoint quad[3], SkScalar x, SkScalar y, SkPoint* offCurve) +{ + const SkScalar* base; + SkScalar value; + + if (SkScalarAbs(x) < SkScalarAbs(y)) { + base = &quad[0].fX; + value = x; + } else { + base = &quad[0].fY; + value = y; + } + + // note: this returns 0 if it thinks value is out of range, meaning the + // root might return something outside of [0, 1) + SkScalar t = quad_solve(base[0], base[2], base[4], value); + + if (t > 0) + { + SkPoint tmp[5]; + SkChopQuadAt(quad, tmp, t); + *offCurve = tmp[1]; + return true; + } else { + /* t == 0 means either the value triggered a root outside of [0, 1) + For our purposes, we can ignore the <= 0 roots, but we want to + catch the >= 1 roots (which given our caller, will basically mean + a root of 1, give-or-take numerical instability). If we are in the + >= 1 case, return the existing offCurve point. + + The test below checks to see if we are close to the "end" of the + curve (near base[4]). Rather than specifying a tolerance, I just + check to see if value is on to the right/left of the middle point + (depending on the direction/sign of the end points). + */ + if ((base[0] < base[4] && value > base[2]) || + (base[0] > base[4] && value < base[2])) // should root have been 1 + { + *offCurve = quad[1]; + return true; + } + } + return false; +} + +static const SkPoint gQuadCirclePts[kSkBuildQuadArcStorage] = { + { SK_Scalar1, 0 }, + { SK_Scalar1, SK_ScalarTanPIOver8 }, + { SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 }, + { SK_ScalarTanPIOver8, SK_Scalar1 }, + + { 0, SK_Scalar1 }, + { -SK_ScalarTanPIOver8, SK_Scalar1 }, + { -SK_ScalarRoot2Over2, SK_ScalarRoot2Over2 }, + { -SK_Scalar1, SK_ScalarTanPIOver8 }, + + { -SK_Scalar1, 0 }, + { -SK_Scalar1, -SK_ScalarTanPIOver8 }, + { -SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 }, + { -SK_ScalarTanPIOver8, -SK_Scalar1 }, + + { 0, -SK_Scalar1 }, + { SK_ScalarTanPIOver8, -SK_Scalar1 }, + { SK_ScalarRoot2Over2, -SK_ScalarRoot2Over2 }, + { SK_Scalar1, -SK_ScalarTanPIOver8 }, + + { SK_Scalar1, 0 } +}; + +int SkBuildQuadArc(const SkVector& uStart, const SkVector& uStop, + SkRotationDirection dir, const SkMatrix* userMatrix, + SkPoint quadPoints[]) +{ + // rotate by x,y so that uStart is (1.0) + SkScalar x = SkPoint::DotProduct(uStart, uStop); + SkScalar y = SkPoint::CrossProduct(uStart, uStop); + + SkScalar absX = SkScalarAbs(x); + SkScalar absY = SkScalarAbs(y); + + int pointCount; + + // check for (effectively) coincident vectors + // this can happen if our angle is nearly 0 or nearly 180 (y == 0) + // ... we use the dot-prod to distinguish between 0 and 180 (x > 0) + if (absY <= SK_ScalarNearlyZero && x > 0 && + ((y >= 0 && kCW_SkRotationDirection == dir) || + (y <= 0 && kCCW_SkRotationDirection == dir))) { + + // just return the start-point + quadPoints[0].set(SK_Scalar1, 0); + pointCount = 1; + } else { + if (dir == kCCW_SkRotationDirection) + y = -y; + + // what octant (quadratic curve) is [xy] in? + int oct = 0; + bool sameSign = true; + + if (0 == y) + { + oct = 4; // 180 + SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero); + } + else if (0 == x) + { + SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero); + if (y > 0) + oct = 2; // 90 + else + oct = 6; // 270 + } + else + { + if (y < 0) + oct += 4; + if ((x < 0) != (y < 0)) + { + oct += 2; + sameSign = false; + } + if ((absX < absY) == sameSign) + oct += 1; + } + + int wholeCount = oct << 1; + memcpy(quadPoints, gQuadCirclePts, (wholeCount + 1) * sizeof(SkPoint)); + + const SkPoint* arc = &gQuadCirclePts[wholeCount]; + if (quad_pt2OffCurve(arc, x, y, &quadPoints[wholeCount + 1])) + { + quadPoints[wholeCount + 2].set(x, y); + wholeCount += 2; + } + pointCount = wholeCount + 1; + } + + // now handle counter-clockwise and the initial unitStart rotation + SkMatrix matrix; + matrix.setSinCos(uStart.fY, uStart.fX); + if (dir == kCCW_SkRotationDirection) { + matrix.preScale(SK_Scalar1, -SK_Scalar1); + } + if (userMatrix) { + matrix.postConcat(*userMatrix); + } + matrix.mapPoints(quadPoints, pointCount); + return pointCount; +} + + +///////////////////////////////////////////////////////////////////////////////////////// +///////////////////////////////////////////////////////////////////////////////////////// + +#ifdef SK_DEBUG + +void SkGeometry::UnitTest() +{ +#ifdef SK_SUPPORT_UNITTEST + SkPoint pts[3], dst[5]; + + pts[0].set(0, 0); + pts[1].set(100, 50); + pts[2].set(0, 100); + + int count = SkChopQuadAtMaxCurvature(pts, dst); + SkASSERT(count == 1 || count == 2); +#endif +} + +#endif + + |