summaryrefslogtreecommitdiffstats
path: root/skia/sgl/SkGeometry.h
diff options
context:
space:
mode:
authorinitial.commit <initial.commit@0039d316-1c4b-4281-b951-d872f2087c98>2008-07-27 00:09:42 +0000
committerinitial.commit <initial.commit@0039d316-1c4b-4281-b951-d872f2087c98>2008-07-27 00:09:42 +0000
commitae2c20f398933a9e86c387dcc465ec0f71065ffc (patch)
treede668b1411e2ee0b4e49b6d8f8b68183134ac990 /skia/sgl/SkGeometry.h
parent09911bf300f1a419907a9412154760efd0b7abc3 (diff)
downloadchromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.zip
chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.tar.gz
chromium_src-ae2c20f398933a9e86c387dcc465ec0f71065ffc.tar.bz2
Add skia to the repository.
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@16 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'skia/sgl/SkGeometry.h')
-rw-r--r--skia/sgl/SkGeometry.h163
1 files changed, 163 insertions, 0 deletions
diff --git a/skia/sgl/SkGeometry.h b/skia/sgl/SkGeometry.h
new file mode 100644
index 0000000..d4547a5
--- /dev/null
+++ b/skia/sgl/SkGeometry.h
@@ -0,0 +1,163 @@
+/* libs/graphics/sgl/SkGeometry.h
+**
+** Copyright 2006, Google Inc.
+**
+** Licensed under the Apache License, Version 2.0 (the "License");
+** you may not use this file except in compliance with the License.
+** You may obtain a copy of the License at
+**
+** http://www.apache.org/licenses/LICENSE-2.0
+**
+** Unless required by applicable law or agreed to in writing, software
+** distributed under the License is distributed on an "AS IS" BASIS,
+** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+** See the License for the specific language governing permissions and
+** limitations under the License.
+*/
+
+#ifndef SkGeometry_DEFINED
+#define SkGeometry_DEFINED
+
+#include "SkMatrix.h"
+
+/** Given a quadratic equation Ax^2 + Bx + C = 0, return 0, 1, 2 roots for the
+ equation.
+*/
+int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]);
+
+///////////////////////////////////////////////////////////////////////////////
+
+/** Set pt to the point on the src quadratic specified by t. t must be
+ 0 <= t <= 1.0
+*/
+void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent = NULL);
+void SkEvalQuadAtHalf(const SkPoint src[3], SkPoint* pt, SkVector* tangent = NULL);
+
+/** Given a src quadratic bezier, chop it at the specified t value,
+ where 0 < t < 1, and return the two new quadratics in dst:
+ dst[0..2] and dst[2..4]
+*/
+void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t);
+
+/** Given a src quadratic bezier, chop it at the specified t == 1/2,
+ The new quads are returned in dst[0..2] and dst[2..4]
+*/
+void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]);
+
+/** Given the 3 coefficients for a quadratic bezier (either X or Y values), look
+ for extrema, and return the number of t-values that are found that represent
+ these extrema. If the quadratic has no extrema betwee (0..1) exclusive, the
+ function returns 0.
+ Returned count tValues[]
+ 0 ignored
+ 1 0 < tValues[0] < 1
+*/
+int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValues[1]);
+
+/** Given 3 points on a quadratic bezier, chop it into 1, 2 beziers such that
+ the resulting beziers are monotonic in Y. This is called by the scan converter.
+ Depending on what is returned, dst[] is treated as follows
+ 1 dst[0..2] is the original quad
+ 2 dst[0..2] and dst[2..4] are the two new quads
+ If dst == null, it is ignored and only the count is returned.
+*/
+int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]);
+
+/** Given 3 points on a quadratic bezier, divide it into 2 quadratics
+ if the point of maximum curvature exists on the quad segment.
+ Depending on what is returned, dst[] is treated as follows
+ 1 dst[0..2] is the original quad
+ 2 dst[0..2] and dst[2..4] are the two new quads
+ If dst == null, it is ignored and only the count is returned.
+*/
+int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]);
+
+////////////////////////////////////////////////////////////////////////////////////////
+
+/** Convert from parametric from (pts) to polynomial coefficients
+ coeff[0]*T^3 + coeff[1]*T^2 + coeff[2]*T + coeff[3]
+*/
+void SkGetCubicCoeff(const SkPoint pts[4], SkScalar cx[4], SkScalar cy[4]);
+
+/** Set pt to the point on the src cubic specified by t. t must be
+ 0 <= t <= 1.0
+*/
+void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* locOrNull, SkVector* tangentOrNull, SkVector* curvatureOrNull);
+
+/** Given a src cubic bezier, chop it at the specified t value,
+ where 0 < t < 1, and return the two new cubics in dst:
+ dst[0..3] and dst[3..6]
+*/
+void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t);
+void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], const SkScalar t[], int t_count);
+
+/** Given a src cubic bezier, chop it at the specified t == 1/2,
+ The new cubics are returned in dst[0..3] and dst[3..6]
+*/
+void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]);
+
+/** Given the 4 coefficients for a cubic bezier (either X or Y values), look
+ for extrema, and return the number of t-values that are found that represent
+ these extrema. If the cubic has no extrema betwee (0..1) exclusive, the
+ function returns 0.
+ Returned count tValues[]
+ 0 ignored
+ 1 0 < tValues[0] < 1
+ 2 0 < tValues[0] < tValues[1] < 1
+*/
+int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d, SkScalar tValues[2]);
+
+/** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
+ the resulting beziers are monotonic in Y. This is called by the scan converter.
+ Depending on what is returned, dst[] is treated as follows
+ 1 dst[0..3] is the original cubic
+ 2 dst[0..3] and dst[3..6] are the two new cubics
+ 3 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
+ If dst == null, it is ignored and only the count is returned.
+*/
+int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]);
+
+/** Given a cubic bezier, return 0, 1, or 2 t-values that represent the
+ inflection points.
+*/
+int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]);
+
+/** Return 1 for no chop, or 2 for having chopped the cubic at its
+ inflection point.
+*/
+int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]);
+
+int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]);
+int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13], SkScalar tValues[3] = NULL);
+
+///////////////////////////////////////////////////////////////////////////////////////////
+
+enum SkRotationDirection {
+ kCW_SkRotationDirection,
+ kCCW_SkRotationDirection
+};
+
+/** Maximum number of points needed in the quadPoints[] parameter for
+ SkBuildQuadArc()
+*/
+#define kSkBuildQuadArcStorage 17
+
+/** Given 2 unit vectors and a rotation direction, fill out the specified
+ array of points with quadratic segments. Return is the number of points
+ written to, which will be { 0, 3, 5, 7, ... kSkBuildQuadArcStorage }
+
+ matrix, if not null, is appled to the points before they are returned.
+*/
+int SkBuildQuadArc(const SkVector& unitStart, const SkVector& unitStop, SkRotationDirection,
+ const SkMatrix* matrix, SkPoint quadPoints[]);
+
+//////////////////////////////////////////////////////////////////////////////
+
+#ifdef SK_DEBUG
+ class SkGeometry {
+ public:
+ static void UnitTest();
+ };
+#endif
+
+#endif