diff options
author | initial.commit <initial.commit@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-07-27 00:09:42 +0000 |
---|---|---|
committer | initial.commit <initial.commit@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-07-27 00:09:42 +0000 |
commit | ae2c20f398933a9e86c387dcc465ec0f71065ffc (patch) | |
tree | de668b1411e2ee0b4e49b6d8f8b68183134ac990 /skia/sgl/SkGeometry.h | |
parent | 09911bf300f1a419907a9412154760efd0b7abc3 (diff) | |
download | chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.zip chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.tar.gz chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.tar.bz2 |
Add skia to the repository.
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@16 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'skia/sgl/SkGeometry.h')
-rw-r--r-- | skia/sgl/SkGeometry.h | 163 |
1 files changed, 163 insertions, 0 deletions
diff --git a/skia/sgl/SkGeometry.h b/skia/sgl/SkGeometry.h new file mode 100644 index 0000000..d4547a5 --- /dev/null +++ b/skia/sgl/SkGeometry.h @@ -0,0 +1,163 @@ +/* libs/graphics/sgl/SkGeometry.h +** +** Copyright 2006, Google Inc. +** +** Licensed under the Apache License, Version 2.0 (the "License"); +** you may not use this file except in compliance with the License. +** You may obtain a copy of the License at +** +** http://www.apache.org/licenses/LICENSE-2.0 +** +** Unless required by applicable law or agreed to in writing, software +** distributed under the License is distributed on an "AS IS" BASIS, +** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +** See the License for the specific language governing permissions and +** limitations under the License. +*/ + +#ifndef SkGeometry_DEFINED +#define SkGeometry_DEFINED + +#include "SkMatrix.h" + +/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the + equation. +*/ +int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]); + +/////////////////////////////////////////////////////////////////////////////// + +/** Set pt to the point on the src quadratic specified by t. t must be + 0 <= t <= 1.0 +*/ +void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL); +void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent = NULL); + +/** Given a src quadratic bezier, chop it at the specified t value, + where 0 < t < 1, and return the two new quadratics in dst: + dst[0..2] and dst[2..4] +*/ +void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t); + +/** Given a src quadratic bezier, chop it at the specified t == 1/2, + The new quads are returned in dst[0..2] and dst[2..4] +*/ +void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]); + +/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look + for extrema, and return the number of t-values that are found that represent + these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the + function returns 0. + Returned count tValues[] + 0 ignored + 1 0 < tValues[0] < 1 +*/ +int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]); + +/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that + the resulting beziers are monotonic in Y. This is called by the scan converter. + Depending on what is returned, dst[] is treated as follows + 1 dst[0..2] is the original quad + 2 dst[0..2] and dst[2..4] are the two new quads + If dst == null, it is ignored and only the count is returned. +*/ +int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]); + +/** Given 3 points on a quadratic bezier, divide it into 2 quadratics + if the point of maximum curvature exists on the quad segment. + Depending on what is returned, dst[] is treated as follows + 1 dst[0..2] is the original quad + 2 dst[0..2] and dst[2..4] are the two new quads + If dst == null, it is ignored and only the count is returned. +*/ +int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]); + +//////////////////////////////////////////////////////////////////////////////////////// + +/** Convert from parametric from (pts) to polynomial coefficients + coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3] +*/ +void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]); + +/** Set pt to the point on the src cubic specified by t. t must be + 0 <= t <= 1.0 +*/ +void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull); + +/** Given a src cubic bezier, chop it at the specified t value, + where 0 < t < 1, and return the two new cubics in dst: + dst[0..3] and dst[3..6] +*/ +void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t); +void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], int t_count); + +/** Given a src cubic bezier, chop it at the specified t == 1/2, + The new cubics are returned in dst[0..3] and dst[3..6] +*/ +void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]); + +/** Given the 4 coefficients for a cubic bezier (either X or Y values), look + for extrema, and return the number of t-values that are found that represent + these extrema. If the cubic has no extrema betwee (0..1) exclusive, the + function returns 0. + Returned count tValues[] + 0 ignored + 1 0 < tValues[0] < 1 + 2 0 < tValues[0] < tValues[1] < 1 +*/ +int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]); + +/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that + the resulting beziers are monotonic in Y. This is called by the scan converter. + Depending on what is returned, dst[] is treated as follows + 1 dst[0..3] is the original cubic + 2 dst[0..3] and dst[3..6] are the two new cubics + 3 dst[0..3], dst[3..6], dst[6..9] are the three new cubics + If dst == null, it is ignored and only the count is returned. +*/ +int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]); + +/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the + inflection points. +*/ +int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]); + +/** Return 1 for no chop, or 2 for having chopped the cubic at its + inflection point. +*/ +int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]); + +int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]); +int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = NULL); + +/////////////////////////////////////////////////////////////////////////////////////////// + +enum SkRotationDirection { + kCW_SkRotationDirection, + kCCW_SkRotationDirection +}; + +/** Maximum number of points needed in the quadPoints[] parameter for + SkBuildQuadArc() +*/ +#define kSkBuildQuadArcStorage 17 + +/** Given 2 unit vectors and a rotation direction, fill out the specified + array of points with quadratic segments. Return is the number of points + written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage } + + matrix, if not null, is appled to the points before they are returned. +*/ +int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, SkRotationDirection, + const SkMatrix* matrix, SkPoint quadPoints[]); + +////////////////////////////////////////////////////////////////////////////// + +#ifdef SK_DEBUG + class SkGeometry { + public: + static void UnitTest(); + }; +#endif + +#endif |