summaryrefslogtreecommitdiffstats
path: root/skia
diff options
context:
space:
mode:
authorhubbe@chromium.org <hubbe@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2013-04-09 00:32:02 +0000
committerhubbe@chromium.org <hubbe@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98>2013-04-09 00:32:02 +0000
commitc1ca6584f76cf0e5eb275f9d360320eac1c446ff (patch)
tree4b8501a81563bec9e868652c8711f2e1dbfb2aac /skia
parent074750d984a67445e16cefb4bfbaa9868745ff4f (diff)
downloadchromium_src-c1ca6584f76cf0e5eb275f9d360320eac1c446ff.zip
chromium_src-c1ca6584f76cf0e5eb275f9d360320eac1c446ff.tar.gz
chromium_src-c1ca6584f76cf0e5eb275f9d360320eac1c446ff.tar.bz2
enable SSE2 in skia/convolver for linux32
BUG=181072 Review URL: https://chromiumcodereview.appspot.com/13293004 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@192965 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'skia')
-rw-r--r--skia/ext/convolver.cc594
-rw-r--r--skia/ext/convolver.h17
-rw-r--r--skia/ext/convolver_SSE2.cc456
-rw-r--r--skia/ext/convolver_SSE2.h26
-rw-r--r--skia/ext/convolver_unittest.cc9
-rw-r--r--skia/ext/image_operations.cc5
-rw-r--r--skia/skia.gyp1
7 files changed, 597 insertions, 511 deletions
diff --git a/skia/ext/convolver.cc b/skia/ext/convolver.cc
index 47e3711..cbfa931 100644
--- a/skia/ext/convolver.cc
+++ b/skia/ext/convolver.cc
@@ -5,12 +5,9 @@
#include <algorithm>
#include "skia/ext/convolver.h"
+#include "skia/ext/convolver_SSE2.h"
#include "third_party/skia/include/core/SkTypes.h"
-#if defined(SIMD_SSE2)
-#include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
-#endif
-
namespace skia {
namespace {
@@ -223,431 +220,23 @@ void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
}
}
-
-// Convolves horizontally along a single row. The row data is given in
-// |src_data| and continues for the num_values() of the filter.
-void ConvolveHorizontally_SSE2(const unsigned char* src_data,
- const ConvolutionFilter1D& filter,
- unsigned char* out_row) {
-#if defined(SIMD_SSE2)
- int num_values = filter.num_values();
-
- int filter_offset, filter_length;
- __m128i zero = _mm_setzero_si128();
- __m128i mask[4];
- // |mask| will be used to decimate all extra filter coefficients that are
- // loaded by SIMD when |filter_length| is not divisible by 4.
- // mask[0] is not used in following algorithm.
- mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
- mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
- mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
-
- // Output one pixel each iteration, calculating all channels (RGBA) together.
- for (int out_x = 0; out_x < num_values; out_x++) {
- const ConvolutionFilter1D::Fixed* filter_values =
- filter.FilterForValue(out_x, &filter_offset, &filter_length);
-
- __m128i accum = _mm_setzero_si128();
-
- // Compute the first pixel in this row that the filter affects. It will
- // touch |filter_length| pixels (4 bytes each) after this.
- const __m128i* row_to_filter =
- reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
-
- // We will load and accumulate with four coefficients per iteration.
- for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
-
- // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
- __m128i coeff, coeff16;
- // [16] xx xx xx xx c3 c2 c1 c0
- coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
- // [16] xx xx xx xx c1 c1 c0 c0
- coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
- // [16] c1 c1 c1 c1 c0 c0 c0 c0
- coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
-
- // Load four pixels => unpack the first two pixels to 16 bits =>
- // multiply with coefficients => accumulate the convolution result.
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
- __m128i src8 = _mm_loadu_si128(row_to_filter);
- // [16] a1 b1 g1 r1 a0 b0 g0 r0
- __m128i src16 = _mm_unpacklo_epi8(src8, zero);
- __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
- __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
- // [32] a0*c0 b0*c0 g0*c0 r0*c0
- __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
- accum = _mm_add_epi32(accum, t);
- // [32] a1*c1 b1*c1 g1*c1 r1*c1
- t = _mm_unpackhi_epi16(mul_lo, mul_hi);
- accum = _mm_add_epi32(accum, t);
-
- // Duplicate 3rd and 4th coefficients for all channels =>
- // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
- // => accumulate the convolution results.
- // [16] xx xx xx xx c3 c3 c2 c2
- coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
- // [16] c3 c3 c3 c3 c2 c2 c2 c2
- coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
- // [16] a3 g3 b3 r3 a2 g2 b2 r2
- src16 = _mm_unpackhi_epi8(src8, zero);
- mul_hi = _mm_mulhi_epi16(src16, coeff16);
- mul_lo = _mm_mullo_epi16(src16, coeff16);
- // [32] a2*c2 b2*c2 g2*c2 r2*c2
- t = _mm_unpacklo_epi16(mul_lo, mul_hi);
- accum = _mm_add_epi32(accum, t);
- // [32] a3*c3 b3*c3 g3*c3 r3*c3
- t = _mm_unpackhi_epi16(mul_lo, mul_hi);
- accum = _mm_add_epi32(accum, t);
-
- // Advance the pixel and coefficients pointers.
- row_to_filter += 1;
- filter_values += 4;
- }
-
- // When |filter_length| is not divisible by 4, we need to decimate some of
- // the filter coefficient that was loaded incorrectly to zero; Other than
- // that the algorithm is same with above, exceot that the 4th pixel will be
- // always absent.
- int r = filter_length&3;
- if (r) {
- // Note: filter_values must be padded to align_up(filter_offset, 8).
- __m128i coeff, coeff16;
- coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
- // Mask out extra filter taps.
- coeff = _mm_and_si128(coeff, mask[r]);
- coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
- coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
-
- // Note: line buffer must be padded to align_up(filter_offset, 16).
- // We resolve this by use C-version for the last horizontal line.
- __m128i src8 = _mm_loadu_si128(row_to_filter);
- __m128i src16 = _mm_unpacklo_epi8(src8, zero);
- __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
- __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
- __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
- accum = _mm_add_epi32(accum, t);
- t = _mm_unpackhi_epi16(mul_lo, mul_hi);
- accum = _mm_add_epi32(accum, t);
-
- src16 = _mm_unpackhi_epi8(src8, zero);
- coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
- coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
- mul_hi = _mm_mulhi_epi16(src16, coeff16);
- mul_lo = _mm_mullo_epi16(src16, coeff16);
- t = _mm_unpacklo_epi16(mul_lo, mul_hi);
- accum = _mm_add_epi32(accum, t);
- }
-
- // Shift right for fixed point implementation.
- accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
-
- // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
- accum = _mm_packs_epi32(accum, zero);
- // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
- accum = _mm_packus_epi16(accum, zero);
-
- // Store the pixel value of 32 bits.
- *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
- out_row += 4;
- }
-#endif
-}
-
-// Convolves horizontally along four rows. The row data is given in
-// |src_data| and continues for the num_values() of the filter.
-// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
-// refer to that function for detailed comments.
-void ConvolveHorizontally4_SSE2(const unsigned char* src_data[4],
- const ConvolutionFilter1D& filter,
- unsigned char* out_row[4]) {
-#if defined(SIMD_SSE2)
- int num_values = filter.num_values();
-
- int filter_offset, filter_length;
- __m128i zero = _mm_setzero_si128();
- __m128i mask[4];
- // |mask| will be used to decimate all extra filter coefficients that are
- // loaded by SIMD when |filter_length| is not divisible by 4.
- // mask[0] is not used in following algorithm.
- mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
- mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
- mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
-
- // Output one pixel each iteration, calculating all channels (RGBA) together.
- for (int out_x = 0; out_x < num_values; out_x++) {
- const ConvolutionFilter1D::Fixed* filter_values =
- filter.FilterForValue(out_x, &filter_offset, &filter_length);
-
- // four pixels in a column per iteration.
- __m128i accum0 = _mm_setzero_si128();
- __m128i accum1 = _mm_setzero_si128();
- __m128i accum2 = _mm_setzero_si128();
- __m128i accum3 = _mm_setzero_si128();
- int start = (filter_offset<<2);
- // We will load and accumulate with four coefficients per iteration.
- for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
- __m128i coeff, coeff16lo, coeff16hi;
- // [16] xx xx xx xx c3 c2 c1 c0
- coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
- // [16] xx xx xx xx c1 c1 c0 c0
- coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
- // [16] c1 c1 c1 c1 c0 c0 c0 c0
- coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
- // [16] xx xx xx xx c3 c3 c2 c2
- coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
- // [16] c3 c3 c3 c3 c2 c2 c2 c2
- coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
-
- __m128i src8, src16, mul_hi, mul_lo, t;
-
-#define ITERATION(src, accum) \
- src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
- src16 = _mm_unpacklo_epi8(src8, zero); \
- mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
- mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
- t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
- accum = _mm_add_epi32(accum, t); \
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
- accum = _mm_add_epi32(accum, t); \
- src16 = _mm_unpackhi_epi8(src8, zero); \
- mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
- mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
- t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
- accum = _mm_add_epi32(accum, t); \
- t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
- accum = _mm_add_epi32(accum, t)
-
- ITERATION(src_data[0] + start, accum0);
- ITERATION(src_data[1] + start, accum1);
- ITERATION(src_data[2] + start, accum2);
- ITERATION(src_data[3] + start, accum3);
-
- start += 16;
- filter_values += 4;
- }
-
- int r = filter_length & 3;
- if (r) {
- // Note: filter_values must be padded to align_up(filter_offset, 8);
- __m128i coeff;
- coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
- // Mask out extra filter taps.
- coeff = _mm_and_si128(coeff, mask[r]);
-
- __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
- /* c1 c1 c1 c1 c0 c0 c0 c0 */
- coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
- __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
- coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
-
- __m128i src8, src16, mul_hi, mul_lo, t;
-
- ITERATION(src_data[0] + start, accum0);
- ITERATION(src_data[1] + start, accum1);
- ITERATION(src_data[2] + start, accum2);
- ITERATION(src_data[3] + start, accum3);
- }
-
- accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
- accum0 = _mm_packs_epi32(accum0, zero);
- accum0 = _mm_packus_epi16(accum0, zero);
- accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
- accum1 = _mm_packs_epi32(accum1, zero);
- accum1 = _mm_packus_epi16(accum1, zero);
- accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
- accum2 = _mm_packs_epi32(accum2, zero);
- accum2 = _mm_packus_epi16(accum2, zero);
- accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
- accum3 = _mm_packs_epi32(accum3, zero);
- accum3 = _mm_packus_epi16(accum3, zero);
-
- *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
- *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
- *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
- *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
-
- out_row[0] += 4;
- out_row[1] += 4;
- out_row[2] += 4;
- out_row[3] += 4;
- }
-#endif
-}
-
-// Does vertical convolution to produce one output row. The filter values and
-// length are given in the first two parameters. These are applied to each
-// of the rows pointed to in the |source_data_rows| array, with each row
-// being |pixel_width| wide.
-//
-// The output must have room for |pixel_width * 4| bytes.
-template<bool has_alpha>
-void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
- int filter_length,
- unsigned char* const* source_data_rows,
- int pixel_width,
- unsigned char* out_row) {
-#if defined(SIMD_SSE2)
- int width = pixel_width & ~3;
-
- __m128i zero = _mm_setzero_si128();
- __m128i accum0, accum1, accum2, accum3, coeff16;
- const __m128i* src;
- // Output four pixels per iteration (16 bytes).
- for (int out_x = 0; out_x < width; out_x += 4) {
-
- // Accumulated result for each pixel. 32 bits per RGBA channel.
- accum0 = _mm_setzero_si128();
- accum1 = _mm_setzero_si128();
- accum2 = _mm_setzero_si128();
- accum3 = _mm_setzero_si128();
-
- // Convolve with one filter coefficient per iteration.
- for (int filter_y = 0; filter_y < filter_length; filter_y++) {
-
- // Duplicate the filter coefficient 8 times.
- // [16] cj cj cj cj cj cj cj cj
- coeff16 = _mm_set1_epi16(filter_values[filter_y]);
-
- // Load four pixels (16 bytes) together.
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
- src = reinterpret_cast<const __m128i*>(
- &source_data_rows[filter_y][out_x << 2]);
- __m128i src8 = _mm_loadu_si128(src);
-
- // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
- // multiply with current coefficient => accumulate the result.
- // [16] a1 b1 g1 r1 a0 b0 g0 r0
- __m128i src16 = _mm_unpacklo_epi8(src8, zero);
- __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
- __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
- // [32] a0 b0 g0 r0
- __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
- accum0 = _mm_add_epi32(accum0, t);
- // [32] a1 b1 g1 r1
- t = _mm_unpackhi_epi16(mul_lo, mul_hi);
- accum1 = _mm_add_epi32(accum1, t);
-
- // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
- // multiply with current coefficient => accumulate the result.
- // [16] a3 b3 g3 r3 a2 b2 g2 r2
- src16 = _mm_unpackhi_epi8(src8, zero);
- mul_hi = _mm_mulhi_epi16(src16, coeff16);
- mul_lo = _mm_mullo_epi16(src16, coeff16);
- // [32] a2 b2 g2 r2
- t = _mm_unpacklo_epi16(mul_lo, mul_hi);
- accum2 = _mm_add_epi32(accum2, t);
- // [32] a3 b3 g3 r3
- t = _mm_unpackhi_epi16(mul_lo, mul_hi);
- accum3 = _mm_add_epi32(accum3, t);
- }
-
- // Shift right for fixed point implementation.
- accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
- accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
- accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
- accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
-
- // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
- // [16] a1 b1 g1 r1 a0 b0 g0 r0
- accum0 = _mm_packs_epi32(accum0, accum1);
- // [16] a3 b3 g3 r3 a2 b2 g2 r2
- accum2 = _mm_packs_epi32(accum2, accum3);
-
- // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
- accum0 = _mm_packus_epi16(accum0, accum2);
-
- if (has_alpha) {
- // Compute the max(ri, gi, bi) for each pixel.
- // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
- __m128i a = _mm_srli_epi32(accum0, 8);
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
- __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
- // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
- a = _mm_srli_epi32(accum0, 16);
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
- b = _mm_max_epu8(a, b); // Max of r and g and b.
- // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
- b = _mm_slli_epi32(b, 24);
-
- // Make sure the value of alpha channel is always larger than maximum
- // value of color channels.
- accum0 = _mm_max_epu8(b, accum0);
- } else {
- // Set value of alpha channels to 0xFF.
- __m128i mask = _mm_set1_epi32(0xff000000);
- accum0 = _mm_or_si128(accum0, mask);
- }
-
- // Store the convolution result (16 bytes) and advance the pixel pointers.
- _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
- out_row += 16;
- }
-
- // When the width of the output is not divisible by 4, We need to save one
- // pixel (4 bytes) each time. And also the fourth pixel is always absent.
- if (pixel_width & 3) {
- accum0 = _mm_setzero_si128();
- accum1 = _mm_setzero_si128();
- accum2 = _mm_setzero_si128();
- for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
- coeff16 = _mm_set1_epi16(filter_values[filter_y]);
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
- src = reinterpret_cast<const __m128i*>(
- &source_data_rows[filter_y][width<<2]);
- __m128i src8 = _mm_loadu_si128(src);
- // [16] a1 b1 g1 r1 a0 b0 g0 r0
- __m128i src16 = _mm_unpacklo_epi8(src8, zero);
- __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
- __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
- // [32] a0 b0 g0 r0
- __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
- accum0 = _mm_add_epi32(accum0, t);
- // [32] a1 b1 g1 r1
- t = _mm_unpackhi_epi16(mul_lo, mul_hi);
- accum1 = _mm_add_epi32(accum1, t);
- // [16] a3 b3 g3 r3 a2 b2 g2 r2
- src16 = _mm_unpackhi_epi8(src8, zero);
- mul_hi = _mm_mulhi_epi16(src16, coeff16);
- mul_lo = _mm_mullo_epi16(src16, coeff16);
- // [32] a2 b2 g2 r2
- t = _mm_unpacklo_epi16(mul_lo, mul_hi);
- accum2 = _mm_add_epi32(accum2, t);
- }
-
- accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
- accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
- accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
- // [16] a1 b1 g1 r1 a0 b0 g0 r0
- accum0 = _mm_packs_epi32(accum0, accum1);
- // [16] a3 b3 g3 r3 a2 b2 g2 r2
- accum2 = _mm_packs_epi32(accum2, zero);
- // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
- accum0 = _mm_packus_epi16(accum0, accum2);
- if (has_alpha) {
- // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
- __m128i a = _mm_srli_epi32(accum0, 8);
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
- __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
- // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
- a = _mm_srli_epi32(accum0, 16);
- // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
- b = _mm_max_epu8(a, b); // Max of r and g and b.
- // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
- b = _mm_slli_epi32(b, 24);
- accum0 = _mm_max_epu8(b, accum0);
- } else {
- __m128i mask = _mm_set1_epi32(0xff000000);
- accum0 = _mm_or_si128(accum0, mask);
- }
-
- for (int out_x = width; out_x < pixel_width; out_x++) {
- *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
- accum0 = _mm_srli_si128(accum0, 4);
- out_row += 4;
- }
+void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values,
+ int filter_length,
+ unsigned char* const* source_data_rows,
+ int pixel_width,
+ unsigned char* out_row,
+ bool source_has_alpha) {
+ if (source_has_alpha) {
+ ConvolveVertically<true>(filter_values, filter_length,
+ source_data_rows,
+ pixel_width,
+ out_row);
+ } else {
+ ConvolveVertically<false>(filter_values, filter_length,
+ source_data_rows,
+ pixel_width,
+ out_row);
}
-#endif
}
} // namespace
@@ -715,6 +304,43 @@ void ConvolutionFilter1D::AddFilter(int filter_offset,
max_filter_ = std::max(max_filter_, filter_length);
}
+typedef void (*ConvolveVertically_pointer)(
+ const ConvolutionFilter1D::Fixed* filter_values,
+ int filter_length,
+ unsigned char* const* source_data_rows,
+ int pixel_width,
+ unsigned char* out_row,
+ bool has_alpha);
+typedef void (*Convolve4RowsHorizontally_pointer)(
+ const unsigned char* src_data[4],
+ const ConvolutionFilter1D& filter,
+ unsigned char* out_row[4]);
+typedef void (*ConvolveHorizontally_pointer)(
+ const unsigned char* src_data,
+ const ConvolutionFilter1D& filter,
+ unsigned char* out_row);
+
+struct ConvolveProcs {
+ // This is how many extra pixels may be read by the
+ // conolve*horizontally functions.
+ int extra_horizontal_reads;
+ ConvolveVertically_pointer convolve_vertically;
+ Convolve4RowsHorizontally_pointer convolve_4rows_horizontally;
+ ConvolveHorizontally_pointer convolve_horizontally;
+};
+
+void SetupSIMD(ConvolveProcs *procs) {
+#ifdef SIMD_SSE2
+ base::CPU cpu;
+ if (cpu.has_sse2()) {
+ procs->extra_horizontal_reads = 3;
+ procs->convolve_vertically = &ConvolveVertically_SSE2;
+ procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2;
+ procs->convolve_horizontally = &ConvolveHorizontally_SSE2;
+ }
+#endif
+}
+
void BGRAConvolve2D(const unsigned char* source_data,
int source_byte_row_stride,
bool source_has_alpha,
@@ -722,12 +348,15 @@ void BGRAConvolve2D(const unsigned char* source_data,
const ConvolutionFilter1D& filter_y,
int output_byte_row_stride,
unsigned char* output,
- bool use_sse2) {
-#if !defined(SIMD_SSE2)
- // Even we have runtime support for SSE2 instructions, since the binary
- // was not built with SSE2 support, we had to fallback to C version.
- use_sse2 = false;
-#endif
+ bool use_simd_if_possible) {
+ ConvolveProcs simd;
+ simd.extra_horizontal_reads = 0;
+ simd.convolve_vertically = NULL;
+ simd.convolve_4rows_horizontally = NULL;
+ simd.convolve_horizontally = NULL;
+ if (use_simd_if_possible) {
+ SetupSIMD(&simd);
+ }
int max_y_filter_size = filter_y.max_filter();
@@ -752,7 +381,8 @@ void BGRAConvolve2D(const unsigned char* source_data,
// TODO(jiesun): We do not use aligned load from row buffer in vertical
// convolution pass yet. Somehow Windows does not like it.
int row_buffer_width = (filter_x.num_values() + 15) & ~0xF;
- int row_buffer_height = max_y_filter_size + (use_sse2 ? 4 : 0);
+ int row_buffer_height = max_y_filter_size +
+ (simd.convolve_4rows_horizontally ? 4 : 0);
CircularRowBuffer row_buffer(row_buffer_width,
row_buffer_height,
filter_offset);
@@ -775,7 +405,8 @@ void BGRAConvolve2D(const unsigned char* source_data,
// rows we need to avoid the SSE implementation for here.
filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset,
&last_filter_length);
- int avoid_sse_rows = 1 + 3/(last_filter_offset + last_filter_length);
+ int avoid_simd_rows = 1 + simd.extra_horizontal_reads /
+ (last_filter_offset + last_filter_length);
filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset,
&last_filter_length);
@@ -785,49 +416,36 @@ void BGRAConvolve2D(const unsigned char* source_data,
&filter_offset, &filter_length);
// Generate output rows until we have enough to run the current filter.
- if (use_sse2) {
- while (next_x_row < filter_offset + filter_length) {
- if (next_x_row + 3 < last_filter_offset + last_filter_length -
- avoid_sse_rows) {
- const unsigned char* src[4];
- unsigned char* out_row[4];
- for (int i = 0; i < 4; ++i) {
- src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
- out_row[i] = row_buffer.AdvanceRow();
- }
- ConvolveHorizontally4_SSE2(src, filter_x, out_row);
- next_x_row += 4;
+ while (next_x_row < filter_offset + filter_length) {
+ if (simd.convolve_4rows_horizontally &&
+ next_x_row + 3 < last_filter_offset + last_filter_length -
+ avoid_simd_rows) {
+ const unsigned char* src[4];
+ unsigned char* out_row[4];
+ for (int i = 0; i < 4; ++i) {
+ src[i] = &source_data[(next_x_row + i) * source_byte_row_stride];
+ out_row[i] = row_buffer.AdvanceRow();
+ }
+ simd.convolve_4rows_horizontally(src, filter_x, out_row);
+ next_x_row += 4;
+ } else {
+ // Check if we need to avoid SSE2 for this row.
+ if (simd.convolve_horizontally &&
+ next_x_row < last_filter_offset + last_filter_length -
+ avoid_simd_rows) {
+ simd.convolve_horizontally(
+ &source_data[next_x_row * source_byte_row_stride],
+ filter_x, row_buffer.AdvanceRow());
} else {
- // Check if we need to avoid SSE2 for this row.
- if (next_x_row >= last_filter_offset + last_filter_length -
- avoid_sse_rows) {
- if (source_has_alpha) {
- ConvolveHorizontally<true>(
- &source_data[next_x_row * source_byte_row_stride],
- filter_x, row_buffer.AdvanceRow());
- } else {
- ConvolveHorizontally<false>(
- &source_data[next_x_row * source_byte_row_stride],
- filter_x, row_buffer.AdvanceRow());
- }
+ if (source_has_alpha) {
+ ConvolveHorizontally<true>(
+ &source_data[next_x_row * source_byte_row_stride],
+ filter_x, row_buffer.AdvanceRow());
} else {
- ConvolveHorizontally_SSE2(
+ ConvolveHorizontally<false>(
&source_data[next_x_row * source_byte_row_stride],
filter_x, row_buffer.AdvanceRow());
}
- next_x_row++;
- }
- }
- } else {
- while (next_x_row < filter_offset + filter_length) {
- if (source_has_alpha) {
- ConvolveHorizontally<true>(
- &source_data[next_x_row * source_byte_row_stride],
- filter_x, row_buffer.AdvanceRow());
- } else {
- ConvolveHorizontally<false>(
- &source_data[next_x_row * source_byte_row_stride],
- filter_x, row_buffer.AdvanceRow());
}
next_x_row++;
}
@@ -846,26 +464,16 @@ void BGRAConvolve2D(const unsigned char* source_data,
unsigned char* const* first_row_for_filter =
&rows_to_convolve[filter_offset - first_row_in_circular_buffer];
- if (source_has_alpha) {
- if (use_sse2) {
- ConvolveVertically_SSE2<true>(filter_values, filter_length,
- first_row_for_filter,
- filter_x.num_values(), cur_output_row);
- } else {
- ConvolveVertically<true>(filter_values, filter_length,
- first_row_for_filter,
- filter_x.num_values(), cur_output_row);
- }
+ if (simd.convolve_vertically) {
+ simd.convolve_vertically(filter_values, filter_length,
+ first_row_for_filter,
+ filter_x.num_values(), cur_output_row,
+ source_has_alpha);
} else {
- if (use_sse2) {
- ConvolveVertically_SSE2<false>(filter_values, filter_length,
- first_row_for_filter,
- filter_x.num_values(), cur_output_row);
- } else {
- ConvolveVertically<false>(filter_values, filter_length,
- first_row_for_filter,
- filter_x.num_values(), cur_output_row);
- }
+ ConvolveVertically(filter_values, filter_length,
+ first_row_for_filter,
+ filter_x.num_values(), cur_output_row,
+ source_has_alpha);
}
}
}
diff --git a/skia/ext/convolver.h b/skia/ext/convolver.h
index ea62a46..3065338 100644
--- a/skia/ext/convolver.h
+++ b/skia/ext/convolver.h
@@ -12,12 +12,11 @@
#include "base/cpu.h"
#include "third_party/skia/include/core/SkTypes.h"
-#if defined(ARCH_CPU_X86_FAMILY)
-// TODO(hclam): SSE2 is disabled on Linux 32-bits because GCC requires -msse2.
-// We should refactor the code in .cc and enable this.
-#if defined(ARCH_CPU_X86_64) || defined(OS_MACOSX) || defined(COMPILER_MSVC)
+// We can build SSE2 optimized versions for all x86 CPUs
+// except when building for the IOS emulator.
+#if defined(ARCH_CPU_X86_FAMILY) && !defined(OS_IOS)
#define SIMD_SSE2 1
-#endif
+#define SIMD_PADDING 8 // 8 * int16
#endif
// avoid confusion with Mac OS X's math library (Carbon)
@@ -108,14 +107,16 @@ class ConvolutionFilter1D {
}
- inline void PaddingForSIMD(int padding_count) {
+ inline void PaddingForSIMD() {
// Padding |padding_count| of more dummy coefficients after the coefficients
// of last filter to prevent SIMD instructions which load 8 or 16 bytes
// together to access invalid memory areas. We are not trying to align the
// coefficients right now due to the opaqueness of <vector> implementation.
// This has to be done after all |AddFilter| calls.
- for (int i = 0; i < padding_count; ++i)
+#ifdef SIMD_PADDING
+ for (int i = 0; i < SIMD_PADDING; ++i)
filter_values_.push_back(static_cast<Fixed>(0));
+#endif
}
private:
@@ -167,7 +168,7 @@ SK_API void BGRAConvolve2D(const unsigned char* source_data,
const ConvolutionFilter1D& yfilter,
int output_byte_row_stride,
unsigned char* output,
- bool use_sse2);
+ bool use_simd_if_possible);
} // namespace skia
#endif // SKIA_EXT_CONVOLVER_H_
diff --git a/skia/ext/convolver_SSE2.cc b/skia/ext/convolver_SSE2.cc
new file mode 100644
index 0000000..a823edc
--- /dev/null
+++ b/skia/ext/convolver_SSE2.cc
@@ -0,0 +1,456 @@
+// Copyright (c) 2011 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <algorithm>
+
+#include "skia/ext/convolver.h"
+#include "skia/ext/convolver_SSE2.h"
+#include "third_party/skia/include/core/SkTypes.h"
+
+#include <emmintrin.h> // ARCH_CPU_X86_FAMILY was defined in build/config.h
+
+namespace skia {
+
+// Convolves horizontally along a single row. The row data is given in
+// |src_data| and continues for the num_values() of the filter.
+void ConvolveHorizontally_SSE2(const unsigned char* src_data,
+ const ConvolutionFilter1D& filter,
+ unsigned char* out_row) {
+ int num_values = filter.num_values();
+
+ int filter_offset, filter_length;
+ __m128i zero = _mm_setzero_si128();
+ __m128i mask[4];
+ // |mask| will be used to decimate all extra filter coefficients that are
+ // loaded by SIMD when |filter_length| is not divisible by 4.
+ // mask[0] is not used in following algorithm.
+ mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
+ mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
+ mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
+
+ // Output one pixel each iteration, calculating all channels (RGBA) together.
+ for (int out_x = 0; out_x < num_values; out_x++) {
+ const ConvolutionFilter1D::Fixed* filter_values =
+ filter.FilterForValue(out_x, &filter_offset, &filter_length);
+
+ __m128i accum = _mm_setzero_si128();
+
+ // Compute the first pixel in this row that the filter affects. It will
+ // touch |filter_length| pixels (4 bytes each) after this.
+ const __m128i* row_to_filter =
+ reinterpret_cast<const __m128i*>(&src_data[filter_offset << 2]);
+
+ // We will load and accumulate with four coefficients per iteration.
+ for (int filter_x = 0; filter_x < filter_length >> 2; filter_x++) {
+
+ // Load 4 coefficients => duplicate 1st and 2nd of them for all channels.
+ __m128i coeff, coeff16;
+ // [16] xx xx xx xx c3 c2 c1 c0
+ coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
+ // [16] xx xx xx xx c1 c1 c0 c0
+ coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
+ // [16] c1 c1 c1 c1 c0 c0 c0 c0
+ coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
+
+ // Load four pixels => unpack the first two pixels to 16 bits =>
+ // multiply with coefficients => accumulate the convolution result.
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ __m128i src8 = _mm_loadu_si128(row_to_filter);
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0
+ __m128i src16 = _mm_unpacklo_epi8(src8, zero);
+ __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
+ __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
+ // [32] a0*c0 b0*c0 g0*c0 r0*c0
+ __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
+ accum = _mm_add_epi32(accum, t);
+ // [32] a1*c1 b1*c1 g1*c1 r1*c1
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi);
+ accum = _mm_add_epi32(accum, t);
+
+ // Duplicate 3rd and 4th coefficients for all channels =>
+ // unpack the 3rd and 4th pixels to 16 bits => multiply with coefficients
+ // => accumulate the convolution results.
+ // [16] xx xx xx xx c3 c3 c2 c2
+ coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
+ // [16] c3 c3 c3 c3 c2 c2 c2 c2
+ coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
+ // [16] a3 g3 b3 r3 a2 g2 b2 r2
+ src16 = _mm_unpackhi_epi8(src8, zero);
+ mul_hi = _mm_mulhi_epi16(src16, coeff16);
+ mul_lo = _mm_mullo_epi16(src16, coeff16);
+ // [32] a2*c2 b2*c2 g2*c2 r2*c2
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi);
+ accum = _mm_add_epi32(accum, t);
+ // [32] a3*c3 b3*c3 g3*c3 r3*c3
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi);
+ accum = _mm_add_epi32(accum, t);
+
+ // Advance the pixel and coefficients pointers.
+ row_to_filter += 1;
+ filter_values += 4;
+ }
+
+ // When |filter_length| is not divisible by 4, we need to decimate some of
+ // the filter coefficient that was loaded incorrectly to zero; Other than
+ // that the algorithm is same with above, exceot that the 4th pixel will be
+ // always absent.
+ int r = filter_length&3;
+ if (r) {
+ // Note: filter_values must be padded to align_up(filter_offset, 8).
+ __m128i coeff, coeff16;
+ coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
+ // Mask out extra filter taps.
+ coeff = _mm_and_si128(coeff, mask[r]);
+ coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
+ coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
+
+ // Note: line buffer must be padded to align_up(filter_offset, 16).
+ // We resolve this by use C-version for the last horizontal line.
+ __m128i src8 = _mm_loadu_si128(row_to_filter);
+ __m128i src16 = _mm_unpacklo_epi8(src8, zero);
+ __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
+ __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
+ __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
+ accum = _mm_add_epi32(accum, t);
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi);
+ accum = _mm_add_epi32(accum, t);
+
+ src16 = _mm_unpackhi_epi8(src8, zero);
+ coeff16 = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
+ coeff16 = _mm_unpacklo_epi16(coeff16, coeff16);
+ mul_hi = _mm_mulhi_epi16(src16, coeff16);
+ mul_lo = _mm_mullo_epi16(src16, coeff16);
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi);
+ accum = _mm_add_epi32(accum, t);
+ }
+
+ // Shift right for fixed point implementation.
+ accum = _mm_srai_epi32(accum, ConvolutionFilter1D::kShiftBits);
+
+ // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
+ accum = _mm_packs_epi32(accum, zero);
+ // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
+ accum = _mm_packus_epi16(accum, zero);
+
+ // Store the pixel value of 32 bits.
+ *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum);
+ out_row += 4;
+ }
+}
+
+// Convolves horizontally along four rows. The row data is given in
+// |src_data| and continues for the num_values() of the filter.
+// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
+// refer to that function for detailed comments.
+void Convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4],
+ const ConvolutionFilter1D& filter,
+ unsigned char* out_row[4]) {
+ int num_values = filter.num_values();
+
+ int filter_offset, filter_length;
+ __m128i zero = _mm_setzero_si128();
+ __m128i mask[4];
+ // |mask| will be used to decimate all extra filter coefficients that are
+ // loaded by SIMD when |filter_length| is not divisible by 4.
+ // mask[0] is not used in following algorithm.
+ mask[1] = _mm_set_epi16(0, 0, 0, 0, 0, 0, 0, -1);
+ mask[2] = _mm_set_epi16(0, 0, 0, 0, 0, 0, -1, -1);
+ mask[3] = _mm_set_epi16(0, 0, 0, 0, 0, -1, -1, -1);
+
+ // Output one pixel each iteration, calculating all channels (RGBA) together.
+ for (int out_x = 0; out_x < num_values; out_x++) {
+ const ConvolutionFilter1D::Fixed* filter_values =
+ filter.FilterForValue(out_x, &filter_offset, &filter_length);
+
+ // four pixels in a column per iteration.
+ __m128i accum0 = _mm_setzero_si128();
+ __m128i accum1 = _mm_setzero_si128();
+ __m128i accum2 = _mm_setzero_si128();
+ __m128i accum3 = _mm_setzero_si128();
+ int start = (filter_offset<<2);
+ // We will load and accumulate with four coefficients per iteration.
+ for (int filter_x = 0; filter_x < (filter_length >> 2); filter_x++) {
+ __m128i coeff, coeff16lo, coeff16hi;
+ // [16] xx xx xx xx c3 c2 c1 c0
+ coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
+ // [16] xx xx xx xx c1 c1 c0 c0
+ coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
+ // [16] c1 c1 c1 c1 c0 c0 c0 c0
+ coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
+ // [16] xx xx xx xx c3 c3 c2 c2
+ coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
+ // [16] c3 c3 c3 c3 c2 c2 c2 c2
+ coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
+
+ __m128i src8, src16, mul_hi, mul_lo, t;
+
+#define ITERATION(src, accum) \
+ src8 = _mm_loadu_si128(reinterpret_cast<const __m128i*>(src)); \
+ src16 = _mm_unpacklo_epi8(src8, zero); \
+ mul_hi = _mm_mulhi_epi16(src16, coeff16lo); \
+ mul_lo = _mm_mullo_epi16(src16, coeff16lo); \
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
+ accum = _mm_add_epi32(accum, t); \
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
+ accum = _mm_add_epi32(accum, t); \
+ src16 = _mm_unpackhi_epi8(src8, zero); \
+ mul_hi = _mm_mulhi_epi16(src16, coeff16hi); \
+ mul_lo = _mm_mullo_epi16(src16, coeff16hi); \
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi); \
+ accum = _mm_add_epi32(accum, t); \
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi); \
+ accum = _mm_add_epi32(accum, t)
+
+ ITERATION(src_data[0] + start, accum0);
+ ITERATION(src_data[1] + start, accum1);
+ ITERATION(src_data[2] + start, accum2);
+ ITERATION(src_data[3] + start, accum3);
+
+ start += 16;
+ filter_values += 4;
+ }
+
+ int r = filter_length & 3;
+ if (r) {
+ // Note: filter_values must be padded to align_up(filter_offset, 8);
+ __m128i coeff;
+ coeff = _mm_loadl_epi64(reinterpret_cast<const __m128i*>(filter_values));
+ // Mask out extra filter taps.
+ coeff = _mm_and_si128(coeff, mask[r]);
+
+ __m128i coeff16lo = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(1, 1, 0, 0));
+ /* c1 c1 c1 c1 c0 c0 c0 c0 */
+ coeff16lo = _mm_unpacklo_epi16(coeff16lo, coeff16lo);
+ __m128i coeff16hi = _mm_shufflelo_epi16(coeff, _MM_SHUFFLE(3, 3, 2, 2));
+ coeff16hi = _mm_unpacklo_epi16(coeff16hi, coeff16hi);
+
+ __m128i src8, src16, mul_hi, mul_lo, t;
+
+ ITERATION(src_data[0] + start, accum0);
+ ITERATION(src_data[1] + start, accum1);
+ ITERATION(src_data[2] + start, accum2);
+ ITERATION(src_data[3] + start, accum3);
+ }
+
+ accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
+ accum0 = _mm_packs_epi32(accum0, zero);
+ accum0 = _mm_packus_epi16(accum0, zero);
+ accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
+ accum1 = _mm_packs_epi32(accum1, zero);
+ accum1 = _mm_packus_epi16(accum1, zero);
+ accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
+ accum2 = _mm_packs_epi32(accum2, zero);
+ accum2 = _mm_packus_epi16(accum2, zero);
+ accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
+ accum3 = _mm_packs_epi32(accum3, zero);
+ accum3 = _mm_packus_epi16(accum3, zero);
+
+ *(reinterpret_cast<int*>(out_row[0])) = _mm_cvtsi128_si32(accum0);
+ *(reinterpret_cast<int*>(out_row[1])) = _mm_cvtsi128_si32(accum1);
+ *(reinterpret_cast<int*>(out_row[2])) = _mm_cvtsi128_si32(accum2);
+ *(reinterpret_cast<int*>(out_row[3])) = _mm_cvtsi128_si32(accum3);
+
+ out_row[0] += 4;
+ out_row[1] += 4;
+ out_row[2] += 4;
+ out_row[3] += 4;
+ }
+}
+
+// Does vertical convolution to produce one output row. The filter values and
+// length are given in the first two parameters. These are applied to each
+// of the rows pointed to in the |source_data_rows| array, with each row
+// being |pixel_width| wide.
+//
+// The output must have room for |pixel_width * 4| bytes.
+template<bool has_alpha>
+void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
+ int filter_length,
+ unsigned char* const* source_data_rows,
+ int pixel_width,
+ unsigned char* out_row) {
+ int width = pixel_width & ~3;
+
+ __m128i zero = _mm_setzero_si128();
+ __m128i accum0, accum1, accum2, accum3, coeff16;
+ const __m128i* src;
+ // Output four pixels per iteration (16 bytes).
+ for (int out_x = 0; out_x < width; out_x += 4) {
+
+ // Accumulated result for each pixel. 32 bits per RGBA channel.
+ accum0 = _mm_setzero_si128();
+ accum1 = _mm_setzero_si128();
+ accum2 = _mm_setzero_si128();
+ accum3 = _mm_setzero_si128();
+
+ // Convolve with one filter coefficient per iteration.
+ for (int filter_y = 0; filter_y < filter_length; filter_y++) {
+
+ // Duplicate the filter coefficient 8 times.
+ // [16] cj cj cj cj cj cj cj cj
+ coeff16 = _mm_set1_epi16(filter_values[filter_y]);
+
+ // Load four pixels (16 bytes) together.
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ src = reinterpret_cast<const __m128i*>(
+ &source_data_rows[filter_y][out_x << 2]);
+ __m128i src8 = _mm_loadu_si128(src);
+
+ // Unpack 1st and 2nd pixels from 8 bits to 16 bits for each channels =>
+ // multiply with current coefficient => accumulate the result.
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0
+ __m128i src16 = _mm_unpacklo_epi8(src8, zero);
+ __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
+ __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
+ // [32] a0 b0 g0 r0
+ __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
+ accum0 = _mm_add_epi32(accum0, t);
+ // [32] a1 b1 g1 r1
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi);
+ accum1 = _mm_add_epi32(accum1, t);
+
+ // Unpack 3rd and 4th pixels from 8 bits to 16 bits for each channels =>
+ // multiply with current coefficient => accumulate the result.
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2
+ src16 = _mm_unpackhi_epi8(src8, zero);
+ mul_hi = _mm_mulhi_epi16(src16, coeff16);
+ mul_lo = _mm_mullo_epi16(src16, coeff16);
+ // [32] a2 b2 g2 r2
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi);
+ accum2 = _mm_add_epi32(accum2, t);
+ // [32] a3 b3 g3 r3
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi);
+ accum3 = _mm_add_epi32(accum3, t);
+ }
+
+ // Shift right for fixed point implementation.
+ accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
+ accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
+ accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
+ accum3 = _mm_srai_epi32(accum3, ConvolutionFilter1D::kShiftBits);
+
+ // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0
+ accum0 = _mm_packs_epi32(accum0, accum1);
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2
+ accum2 = _mm_packs_epi32(accum2, accum3);
+
+ // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ accum0 = _mm_packus_epi16(accum0, accum2);
+
+ if (has_alpha) {
+ // Compute the max(ri, gi, bi) for each pixel.
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
+ __m128i a = _mm_srli_epi32(accum0, 8);
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
+ a = _mm_srli_epi32(accum0, 16);
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ b = _mm_max_epu8(a, b); // Max of r and g and b.
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
+ b = _mm_slli_epi32(b, 24);
+
+ // Make sure the value of alpha channel is always larger than maximum
+ // value of color channels.
+ accum0 = _mm_max_epu8(b, accum0);
+ } else {
+ // Set value of alpha channels to 0xFF.
+ __m128i mask = _mm_set1_epi32(0xff000000);
+ accum0 = _mm_or_si128(accum0, mask);
+ }
+
+ // Store the convolution result (16 bytes) and advance the pixel pointers.
+ _mm_storeu_si128(reinterpret_cast<__m128i*>(out_row), accum0);
+ out_row += 16;
+ }
+
+ // When the width of the output is not divisible by 4, We need to save one
+ // pixel (4 bytes) each time. And also the fourth pixel is always absent.
+ if (pixel_width & 3) {
+ accum0 = _mm_setzero_si128();
+ accum1 = _mm_setzero_si128();
+ accum2 = _mm_setzero_si128();
+ for (int filter_y = 0; filter_y < filter_length; ++filter_y) {
+ coeff16 = _mm_set1_epi16(filter_values[filter_y]);
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ src = reinterpret_cast<const __m128i*>(
+ &source_data_rows[filter_y][width<<2]);
+ __m128i src8 = _mm_loadu_si128(src);
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0
+ __m128i src16 = _mm_unpacklo_epi8(src8, zero);
+ __m128i mul_hi = _mm_mulhi_epi16(src16, coeff16);
+ __m128i mul_lo = _mm_mullo_epi16(src16, coeff16);
+ // [32] a0 b0 g0 r0
+ __m128i t = _mm_unpacklo_epi16(mul_lo, mul_hi);
+ accum0 = _mm_add_epi32(accum0, t);
+ // [32] a1 b1 g1 r1
+ t = _mm_unpackhi_epi16(mul_lo, mul_hi);
+ accum1 = _mm_add_epi32(accum1, t);
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2
+ src16 = _mm_unpackhi_epi8(src8, zero);
+ mul_hi = _mm_mulhi_epi16(src16, coeff16);
+ mul_lo = _mm_mullo_epi16(src16, coeff16);
+ // [32] a2 b2 g2 r2
+ t = _mm_unpacklo_epi16(mul_lo, mul_hi);
+ accum2 = _mm_add_epi32(accum2, t);
+ }
+
+ accum0 = _mm_srai_epi32(accum0, ConvolutionFilter1D::kShiftBits);
+ accum1 = _mm_srai_epi32(accum1, ConvolutionFilter1D::kShiftBits);
+ accum2 = _mm_srai_epi32(accum2, ConvolutionFilter1D::kShiftBits);
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0
+ accum0 = _mm_packs_epi32(accum0, accum1);
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2
+ accum2 = _mm_packs_epi32(accum2, zero);
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ accum0 = _mm_packus_epi16(accum0, accum2);
+ if (has_alpha) {
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
+ __m128i a = _mm_srli_epi32(accum0, 8);
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ __m128i b = _mm_max_epu8(a, accum0); // Max of r and g.
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
+ a = _mm_srli_epi32(accum0, 16);
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ b = _mm_max_epu8(a, b); // Max of r and g and b.
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
+ b = _mm_slli_epi32(b, 24);
+ accum0 = _mm_max_epu8(b, accum0);
+ } else {
+ __m128i mask = _mm_set1_epi32(0xff000000);
+ accum0 = _mm_or_si128(accum0, mask);
+ }
+
+ for (int out_x = width; out_x < pixel_width; out_x++) {
+ *(reinterpret_cast<int*>(out_row)) = _mm_cvtsi128_si32(accum0);
+ accum0 = _mm_srli_si128(accum0, 4);
+ out_row += 4;
+ }
+ }
+}
+
+void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
+ int filter_length,
+ unsigned char* const* source_data_rows,
+ int pixel_width,
+ unsigned char* out_row,
+ bool has_alpha) {
+ if (has_alpha) {
+ ConvolveVertically_SSE2<true>(filter_values,
+ filter_length,
+ source_data_rows,
+ pixel_width,
+ out_row);
+ } else {
+ ConvolveVertically_SSE2<false>(filter_values,
+ filter_length,
+ source_data_rows,
+ pixel_width,
+ out_row);
+ }
+}
+
+} // namespace skia
diff --git a/skia/ext/convolver_SSE2.h b/skia/ext/convolver_SSE2.h
new file mode 100644
index 0000000..6b79dae
--- /dev/null
+++ b/skia/ext/convolver_SSE2.h
@@ -0,0 +1,26 @@
+// Copyright (c) 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef SKIA_EXT_CONVOLVER_SSE2_H_
+#define SKIA_EXT_CONVOLVER_SSE2_H_
+
+#include "skia/ext/convolver.h"
+
+namespace skia {
+
+void ConvolveVertically_SSE2(const ConvolutionFilter1D::Fixed* filter_values,
+ int filter_length,
+ unsigned char* const* source_data_rows,
+ int pixel_width,
+ unsigned char* out_row,
+ bool has_alpha);
+void Convolve4RowsHorizontally_SSE2(const unsigned char* src_data[4],
+ const ConvolutionFilter1D& filter,
+ unsigned char* out_row[4]);
+void ConvolveHorizontally_SSE2(const unsigned char* src_data,
+ const ConvolutionFilter1D& filter,
+ unsigned char* out_row);
+} // namespace skia
+
+#endif // SKIA_EXT_CONVOLVER_SSE2_H_
diff --git a/skia/ext/convolver_unittest.cc b/skia/ext/convolver_unittest.cc
index 6bf09ee..377ed8e 100644
--- a/skia/ext/convolver_unittest.cc
+++ b/skia/ext/convolver_unittest.cc
@@ -211,10 +211,6 @@ TEST(Convolver, AddFilter) {
}
TEST(Convolver, SIMDVerification) {
-#if defined(SIMD_SSE2)
- base::CPU cpu;
- if (!cpu.has_sse2()) return;
-
int source_sizes[][2] = {
{1,1}, {1,2}, {1,3}, {1,4}, {1,5},
{2,1}, {2,2}, {2,3}, {2,4}, {2,5},
@@ -246,14 +242,14 @@ TEST(Convolver, SIMDVerification) {
std::min<int>(arraysize(filter),
source_width - offset));
}
- x_filter.PaddingForSIMD(8);
+ x_filter.PaddingForSIMD();
for (unsigned int p = 0; p < dest_height; ++p) {
unsigned int offset = source_height * p / dest_height;
y_filter.AddFilter(offset, filter,
std::min<int>(arraysize(filter),
source_height - offset));
}
- y_filter.PaddingForSIMD(8);
+ y_filter.PaddingForSIMD();
// Allocate input and output skia bitmap.
SkBitmap source, result_c, result_sse;
@@ -326,7 +322,6 @@ TEST(Convolver, SIMDVerification) {
}
}
}
-#endif
}
} // namespace skia
diff --git a/skia/ext/image_operations.cc b/skia/ext/image_operations.cc
index 43f8a08..b1cdade 100644
--- a/skia/ext/image_operations.cc
+++ b/skia/ext/image_operations.cc
@@ -300,7 +300,7 @@ void ResizeFilter::ComputeFilters(int src_size,
static_cast<int>(fixed_filter_values->size()));
}
- output->PaddingForSIMD(8);
+ output->PaddingForSIMD();
}
ImageOperations::ResizeMethod ResizeMethodToAlgorithmMethod(
@@ -509,7 +509,6 @@ SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
reinterpret_cast<const uint8*>(source.getPixels());
// Convolve into the result.
- base::CPU cpu;
SkBitmap result;
result.setConfig(SkBitmap::kARGB_8888_Config,
dest_subset.width(), dest_subset.height());
@@ -521,7 +520,7 @@ SkBitmap ImageOperations::ResizeBasic(const SkBitmap& source,
!source.isOpaque(), filter.x_filter(), filter.y_filter(),
static_cast<int>(result.rowBytes()),
static_cast<unsigned char*>(result.getPixels()),
- cpu.has_sse2());
+ true);
// Preserve the "opaque" flag for use as an optimization later.
result.setIsOpaque(source.isOpaque());
diff --git a/skia/skia.gyp b/skia/skia.gyp
index 3db86fc..7712b929 100644
--- a/skia/skia.gyp
+++ b/skia/skia.gyp
@@ -658,6 +658,7 @@
'../third_party/skia/src/opts/SkBlitRect_opts_SSE2.cpp',
'../third_party/skia/src/opts/SkBlitRow_opts_SSE2.cpp',
'../third_party/skia/src/opts/SkUtils_opts_SSE2.cpp',
+ 'ext/convolver_SSE2.cc',
],
'conditions': [
# x86 Android doesn't support SSSE3 instructions.