diff options
author | sgk@chromium.org <sgk@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2009-11-24 23:00:06 +0000 |
---|---|---|
committer | sgk@chromium.org <sgk@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2009-11-24 23:00:06 +0000 |
commit | 8e81776b35b83f86b749445239efe36f7c8dc1e0 (patch) | |
tree | 43a8e9ac44c6031a82100106e1116ff103a35f40 /third_party/jemalloc | |
parent | 3e1a292b64b685d64f119b8a138dd0be85611b8b (diff) | |
download | chromium_src-8e81776b35b83f86b749445239efe36f7c8dc1e0.zip chromium_src-8e81776b35b83f86b749445239efe36f7c8dc1e0.tar.gz chromium_src-8e81776b35b83f86b749445239efe36f7c8dc1e0.tar.bz2 |
svn:eol-style on jemalloc files in the local branch.
BUG=27911
TEST=none
Review URL: http://codereview.chromium.org/436033
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@32990 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'third_party/jemalloc')
-rw-r--r-- | third_party/jemalloc/chromium/jemalloc.c | 14552 | ||||
-rw-r--r-- | third_party/jemalloc/chromium/jemalloc.h | 444 | ||||
-rw-r--r-- | third_party/jemalloc/chromium/ql.h | 230 | ||||
-rw-r--r-- | third_party/jemalloc/chromium/qr.h | 198 | ||||
-rw-r--r-- | third_party/jemalloc/chromium/rb.h | 1966 |
5 files changed, 8695 insertions, 8695 deletions
diff --git a/third_party/jemalloc/chromium/jemalloc.c b/third_party/jemalloc/chromium/jemalloc.c index 65eb0b3..c616b42 100644 --- a/third_party/jemalloc/chromium/jemalloc.c +++ b/third_party/jemalloc/chromium/jemalloc.c @@ -1,7276 +1,7276 @@ -/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */
-/* vim:set softtabstop=8 shiftwidth=8: */
-/*-
- * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice(s), this list of conditions and the following disclaimer as
- * the first lines of this file unmodified other than the possible
- * addition of one or more copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice(s), this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- *******************************************************************************
- *
- * This allocator implementation is designed to provide scalable performance
- * for multi-threaded programs on multi-processor systems. The following
- * features are included for this purpose:
- *
- * + Multiple arenas are used if there are multiple CPUs, which reduces lock
- * contention and cache sloshing.
- *
- * + Cache line sharing between arenas is avoided for internal data
- * structures.
- *
- * + Memory is managed in chunks and runs (chunks can be split into runs),
- * rather than as individual pages. This provides a constant-time
- * mechanism for associating allocations with particular arenas.
- *
- * Allocation requests are rounded up to the nearest size class, and no record
- * of the original request size is maintained. Allocations are broken into
- * categories according to size class. Assuming runtime defaults, 4 kB pages
- * and a 16 byte quantum on a 32-bit system, the size classes in each category
- * are as follows:
- *
- * |=====================================|
- * | Category | Subcategory | Size |
- * |=====================================|
- * | Small | Tiny | 2 |
- * | | | 4 |
- * | | | 8 |
- * | |----------------+---------|
- * | | Quantum-spaced | 16 |
- * | | | 32 |
- * | | | 48 |
- * | | | ... |
- * | | | 480 |
- * | | | 496 |
- * | | | 512 |
- * | |----------------+---------|
- * | | Sub-page | 1 kB |
- * | | | 2 kB |
- * |=====================================|
- * | Large | 4 kB |
- * | | 8 kB |
- * | | 12 kB |
- * | | ... |
- * | | 1012 kB |
- * | | 1016 kB |
- * | | 1020 kB |
- * |=====================================|
- * | Huge | 1 MB |
- * | | 2 MB |
- * | | 3 MB |
- * | | ... |
- * |=====================================|
- *
- * A different mechanism is used for each category:
- *
- * Small : Each size class is segregated into its own set of runs. Each run
- * maintains a bitmap of which regions are free/allocated.
- *
- * Large : Each allocation is backed by a dedicated run. Metadata are stored
- * in the associated arena chunk header maps.
- *
- * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
- * Metadata are stored in a separate red-black tree.
- *
- *******************************************************************************
- */
-
-/*
- * NOTE(mbelshe): Added these defines to fit within chromium build system.
- */
-#define MOZ_MEMORY_WINDOWS
-#define MOZ_MEMORY
-#define DONT_OVERRIDE_LIBC
-
-/*
- * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
- * defaults the A and J runtime options to off. These settings are appropriate
- * for production systems.
- */
-#ifndef MOZ_MEMORY_DEBUG
-# define MALLOC_PRODUCTION
-#endif
-
-/*
- * Use only one arena by default. Mozilla does not currently make extensive
- * use of concurrent allocation, so the increased fragmentation associated with
- * multiple arenas is not warranted.
- */
-#define MOZ_MEMORY_NARENAS_DEFAULT_ONE
-
-/*
- * MALLOC_STATS enables statistics calculation, and is required for
- * jemalloc_stats().
- */
-#define MALLOC_STATS
-
-#ifndef MALLOC_PRODUCTION
- /*
- * MALLOC_DEBUG enables assertions and other sanity checks, and disables
- * inline functions.
- */
-# define MALLOC_DEBUG
-
- /* Memory filling (junk/zero). */
-# define MALLOC_FILL
-
- /* Allocation tracing. */
-# ifndef MOZ_MEMORY_WINDOWS
-# define MALLOC_UTRACE
-# endif
-
- /* Support optional abort() on OOM. */
-# define MALLOC_XMALLOC
-
- /* Support SYSV semantics. */
-# define MALLOC_SYSV
-#endif
-
-/*
- * MALLOC_VALIDATE causes malloc_usable_size() to perform some pointer
- * validation. There are many possible errors that validation does not even
- * attempt to detect.
- */
-#define MALLOC_VALIDATE
-
-/* Embed no-op macros that support memory allocation tracking via valgrind. */
-#ifdef MOZ_VALGRIND
-# define MALLOC_VALGRIND
-#endif
-#ifdef MALLOC_VALGRIND
-# include <valgrind/valgrind.h>
-#else
-# define VALGRIND_MALLOCLIKE_BLOCK(addr, sizeB, rzB, is_zeroed)
-# define VALGRIND_FREELIKE_BLOCK(addr, rzB)
-#endif
-
-/*
- * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
- * re-balances arena load if exponentially averaged contention exceeds a
- * certain threshold.
- */
-/* #define MALLOC_BALANCE */
-
-#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN))
- /*
- * MALLOC_PAGEFILE causes all mmap()ed memory to be backed by temporary
- * files, so that if a chunk is mapped, it is guaranteed to be swappable.
- * This avoids asynchronous OOM failures that are due to VM over-commit.
- *
- * XXX OS X over-commits, so we should probably use mmap() instead of
- * vm_allocate(), so that MALLOC_PAGEFILE works.
- */
-#define MALLOC_PAGEFILE
-#endif
-
-#ifdef MALLOC_PAGEFILE
-/* Write size when initializing a page file. */
-# define MALLOC_PAGEFILE_WRITE_SIZE 512
-#endif
-
-#ifdef MOZ_MEMORY_LINUX
-#define _GNU_SOURCE /* For mremap(2). */
-#define issetugid() 0
-#if 0 /* Enable in order to test decommit code on Linux. */
-# define MALLOC_DECOMMIT
-#endif
-#endif
-
-#ifndef MOZ_MEMORY_WINCE
-#include <sys/types.h>
-
-#include <errno.h>
-#include <stdlib.h>
-#endif
-#include <limits.h>
-#include <stdarg.h>
-#include <stdio.h>
-#include <string.h>
-
-#ifdef MOZ_MEMORY_WINDOWS
-#ifndef MOZ_MEMORY_WINCE
-//#include <cruntime.h>
-//#include <internal.h>
-#include <io.h>
-#else
-#include <cmnintrin.h>
-#include <crtdefs.h>
-#define SIZE_MAX UINT_MAX
-#endif
-#include <windows.h>
-
-#pragma warning( disable: 4267 4996 4146 )
-
-#define false FALSE
-#define true TRUE
-#define inline __inline
-#define SIZE_T_MAX SIZE_MAX
-#define STDERR_FILENO 2
-#define PATH_MAX MAX_PATH
-#define vsnprintf _vsnprintf
-
-#ifndef NO_TLS
-static unsigned long tlsIndex = 0xffffffff;
-#endif
-
-#define __thread
-#ifdef MOZ_MEMORY_WINCE
-#define _pthread_self() GetCurrentThreadId()
-#else
-#define _pthread_self() __threadid()
-#endif
-#define issetugid() 0
-
-#ifndef MOZ_MEMORY_WINCE
-/* use MSVC intrinsics */
-#pragma intrinsic(_BitScanForward)
-static __forceinline int
-ffs(int x)
-{
- unsigned long i;
-
- if (_BitScanForward(&i, x) != 0)
- return (i + 1);
-
- return (0);
-}
-
-/* Implement getenv without using malloc */
-static char mozillaMallocOptionsBuf[64];
-
-#define getenv xgetenv
-static char *
-getenv(const char *name)
-{
-
- if (GetEnvironmentVariableA(name, (LPSTR)&mozillaMallocOptionsBuf,
- sizeof(mozillaMallocOptionsBuf)) > 0)
- return (mozillaMallocOptionsBuf);
-
- return (NULL);
-}
-
-#else /* WIN CE */
-
-#define ENOMEM 12
-#define EINVAL 22
-
-static __forceinline int
-ffs(int x)
-{
-
- return 32 - _CountLeadingZeros((-x) & x);
-}
-#endif
-
-typedef unsigned char uint8_t;
-typedef unsigned uint32_t;
-typedef unsigned long long uint64_t;
-typedef unsigned long long uintmax_t;
-typedef long ssize_t;
-
-#define MALLOC_DECOMMIT
-#endif
-
-#ifndef MOZ_MEMORY_WINDOWS
-#ifndef MOZ_MEMORY_SOLARIS
-#include <sys/cdefs.h>
-#endif
-#ifndef __DECONST
-# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
-#endif
-#ifndef MOZ_MEMORY
-__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 180599 2008-07-18 19:35:44Z jasone $");
-#include "libc_private.h"
-#ifdef MALLOC_DEBUG
-# define _LOCK_DEBUG
-#endif
-#include "spinlock.h"
-#include "namespace.h"
-#endif
-#include <sys/mman.h>
-#ifndef MADV_FREE
-# define MADV_FREE MADV_DONTNEED
-#endif
-#ifndef MAP_NOSYNC
-# define MAP_NOSYNC 0
-#endif
-#include <sys/param.h>
-#ifndef MOZ_MEMORY
-#include <sys/stddef.h>
-#endif
-#include <sys/time.h>
-#include <sys/types.h>
-#ifndef MOZ_MEMORY_SOLARIS
-#include <sys/sysctl.h>
-#endif
-#include <sys/uio.h>
-#ifndef MOZ_MEMORY
-#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
-
-#include <machine/atomic.h>
-#include <machine/cpufunc.h>
-#include <machine/vmparam.h>
-#endif
-
-#include <errno.h>
-#include <limits.h>
-#ifndef SIZE_T_MAX
-# define SIZE_T_MAX SIZE_MAX
-#endif
-#include <pthread.h>
-#ifdef MOZ_MEMORY_DARWIN
-#define _pthread_self pthread_self
-#define _pthread_mutex_init pthread_mutex_init
-#define _pthread_mutex_trylock pthread_mutex_trylock
-#define _pthread_mutex_lock pthread_mutex_lock
-#define _pthread_mutex_unlock pthread_mutex_unlock
-#endif
-#include <sched.h>
-#include <stdarg.h>
-#include <stdbool.h>
-#include <stdio.h>
-#include <stdint.h>
-#include <stdlib.h>
-#include <string.h>
-#ifndef MOZ_MEMORY_DARWIN
-#include <strings.h>
-#endif
-#include <unistd.h>
-
-#ifdef MOZ_MEMORY_DARWIN
-#include <libkern/OSAtomic.h>
-#include <mach/mach_error.h>
-#include <mach/mach_init.h>
-#include <mach/vm_map.h>
-#include <malloc/malloc.h>
-#endif
-
-#ifndef MOZ_MEMORY
-#include "un-namespace.h"
-#endif
-
-#endif
-
-#include "jemalloc.h"
-
-#undef bool
-#define bool jemalloc_bool
-
-#ifdef MOZ_MEMORY_DARWIN
-static const bool __isthreaded = true;
-#endif
-
-#if defined(MOZ_MEMORY_SOLARIS) && defined(MAP_ALIGN) && !defined(JEMALLOC_NEVER_USES_MAP_ALIGN)
-#define JEMALLOC_USES_MAP_ALIGN /* Required on Solaris 10. Might improve performance elsewhere. */
-#endif
-
-#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
-#define JEMALLOC_USES_MAP_ALIGN /* Required for Windows CE < 6 */
-#endif
-
-#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
-
-#include "qr.h"
-#include "ql.h"
-#ifdef MOZ_MEMORY_WINDOWS
- /* MSVC++ does not support C99 variable-length arrays. */
-# define RB_NO_C99_VARARRAYS
-#endif
-#include "rb.h"
-
-#ifdef MALLOC_DEBUG
- /* Disable inlining to make debugging easier. */
-#ifdef inline
-#undef inline
-#endif
-
-# define inline
-#endif
-
-/* Size of stack-allocated buffer passed to strerror_r(). */
-#define STRERROR_BUF 64
-
-/* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
-# define QUANTUM_2POW_MIN 4
-#ifdef MOZ_MEMORY_SIZEOF_PTR_2POW
-# define SIZEOF_PTR_2POW MOZ_MEMORY_SIZEOF_PTR_2POW
-#else
-# define SIZEOF_PTR_2POW 2
-#endif
-#define PIC
-#ifndef MOZ_MEMORY_DARWIN
-static const bool __isthreaded = true;
-#else
-# define NO_TLS
-#endif
-#if 0
-#ifdef __i386__
-# define QUANTUM_2POW_MIN 4
-# define SIZEOF_PTR_2POW 2
-# define CPU_SPINWAIT __asm__ volatile("pause")
-#endif
-#ifdef __ia64__
-# define QUANTUM_2POW_MIN 4
-# define SIZEOF_PTR_2POW 3
-#endif
-#ifdef __alpha__
-# define QUANTUM_2POW_MIN 4
-# define SIZEOF_PTR_2POW 3
-# define NO_TLS
-#endif
-#ifdef __sparc64__
-# define QUANTUM_2POW_MIN 4
-# define SIZEOF_PTR_2POW 3
-# define NO_TLS
-#endif
-#ifdef __amd64__
-# define QUANTUM_2POW_MIN 4
-# define SIZEOF_PTR_2POW 3
-# define CPU_SPINWAIT __asm__ volatile("pause")
-#endif
-#ifdef __arm__
-# define QUANTUM_2POW_MIN 3
-# define SIZEOF_PTR_2POW 2
-# define NO_TLS
-#endif
-#ifdef __mips__
-# define QUANTUM_2POW_MIN 3
-# define SIZEOF_PTR_2POW 2
-# define NO_TLS
-#endif
-#ifdef __powerpc__
-# define QUANTUM_2POW_MIN 4
-# define SIZEOF_PTR_2POW 2
-#endif
-#endif
-
-#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
-
-/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
-#ifndef SIZEOF_INT_2POW
-# define SIZEOF_INT_2POW 2
-#endif
-
-/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
-#if (!defined(PIC) && !defined(NO_TLS))
-# define NO_TLS
-#endif
-
-#ifdef NO_TLS
- /* MALLOC_BALANCE requires TLS. */
-# ifdef MALLOC_BALANCE
-# undef MALLOC_BALANCE
-# endif
-#endif
-
-/*
- * Size and alignment of memory chunks that are allocated by the OS's virtual
- * memory system.
- */
-#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
-#define CHUNK_2POW_DEFAULT 21
-#else
-#define CHUNK_2POW_DEFAULT 20
-#endif
-/* Maximum number of dirty pages per arena. */
-#define DIRTY_MAX_DEFAULT (1U << 10)
-
-/* Default reserve chunks. */
-#define RESERVE_MIN_2POW_DEFAULT 1
-/*
- * Default range (in chunks) between reserve_min and reserve_max, in addition
- * to the mandatory one chunk per arena.
- */
-#ifdef MALLOC_PAGEFILE
-# define RESERVE_RANGE_2POW_DEFAULT 5
-#else
-# define RESERVE_RANGE_2POW_DEFAULT 0
-#endif
-
-/*
- * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
- * so over-estimates are okay (up to a point), but under-estimates will
- * negatively affect performance.
- */
-#define CACHELINE_2POW 6
-#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
-
-/* Smallest size class to support. */
-#define TINY_MIN_2POW 1
-
-/*
- * Maximum size class that is a multiple of the quantum, but not (necessarily)
- * a power of 2. Above this size, allocations are rounded up to the nearest
- * power of 2.
- */
-#define SMALL_MAX_2POW_DEFAULT 9
-#define SMALL_MAX_DEFAULT (1U << SMALL_MAX_2POW_DEFAULT)
-
-/*
- * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
- * as small as possible such that this setting is still honored, without
- * violating other constraints. The goal is to make runs as small as possible
- * without exceeding a per run external fragmentation threshold.
- *
- * We use binary fixed point math for overhead computations, where the binary
- * point is implicitly RUN_BFP bits to the left.
- *
- * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
- * honored for some/all object sizes, since there is one bit of header overhead
- * per object (plus a constant). This constraint is relaxed (ignored) for runs
- * that are so small that the per-region overhead is greater than:
- *
- * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
- */
-#define RUN_BFP 12
-/* \/ Implicit binary fixed point. */
-#define RUN_MAX_OVRHD 0x0000003dU
-#define RUN_MAX_OVRHD_RELAX 0x00001800U
-
-/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
-#define RUN_MAX_SMALL_2POW 15
-#define RUN_MAX_SMALL (1U << RUN_MAX_SMALL_2POW)
-
-/*
- * Hyper-threaded CPUs may need a special instruction inside spin loops in
- * order to yield to another virtual CPU. If no such instruction is defined
- * above, make CPU_SPINWAIT a no-op.
- */
-#ifndef CPU_SPINWAIT
-# define CPU_SPINWAIT
-#endif
-
-/*
- * Adaptive spinning must eventually switch to blocking, in order to avoid the
- * potential for priority inversion deadlock. Backing off past a certain point
- * can actually waste time.
- */
-#define SPIN_LIMIT_2POW 11
-
-/*
- * Conversion from spinning to blocking is expensive; we use (1U <<
- * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
- * worst-case spinning.
- */
-#define BLOCK_COST_2POW 4
-
-#ifdef MALLOC_BALANCE
- /*
- * We use an exponential moving average to track recent lock contention,
- * where the size of the history window is N, and alpha=2/(N+1).
- *
- * Due to integer math rounding, very small values here can cause
- * substantial degradation in accuracy, thus making the moving average decay
- * faster than it would with precise calculation.
- */
-# define BALANCE_ALPHA_INV_2POW 9
-
- /*
- * Threshold value for the exponential moving contention average at which to
- * re-assign a thread.
- */
-# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
-#endif
-
-/******************************************************************************/
-
-/*
- * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
- * places, because they require malloc()ed memory, which causes bootstrapping
- * issues in some cases.
- */
-#if defined(MOZ_MEMORY_WINDOWS)
-#define malloc_mutex_t CRITICAL_SECTION
-#define malloc_spinlock_t CRITICAL_SECTION
-#elif defined(MOZ_MEMORY_DARWIN)
-typedef struct {
- OSSpinLock lock;
-} malloc_mutex_t;
-typedef struct {
- OSSpinLock lock;
-} malloc_spinlock_t;
-#elif defined(MOZ_MEMORY)
-typedef pthread_mutex_t malloc_mutex_t;
-typedef pthread_mutex_t malloc_spinlock_t;
-#else
-/* XXX these should #ifdef these for freebsd (and linux?) only */
-typedef struct {
- spinlock_t lock;
-} malloc_mutex_t;
-typedef malloc_spinlock_t malloc_mutex_t;
-#endif
-
-/* Set to true once the allocator has been initialized. */
-static bool malloc_initialized = false;
-
-#if defined(MOZ_MEMORY_WINDOWS)
-/* No init lock for Windows. */
-#elif defined(MOZ_MEMORY_DARWIN)
-static malloc_mutex_t init_lock = {OS_SPINLOCK_INIT};
-#elif defined(MOZ_MEMORY_LINUX)
-static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
-#elif defined(MOZ_MEMORY)
-static malloc_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER;
-#else
-static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
-#endif
-
-/******************************************************************************/
-/*
- * Statistics data structures.
- */
-
-#ifdef MALLOC_STATS
-
-typedef struct malloc_bin_stats_s malloc_bin_stats_t;
-struct malloc_bin_stats_s {
- /*
- * Number of allocation requests that corresponded to the size of this
- * bin.
- */
- uint64_t nrequests;
-
- /* Total number of runs created for this bin's size class. */
- uint64_t nruns;
-
- /*
- * Total number of runs reused by extracting them from the runs tree for
- * this bin's size class.
- */
- uint64_t reruns;
-
- /* High-water mark for this bin. */
- unsigned long highruns;
-
- /* Current number of runs in this bin. */
- unsigned long curruns;
-};
-
-typedef struct arena_stats_s arena_stats_t;
-struct arena_stats_s {
- /* Number of bytes currently mapped. */
- size_t mapped;
-
- /*
- * Total number of purge sweeps, total number of madvise calls made,
- * and total pages purged in order to keep dirty unused memory under
- * control.
- */
- uint64_t npurge;
- uint64_t nmadvise;
- uint64_t purged;
-#ifdef MALLOC_DECOMMIT
- /*
- * Total number of decommit/commit operations, and total number of
- * pages decommitted.
- */
- uint64_t ndecommit;
- uint64_t ncommit;
- uint64_t decommitted;
-#endif
-
- /* Per-size-category statistics. */
- size_t allocated_small;
- uint64_t nmalloc_small;
- uint64_t ndalloc_small;
-
- size_t allocated_large;
- uint64_t nmalloc_large;
- uint64_t ndalloc_large;
-
-#ifdef MALLOC_BALANCE
- /* Number of times this arena reassigned a thread due to contention. */
- uint64_t nbalance;
-#endif
-};
-
-typedef struct chunk_stats_s chunk_stats_t;
-struct chunk_stats_s {
- /* Number of chunks that were allocated. */
- uint64_t nchunks;
-
- /* High-water mark for number of chunks allocated. */
- unsigned long highchunks;
-
- /*
- * Current number of chunks allocated. This value isn't maintained for
- * any other purpose, so keep track of it in order to be able to set
- * highchunks.
- */
- unsigned long curchunks;
-};
-
-#endif /* #ifdef MALLOC_STATS */
-
-/******************************************************************************/
-/*
- * Extent data structures.
- */
-
-/* Tree of extents. */
-typedef struct extent_node_s extent_node_t;
-struct extent_node_s {
- /* Linkage for the size/address-ordered tree. */
- rb_node(extent_node_t) link_szad;
-
- /* Linkage for the address-ordered tree. */
- rb_node(extent_node_t) link_ad;
-
- /* Pointer to the extent that this tree node is responsible for. */
- void *addr;
-
- /* Total region size. */
- size_t size;
-};
-typedef rb_tree(extent_node_t) extent_tree_t;
-
-/******************************************************************************/
-/*
- * Radix tree data structures.
- */
-
-#ifdef MALLOC_VALIDATE
- /*
- * Size of each radix tree node (must be a power of 2). This impacts tree
- * depth.
- */
-# if (SIZEOF_PTR == 4)
-# define MALLOC_RTREE_NODESIZE (1U << 14)
-# else
-# define MALLOC_RTREE_NODESIZE CACHELINE
-# endif
-
-typedef struct malloc_rtree_s malloc_rtree_t;
-struct malloc_rtree_s {
- malloc_spinlock_t lock;
- void **root;
- unsigned height;
- unsigned level2bits[1]; /* Dynamically sized. */
-};
-#endif
-
-/******************************************************************************/
-/*
- * Reserve data structures.
- */
-
-/* Callback registration. */
-typedef struct reserve_reg_s reserve_reg_t;
-struct reserve_reg_s {
- /* Linkage for list of all registered callbacks. */
- ql_elm(reserve_reg_t) link;
-
- /* Callback function pointer. */
- reserve_cb_t *cb;
-
- /* Opaque application data pointer. */
- void *ctx;
-
- /*
- * Sequence number of condition notification most recently sent to this
- * callback.
- */
- uint64_t seq;
-};
-
-/******************************************************************************/
-/*
- * Arena data structures.
- */
-
-typedef struct arena_s arena_t;
-typedef struct arena_bin_s arena_bin_t;
-
-/* Each element of the chunk map corresponds to one page within the chunk. */
-typedef struct arena_chunk_map_s arena_chunk_map_t;
-struct arena_chunk_map_s {
- /*
- * Linkage for run trees. There are two disjoint uses:
- *
- * 1) arena_t's runs_avail tree.
- * 2) arena_run_t conceptually uses this linkage for in-use non-full
- * runs, rather than directly embedding linkage.
- */
- rb_node(arena_chunk_map_t) link;
-
- /*
- * Run address (or size) and various flags are stored together. The bit
- * layout looks like (assuming 32-bit system):
- *
- * ???????? ???????? ????---- --ckdzla
- *
- * ? : Unallocated: Run address for first/last pages, unset for internal
- * pages.
- * Small: Run address.
- * Large: Run size for first page, unset for trailing pages.
- * - : Unused.
- * c : decommitted?
- * k : key?
- * d : dirty?
- * z : zeroed?
- * l : large?
- * a : allocated?
- *
- * Following are example bit patterns for the three types of runs.
- *
- * r : run address
- * s : run size
- * x : don't care
- * - : 0
- * [cdzla] : bit set
- *
- * Unallocated:
- * ssssssss ssssssss ssss---- --c-----
- * xxxxxxxx xxxxxxxx xxxx---- ----d---
- * ssssssss ssssssss ssss---- -----z--
- *
- * Small:
- * rrrrrrrr rrrrrrrr rrrr---- -------a
- * rrrrrrrr rrrrrrrr rrrr---- -------a
- * rrrrrrrr rrrrrrrr rrrr---- -------a
- *
- * Large:
- * ssssssss ssssssss ssss---- ------la
- * -------- -------- -------- ------la
- * -------- -------- -------- ------la
- */
- size_t bits;
-#ifdef MALLOC_DECOMMIT
-#define CHUNK_MAP_DECOMMITTED ((size_t)0x20U)
-#endif
-#define CHUNK_MAP_KEY ((size_t)0x10U)
-#define CHUNK_MAP_DIRTY ((size_t)0x08U)
-#define CHUNK_MAP_ZEROED ((size_t)0x04U)
-#define CHUNK_MAP_LARGE ((size_t)0x02U)
-#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
-};
-typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
-typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
-
-/* Arena chunk header. */
-typedef struct arena_chunk_s arena_chunk_t;
-struct arena_chunk_s {
- /* Arena that owns the chunk. */
- arena_t *arena;
-
- /* Linkage for the arena's chunks_dirty tree. */
- rb_node(arena_chunk_t) link_dirty;
-
- /* Number of dirty pages. */
- size_t ndirty;
-
- /* Map of pages within chunk that keeps track of free/large/small. */
- arena_chunk_map_t map[1]; /* Dynamically sized. */
-};
-typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
-
-typedef struct arena_run_s arena_run_t;
-struct arena_run_s {
-#ifdef MALLOC_DEBUG
- uint32_t magic;
-# define ARENA_RUN_MAGIC 0x384adf93
-#endif
-
- /* Bin this run is associated with. */
- arena_bin_t *bin;
-
- /* Index of first element that might have a free region. */
- unsigned regs_minelm;
-
- /* Number of free regions in run. */
- unsigned nfree;
-
- /* Bitmask of in-use regions (0: in use, 1: free). */
- unsigned regs_mask[1]; /* Dynamically sized. */
-};
-
-struct arena_bin_s {
- /*
- * Current run being used to service allocations of this bin's size
- * class.
- */
- arena_run_t *runcur;
-
- /*
- * Tree of non-full runs. This tree is used when looking for an
- * existing run when runcur is no longer usable. We choose the
- * non-full run that is lowest in memory; this policy tends to keep
- * objects packed well, and it can also help reduce the number of
- * almost-empty chunks.
- */
- arena_run_tree_t runs;
-
- /* Size of regions in a run for this bin's size class. */
- size_t reg_size;
-
- /* Total size of a run for this bin's size class. */
- size_t run_size;
-
- /* Total number of regions in a run for this bin's size class. */
- uint32_t nregs;
-
- /* Number of elements in a run's regs_mask for this bin's size class. */
- uint32_t regs_mask_nelms;
-
- /* Offset of first region in a run for this bin's size class. */
- uint32_t reg0_offset;
-
-#ifdef MALLOC_STATS
- /* Bin statistics. */
- malloc_bin_stats_t stats;
-#endif
-};
-
-struct arena_s {
-#ifdef MALLOC_DEBUG
- uint32_t magic;
-# define ARENA_MAGIC 0x947d3d24
-#endif
-
- /* All operations on this arena require that lock be locked. */
-#ifdef MOZ_MEMORY
- malloc_spinlock_t lock;
-#else
- pthread_mutex_t lock;
-#endif
-
-#ifdef MALLOC_STATS
- arena_stats_t stats;
-#endif
-
- /*
- * Chunk allocation sequence number, used to detect races with other
- * threads during chunk allocation, and then discard unnecessary chunks.
- */
- uint64_t chunk_seq;
-
- /* Tree of dirty-page-containing chunks this arena manages. */
- arena_chunk_tree_t chunks_dirty;
-
- /*
- * In order to avoid rapid chunk allocation/deallocation when an arena
- * oscillates right on the cusp of needing a new chunk, cache the most
- * recently freed chunk. The spare is left in the arena's chunk trees
- * until it is deleted.
- *
- * There is one spare chunk per arena, rather than one spare total, in
- * order to avoid interactions between multiple threads that could make
- * a single spare inadequate.
- */
- arena_chunk_t *spare;
-
- /*
- * Current count of pages within unused runs that are potentially
- * dirty, and for which madvise(... MADV_FREE) has not been called. By
- * tracking this, we can institute a limit on how much dirty unused
- * memory is mapped for each arena.
- */
- size_t ndirty;
-
- /*
- * Size/address-ordered tree of this arena's available runs. This tree
- * is used for first-best-fit run allocation.
- */
- arena_avail_tree_t runs_avail;
-
-#ifdef MALLOC_BALANCE
- /*
- * The arena load balancing machinery needs to keep track of how much
- * lock contention there is. This value is exponentially averaged.
- */
- uint32_t contention;
-#endif
-
- /*
- * bins is used to store rings of free regions of the following sizes,
- * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
- *
- * bins[i] | size |
- * --------+------+
- * 0 | 2 |
- * 1 | 4 |
- * 2 | 8 |
- * --------+------+
- * 3 | 16 |
- * 4 | 32 |
- * 5 | 48 |
- * 6 | 64 |
- * : :
- * : :
- * 33 | 496 |
- * 34 | 512 |
- * --------+------+
- * 35 | 1024 |
- * 36 | 2048 |
- * --------+------+
- */
- arena_bin_t bins[1]; /* Dynamically sized. */
-};
-
-/******************************************************************************/
-/*
- * Data.
- */
-
-/* Number of CPUs. */
-static unsigned ncpus;
-
-/* VM page size. */
-static size_t pagesize;
-static size_t pagesize_mask;
-static size_t pagesize_2pow;
-
-/* Various bin-related settings. */
-static size_t bin_maxclass; /* Max size class for bins. */
-static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
-static unsigned nqbins; /* Number of quantum-spaced bins. */
-static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
-static size_t small_min;
-static size_t small_max;
-
-/* Various quantum-related settings. */
-static size_t quantum;
-static size_t quantum_mask; /* (quantum - 1). */
-
-/* Various chunk-related settings. */
-static size_t chunksize;
-static size_t chunksize_mask; /* (chunksize - 1). */
-static size_t chunk_npages;
-static size_t arena_chunk_header_npages;
-static size_t arena_maxclass; /* Max size class for arenas. */
-
-/********/
-/*
- * Chunks.
- */
-
-#ifdef MALLOC_VALIDATE
-static malloc_rtree_t *chunk_rtree;
-#endif
-
-/* Protects chunk-related data structures. */
-static malloc_mutex_t huge_mtx;
-
-/* Tree of chunks that are stand-alone huge allocations. */
-static extent_tree_t huge;
-
-#ifdef MALLOC_STATS
-/* Huge allocation statistics. */
-static uint64_t huge_nmalloc;
-static uint64_t huge_ndalloc;
-static size_t huge_allocated;
-#endif
-
-/****************/
-/*
- * Memory reserve.
- */
-
-#ifdef MALLOC_PAGEFILE
-static char pagefile_templ[PATH_MAX];
-#endif
-
-/* Protects reserve-related data structures. */
-static malloc_mutex_t reserve_mtx;
-
-/*
- * Bounds on acceptable reserve size, and current reserve size. Reserve
- * depletion may cause (reserve_cur < reserve_min).
- */
-static size_t reserve_min;
-static size_t reserve_cur;
-static size_t reserve_max;
-
-/* List of registered callbacks. */
-static ql_head(reserve_reg_t) reserve_regs;
-
-/*
- * Condition notification sequence number, used to determine whether all
- * registered callbacks have been notified of the most current condition.
- */
-static uint64_t reserve_seq;
-
-/*
- * Trees of chunks currently in the memory reserve. Depending on function,
- * different tree orderings are needed, which is why there are two trees with
- * the same contents.
- */
-static extent_tree_t reserve_chunks_szad;
-static extent_tree_t reserve_chunks_ad;
-
-/****************************/
-/*
- * base (internal allocation).
- */
-
-/*
- * Current pages that are being used for internal memory allocations. These
- * pages are carved up in cacheline-size quanta, so that there is no chance of
- * false cache line sharing.
- */
-static void *base_pages;
-static void *base_next_addr;
-#ifdef MALLOC_DECOMMIT
-static void *base_next_decommitted;
-#endif
-static void *base_past_addr; /* Addr immediately past base_pages. */
-static extent_node_t *base_nodes;
-static reserve_reg_t *base_reserve_regs;
-static malloc_mutex_t base_mtx;
-#ifdef MALLOC_STATS
-static size_t base_mapped;
-#endif
-
-/********/
-/*
- * Arenas.
- */
-
-/*
- * Arenas that are used to service external requests. Not all elements of the
- * arenas array are necessarily used; arenas are created lazily as needed.
- */
-static arena_t **arenas;
-static unsigned narenas;
-static unsigned narenas_2pow;
-#ifndef NO_TLS
-# ifdef MALLOC_BALANCE
-static unsigned narenas_2pow;
-# else
-static unsigned next_arena;
-# endif
-#endif
-#ifdef MOZ_MEMORY
-static malloc_spinlock_t arenas_lock; /* Protects arenas initialization. */
-#else
-static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
-#endif
-
-#ifndef NO_TLS
-/*
- * Map of pthread_self() --> arenas[???], used for selecting an arena to use
- * for allocations.
- */
-#ifndef MOZ_MEMORY_WINDOWS
-static __thread arena_t *arenas_map;
-#endif
-#endif
-
-#ifdef MALLOC_STATS
-/* Chunk statistics. */
-static chunk_stats_t stats_chunks;
-#endif
-
-/*******************************/
-/*
- * Runtime configuration options.
- */
-const char *_malloc_options;
-
-#ifndef MALLOC_PRODUCTION
-static bool opt_abort = true;
-#ifdef MALLOC_FILL
-static bool opt_junk = true;
-#endif
-#else
-static bool opt_abort = false;
-#ifdef MALLOC_FILL
-static bool opt_junk = false;
-#endif
-#endif
-static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
-#ifdef MALLOC_BALANCE
-static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
-#endif
-static bool opt_print_stats = false;
-static size_t opt_quantum_2pow = QUANTUM_2POW_MIN;
-static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
-static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
-static int opt_reserve_min_lshift = 0;
-static int opt_reserve_range_lshift = 0;
-#ifdef MALLOC_PAGEFILE
-static bool opt_pagefile = false;
-#endif
-#ifdef MALLOC_UTRACE
-static bool opt_utrace = false;
-#endif
-#ifdef MALLOC_SYSV
-static bool opt_sysv = false;
-#endif
-#ifdef MALLOC_XMALLOC
-static bool opt_xmalloc = false;
-#endif
-#ifdef MALLOC_FILL
-static bool opt_zero = false;
-#endif
-static int opt_narenas_lshift = 0;
-
-#ifdef MALLOC_UTRACE
-typedef struct {
- void *p;
- size_t s;
- void *r;
-} malloc_utrace_t;
-
-#define UTRACE(a, b, c) \
- if (opt_utrace) { \
- malloc_utrace_t ut; \
- ut.p = (a); \
- ut.s = (b); \
- ut.r = (c); \
- utrace(&ut, sizeof(ut)); \
- }
-#else
-#define UTRACE(a, b, c)
-#endif
-
-/******************************************************************************/
-/*
- * Begin function prototypes for non-inline static functions.
- */
-
-static char *umax2s(uintmax_t x, char *s);
-static bool malloc_mutex_init(malloc_mutex_t *mutex);
-static bool malloc_spin_init(malloc_spinlock_t *lock);
-static void wrtmessage(const char *p1, const char *p2, const char *p3,
- const char *p4);
-#ifdef MALLOC_STATS
-#ifdef MOZ_MEMORY_DARWIN
-/* Avoid namespace collision with OS X's malloc APIs. */
-#define malloc_printf moz_malloc_printf
-#endif
-static void malloc_printf(const char *format, ...);
-#endif
-static bool base_pages_alloc_mmap(size_t minsize);
-static bool base_pages_alloc(size_t minsize);
-static void *base_alloc(size_t size);
-static void *base_calloc(size_t number, size_t size);
-static extent_node_t *base_node_alloc(void);
-static void base_node_dealloc(extent_node_t *node);
-static reserve_reg_t *base_reserve_reg_alloc(void);
-static void base_reserve_reg_dealloc(reserve_reg_t *reg);
-#ifdef MALLOC_STATS
-static void stats_print(arena_t *arena);
-#endif
-static void *pages_map(void *addr, size_t size, int pfd);
-static void pages_unmap(void *addr, size_t size);
-static void *chunk_alloc_mmap(size_t size, bool pagefile);
-#ifdef MALLOC_PAGEFILE
-static int pagefile_init(size_t size);
-static void pagefile_close(int pfd);
-#endif
-static void *chunk_recycle_reserve(size_t size, bool zero);
-static void *chunk_alloc(size_t size, bool zero, bool pagefile);
-static extent_node_t *chunk_dealloc_reserve(void *chunk, size_t size);
-static void chunk_dealloc_mmap(void *chunk, size_t size);
-static void chunk_dealloc(void *chunk, size_t size);
-#ifndef NO_TLS
-static arena_t *choose_arena_hard(void);
-#endif
-static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
- bool large, bool zero);
-static void arena_chunk_init(arena_t *arena, arena_chunk_t *chunk);
-static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
-static arena_run_t *arena_run_alloc(arena_t *arena, arena_bin_t *bin,
- size_t size, bool large, bool zero);
-static void arena_purge(arena_t *arena);
-static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
-static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
- arena_run_t *run, size_t oldsize, size_t newsize);
-static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
- arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
-static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
-static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
-static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
-#ifdef MALLOC_BALANCE
-static void arena_lock_balance_hard(arena_t *arena);
-#endif
-static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
-static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
- size_t alloc_size);
-static size_t arena_salloc(const void *ptr);
-static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
- void *ptr);
-static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
- void *ptr, size_t size, size_t oldsize);
-static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
- void *ptr, size_t size, size_t oldsize);
-static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
-static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
-static bool arena_new(arena_t *arena);
-static arena_t *arenas_extend(unsigned ind);
-static void *huge_malloc(size_t size, bool zero);
-static void *huge_palloc(size_t alignment, size_t size);
-static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
-static void huge_dalloc(void *ptr);
-static void malloc_print_stats(void);
-#ifndef MOZ_MEMORY_WINDOWS
-static
-#endif
-bool malloc_init_hard(void);
-static void reserve_shrink(void);
-static uint64_t reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq);
-static uint64_t reserve_crit(size_t size, const char *fname, uint64_t seq);
-static void reserve_fail(size_t size, const char *fname);
-
-void _malloc_prefork(void);
-void _malloc_postfork(void);
-
-/*
- * End function prototypes.
- */
-/******************************************************************************/
-
-/*
- * umax2s() provides minimal integer printing functionality, which is
- * especially useful for situations where allocation in vsnprintf() calls would
- * potentially cause deadlock.
- */
-#define UMAX2S_BUFSIZE 21
-static char *
-umax2s(uintmax_t x, char *s)
-{
- unsigned i;
-
- i = UMAX2S_BUFSIZE - 1;
- s[i] = '\0';
- do {
- i--;
- s[i] = "0123456789"[x % 10];
- x /= 10;
- } while (x > 0);
-
- return (&s[i]);
-}
-
-static void
-wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
-{
-#ifdef MOZ_MEMORY_WINCE
- wchar_t buf[1024];
-#define WRT_PRINT(s) \
- MultiByteToWideChar(CP_ACP, 0, s, -1, buf, 1024); \
- OutputDebugStringW(buf)
-
- WRT_PRINT(p1);
- WRT_PRINT(p2);
- WRT_PRINT(p3);
- WRT_PRINT(p4);
-#else
-#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_WINDOWS)
-#define _write write
-#endif
- _write(STDERR_FILENO, p1, (unsigned int) strlen(p1));
- _write(STDERR_FILENO, p2, (unsigned int) strlen(p2));
- _write(STDERR_FILENO, p3, (unsigned int) strlen(p3));
- _write(STDERR_FILENO, p4, (unsigned int) strlen(p4));
-#endif
-
-}
-
-#define _malloc_message malloc_message
-
-void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
- const char *p4) = wrtmessage;
-
-#ifdef MALLOC_DEBUG
-# define assert(e) do { \
- if (!(e)) { \
- char line_buf[UMAX2S_BUFSIZE]; \
- _malloc_message(__FILE__, ":", umax2s(__LINE__, \
- line_buf), ": Failed assertion: "); \
- _malloc_message("\"", #e, "\"\n", ""); \
- abort(); \
- } \
-} while (0)
-#else
-#define assert(e)
-#endif
-
-/******************************************************************************/
-/*
- * Begin mutex. We can't use normal pthread mutexes in all places, because
- * they require malloc()ed memory, which causes bootstrapping issues in some
- * cases.
- */
-
-static bool
-malloc_mutex_init(malloc_mutex_t *mutex)
-{
-#if defined(MOZ_MEMORY_WINCE)
- InitializeCriticalSection(mutex);
-#elif defined(MOZ_MEMORY_WINDOWS)
- // XXXMB
- //if (__isthreaded)
- // if (! __crtInitCritSecAndSpinCount(mutex, _CRT_SPINCOUNT))
- // return (true);
- if (!InitializeCriticalSectionAndSpinCount(mutex, 4000))
- return true;
-#elif defined(MOZ_MEMORY_DARWIN)
- mutex->lock = OS_SPINLOCK_INIT;
-#elif defined(MOZ_MEMORY_LINUX)
- pthread_mutexattr_t attr;
- if (pthread_mutexattr_init(&attr) != 0)
- return (true);
- pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
- if (pthread_mutex_init(mutex, &attr) != 0) {
- pthread_mutexattr_destroy(&attr);
- return (true);
- }
- pthread_mutexattr_destroy(&attr);
-#elif defined(MOZ_MEMORY)
- if (pthread_mutex_init(mutex, NULL) != 0)
- return (true);
-#else
- static const spinlock_t lock = _SPINLOCK_INITIALIZER;
-
- mutex->lock = lock;
-#endif
- return (false);
-}
-
-static inline void
-malloc_mutex_lock(malloc_mutex_t *mutex)
-{
-
-#if defined(MOZ_MEMORY_WINDOWS)
- EnterCriticalSection(mutex);
-#elif defined(MOZ_MEMORY_DARWIN)
- OSSpinLockLock(&mutex->lock);
-#elif defined(MOZ_MEMORY)
- pthread_mutex_lock(mutex);
-#else
- if (__isthreaded)
- _SPINLOCK(&mutex->lock);
-#endif
-}
-
-static inline void
-malloc_mutex_unlock(malloc_mutex_t *mutex)
-{
-
-#if defined(MOZ_MEMORY_WINDOWS)
- LeaveCriticalSection(mutex);
-#elif defined(MOZ_MEMORY_DARWIN)
- OSSpinLockUnlock(&mutex->lock);
-#elif defined(MOZ_MEMORY)
- pthread_mutex_unlock(mutex);
-#else
- if (__isthreaded)
- _SPINUNLOCK(&mutex->lock);
-#endif
-}
-
-static bool
-malloc_spin_init(malloc_spinlock_t *lock)
-{
-#if defined(MOZ_MEMORY_WINCE)
- InitializeCriticalSection(lock);
-#elif defined(MOZ_MEMORY_WINDOWS)
- // XXXMB
- //if (__isthreaded)
- // if (! __crtInitCritSecAndSpinCount(lock, _CRT_SPINCOUNT))
- // return (true);
-#elif defined(MOZ_MEMORY_DARWIN)
- lock->lock = OS_SPINLOCK_INIT;
-#elif defined(MOZ_MEMORY_LINUX)
- pthread_mutexattr_t attr;
- if (pthread_mutexattr_init(&attr) != 0)
- return (true);
- pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
- if (pthread_mutex_init(lock, &attr) != 0) {
- pthread_mutexattr_destroy(&attr);
- return (true);
- }
- pthread_mutexattr_destroy(&attr);
-#elif defined(MOZ_MEMORY)
- if (pthread_mutex_init(lock, NULL) != 0)
- return (true);
-#else
- lock->lock = _SPINLOCK_INITIALIZER;
-#endif
- return (false);
-}
-
-static inline void
-malloc_spin_lock(malloc_spinlock_t *lock)
-{
-
-#if defined(MOZ_MEMORY_WINDOWS)
- EnterCriticalSection(lock);
-#elif defined(MOZ_MEMORY_DARWIN)
- OSSpinLockLock(&lock->lock);
-#elif defined(MOZ_MEMORY)
- pthread_mutex_lock(lock);
-#else
- if (__isthreaded)
- _SPINLOCK(&lock->lock);
-#endif
-}
-
-static inline void
-malloc_spin_unlock(malloc_spinlock_t *lock)
-{
-#if defined(MOZ_MEMORY_WINDOWS)
- LeaveCriticalSection(lock);
-#elif defined(MOZ_MEMORY_DARWIN)
- OSSpinLockUnlock(&lock->lock);
-#elif defined(MOZ_MEMORY)
- pthread_mutex_unlock(lock);
-#else
- if (__isthreaded)
- _SPINUNLOCK(&lock->lock);
-#endif
-}
-
-/*
- * End mutex.
- */
-/******************************************************************************/
-/*
- * Begin spin lock. Spin locks here are actually adaptive mutexes that block
- * after a period of spinning, because unbounded spinning would allow for
- * priority inversion.
- */
-
-#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_DARWIN)
-# define malloc_spin_init malloc_mutex_init
-# define malloc_spin_lock malloc_mutex_lock
-# define malloc_spin_unlock malloc_mutex_unlock
-#endif
-
-#ifndef MOZ_MEMORY
-/*
- * We use an unpublished interface to initialize pthread mutexes with an
- * allocation callback, in order to avoid infinite recursion.
- */
-int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
- void *(calloc_cb)(size_t, size_t));
-
-__weak_reference(_pthread_mutex_init_calloc_cb_stub,
- _pthread_mutex_init_calloc_cb);
-
-int
-_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
- void *(calloc_cb)(size_t, size_t))
-{
-
- return (0);
-}
-
-static bool
-malloc_spin_init(pthread_mutex_t *lock)
-{
-
- if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
- return (true);
-
- return (false);
-}
-
-static inline unsigned
-malloc_spin_lock(pthread_mutex_t *lock)
-{
- unsigned ret = 0;
-
- if (__isthreaded) {
- if (_pthread_mutex_trylock(lock) != 0) {
- unsigned i;
- volatile unsigned j;
-
- /* Exponentially back off. */
- for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
- for (j = 0; j < (1U << i); j++)
- ret++;
-
- CPU_SPINWAIT;
- if (_pthread_mutex_trylock(lock) == 0)
- return (ret);
- }
-
- /*
- * Spinning failed. Block until the lock becomes
- * available, in order to avoid indefinite priority
- * inversion.
- */
- _pthread_mutex_lock(lock);
- assert((ret << BLOCK_COST_2POW) != 0);
- return (ret << BLOCK_COST_2POW);
- }
- }
-
- return (ret);
-}
-
-static inline void
-malloc_spin_unlock(pthread_mutex_t *lock)
-{
-
- if (__isthreaded)
- _pthread_mutex_unlock(lock);
-}
-#endif
-
-/*
- * End spin lock.
- */
-/******************************************************************************/
-/*
- * Begin Utility functions/macros.
- */
-
-/* Return the chunk address for allocation address a. */
-#define CHUNK_ADDR2BASE(a) \
- ((void *)((uintptr_t)(a) & ~chunksize_mask))
-
-/* Return the chunk offset of address a. */
-#define CHUNK_ADDR2OFFSET(a) \
- ((size_t)((uintptr_t)(a) & chunksize_mask))
-
-/* Return the smallest chunk multiple that is >= s. */
-#define CHUNK_CEILING(s) \
- (((s) + chunksize_mask) & ~chunksize_mask)
-
-/* Return the smallest cacheline multiple that is >= s. */
-#define CACHELINE_CEILING(s) \
- (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
-
-/* Return the smallest quantum multiple that is >= a. */
-#define QUANTUM_CEILING(a) \
- (((a) + quantum_mask) & ~quantum_mask)
-
-/* Return the smallest pagesize multiple that is >= s. */
-#define PAGE_CEILING(s) \
- (((s) + pagesize_mask) & ~pagesize_mask)
-
-/* Compute the smallest power of 2 that is >= x. */
-static inline size_t
-pow2_ceil(size_t x)
-{
-
- x--;
- x |= x >> 1;
- x |= x >> 2;
- x |= x >> 4;
- x |= x >> 8;
- x |= x >> 16;
-#if (SIZEOF_PTR == 8)
- x |= x >> 32;
-#endif
- x++;
- return (x);
-}
-
-#ifdef MALLOC_BALANCE
-/*
- * Use a simple linear congruential pseudo-random number generator:
- *
- * prn(y) = (a*x + c) % m
- *
- * where the following constants ensure maximal period:
- *
- * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
- * c == Odd number (relatively prime to 2^n).
- * m == 2^32
- *
- * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
- *
- * This choice of m has the disadvantage that the quality of the bits is
- * proportional to bit position. For example. the lowest bit has a cycle of 2,
- * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
- * bits.
- */
-# define PRN_DEFINE(suffix, var, a, c) \
-static inline void \
-sprn_##suffix(uint32_t seed) \
-{ \
- var = seed; \
-} \
- \
-static inline uint32_t \
-prn_##suffix(uint32_t lg_range) \
-{ \
- uint32_t ret, x; \
- \
- assert(lg_range > 0); \
- assert(lg_range <= 32); \
- \
- x = (var * (a)) + (c); \
- var = x; \
- ret = x >> (32 - lg_range); \
- \
- return (ret); \
-}
-# define SPRN(suffix, seed) sprn_##suffix(seed)
-# define PRN(suffix, lg_range) prn_##suffix(lg_range)
-#endif
-
-#ifdef MALLOC_BALANCE
-/* Define the PRNG used for arena assignment. */
-static __thread uint32_t balance_x;
-PRN_DEFINE(balance, balance_x, 1297, 1301)
-#endif
-
-#ifdef MALLOC_UTRACE
-static int
-utrace(const void *addr, size_t len)
-{
- malloc_utrace_t *ut = (malloc_utrace_t *)addr;
-
- assert(len == sizeof(malloc_utrace_t));
-
- if (ut->p == NULL && ut->s == 0 && ut->r == NULL)
- malloc_printf("%d x USER malloc_init()\n", getpid());
- else if (ut->p == NULL && ut->r != NULL) {
- malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r,
- ut->s);
- } else if (ut->p != NULL && ut->r != NULL) {
- malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(),
- ut->r, ut->p, ut->s);
- } else
- malloc_printf("%d x USER free(%p)\n", getpid(), ut->p);
-
- return (0);
-}
-#endif
-
-static inline const char *
-_getprogname(void)
-{
-
- return ("<jemalloc>");
-}
-
-#ifdef MALLOC_STATS
-/*
- * Print to stderr in such a way as to (hopefully) avoid memory allocation.
- */
-static void
-malloc_printf(const char *format, ...)
-{
-#ifndef WINCE
- char buf[4096];
- va_list ap;
-
- va_start(ap, format);
- vsnprintf(buf, sizeof(buf), format, ap);
- va_end(ap);
- _malloc_message(buf, "", "", "");
-#endif
-}
-#endif
-
-/******************************************************************************/
-
-#ifdef MALLOC_DECOMMIT
-static inline void
-pages_decommit(void *addr, size_t size)
-{
-
-#ifdef MOZ_MEMORY_WINDOWS
- VirtualFree(addr, size, MEM_DECOMMIT);
-#else
- if (mmap(addr, size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1,
- 0) == MAP_FAILED)
- abort();
-#endif
-}
-
-static inline void
-pages_commit(void *addr, size_t size)
-{
-
-# ifdef MOZ_MEMORY_WINDOWS
- VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE);
-# else
- if (mmap(addr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE |
- MAP_ANON, -1, 0) == MAP_FAILED)
- abort();
-# endif
-}
-#endif
-
-static bool
-base_pages_alloc_mmap(size_t minsize)
-{
- bool ret;
- size_t csize;
-#ifdef MALLOC_DECOMMIT
- size_t pminsize;
-#endif
- int pfd;
-
- assert(minsize != 0);
- csize = CHUNK_CEILING(minsize);
-#ifdef MALLOC_PAGEFILE
- if (opt_pagefile) {
- pfd = pagefile_init(csize);
- if (pfd == -1)
- return (true);
- } else
-#endif
- pfd = -1;
- base_pages = pages_map(NULL, csize, pfd);
- if (base_pages == NULL) {
- ret = true;
- goto RETURN;
- }
- base_next_addr = base_pages;
- base_past_addr = (void *)((uintptr_t)base_pages + csize);
-#ifdef MALLOC_DECOMMIT
- /*
- * Leave enough pages for minsize committed, since otherwise they would
- * have to be immediately recommitted.
- */
- pminsize = PAGE_CEILING(minsize);
- base_next_decommitted = (void *)((uintptr_t)base_pages + pminsize);
- if (pminsize < csize)
- pages_decommit(base_next_decommitted, csize - pminsize);
-#endif
-#ifdef MALLOC_STATS
- base_mapped += csize;
-#endif
-
- ret = false;
-RETURN:
-#ifdef MALLOC_PAGEFILE
- if (pfd != -1)
- pagefile_close(pfd);
-#endif
- return (false);
-}
-
-static bool
-base_pages_alloc(size_t minsize)
-{
-
- if (base_pages_alloc_mmap(minsize) == false)
- return (false);
-
- return (true);
-}
-
-static void *
-base_alloc(size_t size)
-{
- void *ret;
- size_t csize;
-
- /* Round size up to nearest multiple of the cacheline size. */
- csize = CACHELINE_CEILING(size);
-
- malloc_mutex_lock(&base_mtx);
- /* Make sure there's enough space for the allocation. */
- if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
- if (base_pages_alloc(csize)) {
- malloc_mutex_unlock(&base_mtx);
- return (NULL);
- }
- }
- /* Allocate. */
- ret = base_next_addr;
- base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
-#ifdef MALLOC_DECOMMIT
- /* Make sure enough pages are committed for the new allocation. */
- if ((uintptr_t)base_next_addr > (uintptr_t)base_next_decommitted) {
- void *pbase_next_addr =
- (void *)(PAGE_CEILING((uintptr_t)base_next_addr));
-
- pages_commit(base_next_decommitted, (uintptr_t)pbase_next_addr -
- (uintptr_t)base_next_decommitted);
- base_next_decommitted = pbase_next_addr;
- }
-#endif
- malloc_mutex_unlock(&base_mtx);
- VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false);
-
- return (ret);
-}
-
-static void *
-base_calloc(size_t number, size_t size)
-{
- void *ret;
-
- ret = base_alloc(number * size);
-#ifdef MALLOC_VALGRIND
- if (ret != NULL) {
- VALGRIND_FREELIKE_BLOCK(ret, 0);
- VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, true);
- }
-#endif
- memset(ret, 0, number * size);
-
- return (ret);
-}
-
-static extent_node_t *
-base_node_alloc(void)
-{
- extent_node_t *ret;
-
- malloc_mutex_lock(&base_mtx);
- if (base_nodes != NULL) {
- ret = base_nodes;
- base_nodes = *(extent_node_t **)ret;
- VALGRIND_FREELIKE_BLOCK(ret, 0);
- VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(extent_node_t), 0, false);
- malloc_mutex_unlock(&base_mtx);
- } else {
- malloc_mutex_unlock(&base_mtx);
- ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
- }
-
- return (ret);
-}
-
-static void
-base_node_dealloc(extent_node_t *node)
-{
-
- malloc_mutex_lock(&base_mtx);
- VALGRIND_FREELIKE_BLOCK(node, 0);
- VALGRIND_MALLOCLIKE_BLOCK(node, sizeof(extent_node_t *), 0, false);
- *(extent_node_t **)node = base_nodes;
- base_nodes = node;
- malloc_mutex_unlock(&base_mtx);
-}
-
-static reserve_reg_t *
-base_reserve_reg_alloc(void)
-{
- reserve_reg_t *ret;
-
- malloc_mutex_lock(&base_mtx);
- if (base_reserve_regs != NULL) {
- ret = base_reserve_regs;
- base_reserve_regs = *(reserve_reg_t **)ret;
- VALGRIND_FREELIKE_BLOCK(ret, 0);
- VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(reserve_reg_t), 0, false);
- malloc_mutex_unlock(&base_mtx);
- } else {
- malloc_mutex_unlock(&base_mtx);
- ret = (reserve_reg_t *)base_alloc(sizeof(reserve_reg_t));
- }
-
- return (ret);
-}
-
-static void
-base_reserve_reg_dealloc(reserve_reg_t *reg)
-{
-
- malloc_mutex_lock(&base_mtx);
- VALGRIND_FREELIKE_BLOCK(reg, 0);
- VALGRIND_MALLOCLIKE_BLOCK(reg, sizeof(reserve_reg_t *), 0, false);
- *(reserve_reg_t **)reg = base_reserve_regs;
- base_reserve_regs = reg;
- malloc_mutex_unlock(&base_mtx);
-}
-
-/******************************************************************************/
-
-#ifdef MALLOC_STATS
-static void
-stats_print(arena_t *arena)
-{
- unsigned i, gap_start;
-
-#ifdef MOZ_MEMORY_WINDOWS
- malloc_printf("dirty: %Iu page%s dirty, %I64u sweep%s,"
- " %I64u madvise%s, %I64u page%s purged\n",
- arena->ndirty, arena->ndirty == 1 ? "" : "s",
- arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
- arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
- arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
-# ifdef MALLOC_DECOMMIT
- malloc_printf("decommit: %I64u decommit%s, %I64u commit%s,"
- " %I64u page%s decommitted\n",
- arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
- arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
- arena->stats.decommitted,
- (arena->stats.decommitted == 1) ? "" : "s");
-# endif
-
- malloc_printf(" allocated nmalloc ndalloc\n");
- malloc_printf("small: %12Iu %12I64u %12I64u\n",
- arena->stats.allocated_small, arena->stats.nmalloc_small,
- arena->stats.ndalloc_small);
- malloc_printf("large: %12Iu %12I64u %12I64u\n",
- arena->stats.allocated_large, arena->stats.nmalloc_large,
- arena->stats.ndalloc_large);
- malloc_printf("total: %12Iu %12I64u %12I64u\n",
- arena->stats.allocated_small + arena->stats.allocated_large,
- arena->stats.nmalloc_small + arena->stats.nmalloc_large,
- arena->stats.ndalloc_small + arena->stats.ndalloc_large);
- malloc_printf("mapped: %12Iu\n", arena->stats.mapped);
-#else
- malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
- " %llu madvise%s, %llu page%s purged\n",
- arena->ndirty, arena->ndirty == 1 ? "" : "s",
- arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
- arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
- arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
-# ifdef MALLOC_DECOMMIT
- malloc_printf("decommit: %llu decommit%s, %llu commit%s,"
- " %llu page%s decommitted\n",
- arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
- arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
- arena->stats.decommitted,
- (arena->stats.decommitted == 1) ? "" : "s");
-# endif
-
- malloc_printf(" allocated nmalloc ndalloc\n");
- malloc_printf("small: %12zu %12llu %12llu\n",
- arena->stats.allocated_small, arena->stats.nmalloc_small,
- arena->stats.ndalloc_small);
- malloc_printf("large: %12zu %12llu %12llu\n",
- arena->stats.allocated_large, arena->stats.nmalloc_large,
- arena->stats.ndalloc_large);
- malloc_printf("total: %12zu %12llu %12llu\n",
- arena->stats.allocated_small + arena->stats.allocated_large,
- arena->stats.nmalloc_small + arena->stats.nmalloc_large,
- arena->stats.ndalloc_small + arena->stats.ndalloc_large);
- malloc_printf("mapped: %12zu\n", arena->stats.mapped);
-#endif
- malloc_printf("bins: bin size regs pgs requests newruns"
- " reruns maxruns curruns\n");
- for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) {
- if (arena->bins[i].stats.nrequests == 0) {
- if (gap_start == UINT_MAX)
- gap_start = i;
- } else {
- if (gap_start != UINT_MAX) {
- if (i > gap_start + 1) {
- /* Gap of more than one size class. */
- malloc_printf("[%u..%u]\n",
- gap_start, i - 1);
- } else {
- /* Gap of one size class. */
- malloc_printf("[%u]\n", gap_start);
- }
- gap_start = UINT_MAX;
- }
- malloc_printf(
-#if defined(MOZ_MEMORY_WINDOWS)
- "%13u %1s %4u %4u %3u %9I64u %9I64u"
- " %9I64u %7u %7u\n",
-#else
- "%13u %1s %4u %4u %3u %9llu %9llu"
- " %9llu %7lu %7lu\n",
-#endif
- i,
- i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
- arena->bins[i].reg_size,
- arena->bins[i].nregs,
- arena->bins[i].run_size >> pagesize_2pow,
- arena->bins[i].stats.nrequests,
- arena->bins[i].stats.nruns,
- arena->bins[i].stats.reruns,
- arena->bins[i].stats.highruns,
- arena->bins[i].stats.curruns);
- }
- }
- if (gap_start != UINT_MAX) {
- if (i > gap_start + 1) {
- /* Gap of more than one size class. */
- malloc_printf("[%u..%u]\n", gap_start, i - 1);
- } else {
- /* Gap of one size class. */
- malloc_printf("[%u]\n", gap_start);
- }
- }
-}
-#endif
-
-/*
- * End Utility functions/macros.
- */
-/******************************************************************************/
-/*
- * Begin extent tree code.
- */
-
-static inline int
-extent_szad_comp(extent_node_t *a, extent_node_t *b)
-{
- int ret;
- size_t a_size = a->size;
- size_t b_size = b->size;
-
- ret = (a_size > b_size) - (a_size < b_size);
- if (ret == 0) {
- uintptr_t a_addr = (uintptr_t)a->addr;
- uintptr_t b_addr = (uintptr_t)b->addr;
-
- ret = (a_addr > b_addr) - (a_addr < b_addr);
- }
-
- return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static, extent_tree_szad_, extent_tree_t, extent_node_t,
- link_szad, extent_szad_comp)
-
-static inline int
-extent_ad_comp(extent_node_t *a, extent_node_t *b)
-{
- uintptr_t a_addr = (uintptr_t)a->addr;
- uintptr_t b_addr = (uintptr_t)b->addr;
-
- return ((a_addr > b_addr) - (a_addr < b_addr));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
- extent_ad_comp)
-
-/*
- * End extent tree code.
- */
-/******************************************************************************/
-/*
- * Begin chunk management functions.
- */
-
-#ifdef MOZ_MEMORY_WINDOWS
-#ifdef MOZ_MEMORY_WINCE
-#define ALIGN_ADDR2OFFSET(al, ad) \
- ((uintptr_t)ad & (al - 1))
-static void *
-pages_map_align(size_t size, int pfd, size_t alignment)
-{
-
- void *ret;
- int offset;
- if (size % alignment)
- size += (alignment - (size % alignment));
- assert(size >= alignment);
- ret = pages_map(NULL, size, pfd);
- offset = ALIGN_ADDR2OFFSET(alignment, ret);
- if (offset) {
- /* try to over allocate by the ammount we're offset */
- void *tmp;
- pages_unmap(ret, size);
- tmp = VirtualAlloc(NULL, size + alignment - offset,
- MEM_RESERVE, PAGE_NOACCESS);
- if (offset == ALIGN_ADDR2OFFSET(alignment, tmp))
- ret = VirtualAlloc((void*)((intptr_t)tmp + alignment
- - offset), size, MEM_COMMIT,
- PAGE_READWRITE);
- else
- VirtualFree(tmp, 0, MEM_RELEASE);
- offset = ALIGN_ADDR2OFFSET(alignment, ret);
-
-
- if (offset) {
- /* over allocate to ensure we have an aligned region */
- ret = VirtualAlloc(NULL, size + alignment, MEM_RESERVE,
- PAGE_NOACCESS);
- offset = ALIGN_ADDR2OFFSET(alignment, ret);
- ret = VirtualAlloc((void*)((intptr_t)ret +
- alignment - offset),
- size, MEM_COMMIT, PAGE_READWRITE);
- }
- }
- return (ret);
-}
-#endif
-
-static void *
-pages_map(void *addr, size_t size, int pfd)
-{
- void *ret = NULL;
-#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
- void *va_ret;
- assert(addr == NULL);
- va_ret = VirtualAlloc(addr, size, MEM_RESERVE, PAGE_NOACCESS);
- if (va_ret)
- ret = VirtualAlloc(va_ret, size, MEM_COMMIT, PAGE_READWRITE);
- assert(va_ret == ret);
-#else
- ret = VirtualAlloc(addr, size, MEM_COMMIT | MEM_RESERVE,
- PAGE_READWRITE);
-#endif
- return (ret);
-}
-
-static void
-pages_unmap(void *addr, size_t size)
-{
- if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
-#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
- if (GetLastError() == ERROR_INVALID_PARAMETER) {
- MEMORY_BASIC_INFORMATION info;
- VirtualQuery(addr, &info, sizeof(info));
- if (VirtualFree(info.AllocationBase, 0, MEM_RELEASE))
- return;
- }
-#endif
- _malloc_message(_getprogname(),
- ": (malloc) Error in VirtualFree()\n", "", "");
- if (opt_abort)
- abort();
- }
-}
-#elif (defined(MOZ_MEMORY_DARWIN))
-static void *
-pages_map(void *addr, size_t size, int pfd)
-{
- void *ret;
- kern_return_t err;
- int flags;
-
- if (addr != NULL) {
- ret = addr;
- flags = 0;
- } else
- flags = VM_FLAGS_ANYWHERE;
-
- err = vm_allocate((vm_map_t)mach_task_self(), (vm_address_t *)&ret,
- (vm_size_t)size, flags);
- if (err != KERN_SUCCESS)
- ret = NULL;
-
- assert(ret == NULL || (addr == NULL && ret != addr)
- || (addr != NULL && ret == addr));
- return (ret);
-}
-
-static void
-pages_unmap(void *addr, size_t size)
-{
- kern_return_t err;
-
- err = vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)addr,
- (vm_size_t)size);
- if (err != KERN_SUCCESS) {
- malloc_message(_getprogname(),
- ": (malloc) Error in vm_deallocate(): ",
- mach_error_string(err), "\n");
- if (opt_abort)
- abort();
- }
-}
-
-#define VM_COPY_MIN (pagesize << 5)
-static inline void
-pages_copy(void *dest, const void *src, size_t n)
-{
-
- assert((void *)((uintptr_t)dest & ~pagesize_mask) == dest);
- assert(n >= VM_COPY_MIN);
- assert((void *)((uintptr_t)src & ~pagesize_mask) == src);
-
- vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n,
- (vm_address_t)dest);
-}
-#else /* MOZ_MEMORY_DARWIN */
-#ifdef JEMALLOC_USES_MAP_ALIGN
-static void *
-pages_map_align(size_t size, int pfd, size_t alignment)
-{
- void *ret;
-
- /*
- * We don't use MAP_FIXED here, because it can cause the *replacement*
- * of existing mappings, and we only want to create new mappings.
- */
-#ifdef MALLOC_PAGEFILE
- if (pfd != -1) {
- ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
- MAP_NOSYNC | MAP_ALIGN, pfd, 0);
- } else
-#endif
- {
- ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
- MAP_NOSYNC | MAP_ALIGN | MAP_ANON, -1, 0);
- }
- assert(ret != NULL);
-
- if (ret == MAP_FAILED)
- ret = NULL;
- return (ret);
-}
-#endif
-
-static void *
-pages_map(void *addr, size_t size, int pfd)
-{
- void *ret;
-
- /*
- * We don't use MAP_FIXED here, because it can cause the *replacement*
- * of existing mappings, and we only want to create new mappings.
- */
-#ifdef MALLOC_PAGEFILE
- if (pfd != -1) {
- ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
- MAP_NOSYNC, pfd, 0);
- } else
-#endif
- {
- ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
- MAP_ANON, -1, 0);
- }
- assert(ret != NULL);
-
- if (ret == MAP_FAILED)
- ret = NULL;
- else if (addr != NULL && ret != addr) {
- /*
- * We succeeded in mapping memory, but not in the right place.
- */
- if (munmap(ret, size) == -1) {
- char buf[STRERROR_BUF];
-
- strerror_r(errno, buf, sizeof(buf));
- _malloc_message(_getprogname(),
- ": (malloc) Error in munmap(): ", buf, "\n");
- if (opt_abort)
- abort();
- }
- ret = NULL;
- }
-
- assert(ret == NULL || (addr == NULL && ret != addr)
- || (addr != NULL && ret == addr));
- return (ret);
-}
-
-static void
-pages_unmap(void *addr, size_t size)
-{
-
- if (munmap(addr, size) == -1) {
- char buf[STRERROR_BUF];
-
- strerror_r(errno, buf, sizeof(buf));
- _malloc_message(_getprogname(),
- ": (malloc) Error in munmap(): ", buf, "\n");
- if (opt_abort)
- abort();
- }
-}
-#endif
-
-#ifdef MALLOC_VALIDATE
-static inline malloc_rtree_t *
-malloc_rtree_new(unsigned bits)
-{
- malloc_rtree_t *ret;
- unsigned bits_per_level, height, i;
-
- bits_per_level = ffs(pow2_ceil((MALLOC_RTREE_NODESIZE /
- sizeof(void *)))) - 1;
- height = bits / bits_per_level;
- if (height * bits_per_level != bits)
- height++;
- assert(height * bits_per_level >= bits);
-
- ret = (malloc_rtree_t*)base_calloc(1, sizeof(malloc_rtree_t) + (sizeof(unsigned) *
- (height - 1)));
- if (ret == NULL)
- return (NULL);
-
- malloc_spin_init(&ret->lock);
- ret->height = height;
- if (bits_per_level * height > bits)
- ret->level2bits[0] = bits % bits_per_level;
- else
- ret->level2bits[0] = bits_per_level;
- for (i = 1; i < height; i++)
- ret->level2bits[i] = bits_per_level;
-
- ret->root = (void**)base_calloc(1, sizeof(void *) << ret->level2bits[0]);
- if (ret->root == NULL) {
- /*
- * We leak the rtree here, since there's no generic base
- * deallocation.
- */
- return (NULL);
- }
-
- return (ret);
-}
-
-/* The least significant bits of the key are ignored. */
-static inline void *
-malloc_rtree_get(malloc_rtree_t *rtree, uintptr_t key)
-{
- void *ret;
- uintptr_t subkey;
- unsigned i, lshift, height, bits;
- void **node, **child;
-
- malloc_spin_lock(&rtree->lock);
- for (i = lshift = 0, height = rtree->height, node = rtree->root;
- i < height - 1;
- i++, lshift += bits, node = child) {
- bits = rtree->level2bits[i];
- subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
- child = (void**)node[subkey];
- if (child == NULL) {
- malloc_spin_unlock(&rtree->lock);
- return (NULL);
- }
- }
-
- /* node is a leaf, so it contains values rather than node pointers. */
- bits = rtree->level2bits[i];
- subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
- ret = node[subkey];
- malloc_spin_unlock(&rtree->lock);
-
- return (ret);
-}
-
-static inline bool
-malloc_rtree_set(malloc_rtree_t *rtree, uintptr_t key, void *val)
-{
- uintptr_t subkey;
- unsigned i, lshift, height, bits;
- void **node, **child;
-
- malloc_spin_lock(&rtree->lock);
- for (i = lshift = 0, height = rtree->height, node = rtree->root;
- i < height - 1;
- i++, lshift += bits, node = child) {
- bits = rtree->level2bits[i];
- subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
- child = (void**)node[subkey];
- if (child == NULL) {
- child = (void**)base_calloc(1, sizeof(void *) <<
- rtree->level2bits[i+1]);
- if (child == NULL) {
- malloc_spin_unlock(&rtree->lock);
- return (true);
- }
- node[subkey] = child;
- }
- }
-
- /* node is a leaf, so it contains values rather than node pointers. */
- bits = rtree->level2bits[i];
- subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
- node[subkey] = val;
- malloc_spin_unlock(&rtree->lock);
-
- return (false);
-}
-#endif
-
-static void *
-chunk_alloc_mmap(size_t size, bool pagefile)
-{
- void *ret;
-#ifndef JEMALLOC_USES_MAP_ALIGN
- size_t offset;
-#endif
- int pfd;
-
-#ifdef MALLOC_PAGEFILE
- if (opt_pagefile && pagefile) {
- pfd = pagefile_init(size);
- if (pfd == -1)
- return (NULL);
- } else
-#endif
- pfd = -1;
-
- /*
- * Windows requires that there be a 1:1 mapping between VM
- * allocation/deallocation operations. Therefore, take care here to
- * acquire the final result via one mapping operation. This means
- * unmapping any preliminary result that is not correctly aligned.
- *
- * The MALLOC_PAGEFILE code also benefits from this mapping algorithm,
- * since it reduces the number of page files.
- */
-
-#ifdef JEMALLOC_USES_MAP_ALIGN
- ret = pages_map_align(size, pfd, chunksize);
-#else
- ret = pages_map(NULL, size, pfd);
- if (ret == NULL)
- goto RETURN;
-
- offset = CHUNK_ADDR2OFFSET(ret);
- if (offset != 0) {
- /* Deallocate, then try to allocate at (ret + size - offset). */
- pages_unmap(ret, size);
- ret = pages_map((void *)((uintptr_t)ret + size - offset), size,
- pfd);
- while (ret == NULL) {
- /*
- * Over-allocate in order to map a memory region that
- * is definitely large enough.
- */
- ret = pages_map(NULL, size + chunksize, -1);
- if (ret == NULL)
- goto RETURN;
- /*
- * Deallocate, then allocate the correct size, within
- * the over-sized mapping.
- */
- offset = CHUNK_ADDR2OFFSET(ret);
- pages_unmap(ret, size + chunksize);
- if (offset == 0)
- ret = pages_map(ret, size, pfd);
- else {
- ret = pages_map((void *)((uintptr_t)ret +
- chunksize - offset), size, pfd);
- }
- /*
- * Failure here indicates a race with another thread, so
- * try again.
- */
- }
- }
-RETURN:
-#endif
-#ifdef MALLOC_PAGEFILE
- if (pfd != -1)
- pagefile_close(pfd);
-#endif
-#ifdef MALLOC_STATS
- if (ret != NULL)
- stats_chunks.nchunks += (size / chunksize);
-#endif
- return (ret);
-}
-
-#ifdef MALLOC_PAGEFILE
-static int
-pagefile_init(size_t size)
-{
- int ret;
- size_t i;
- char pagefile_path[PATH_MAX];
- char zbuf[MALLOC_PAGEFILE_WRITE_SIZE];
-
- /*
- * Create a temporary file, then immediately unlink it so that it will
- * not persist.
- */
- strcpy(pagefile_path, pagefile_templ);
- ret = mkstemp(pagefile_path);
- if (ret == -1)
- return (ret);
- if (unlink(pagefile_path)) {
- char buf[STRERROR_BUF];
-
- strerror_r(errno, buf, sizeof(buf));
- _malloc_message(_getprogname(), ": (malloc) Error in unlink(\"",
- pagefile_path, "\"):");
- _malloc_message(buf, "\n", "", "");
- if (opt_abort)
- abort();
- }
-
- /*
- * Write sequential zeroes to the file in order to assure that disk
- * space is committed, with minimal fragmentation. It would be
- * sufficient to write one zero per disk block, but that potentially
- * results in more system calls, for no real gain.
- */
- memset(zbuf, 0, sizeof(zbuf));
- for (i = 0; i < size; i += sizeof(zbuf)) {
- if (write(ret, zbuf, sizeof(zbuf)) != sizeof(zbuf)) {
- if (errno != ENOSPC) {
- char buf[STRERROR_BUF];
-
- strerror_r(errno, buf, sizeof(buf));
- _malloc_message(_getprogname(),
- ": (malloc) Error in write(): ", buf, "\n");
- if (opt_abort)
- abort();
- }
- pagefile_close(ret);
- return (-1);
- }
- }
-
- return (ret);
-}
-
-static void
-pagefile_close(int pfd)
-{
-
- if (close(pfd)) {
- char buf[STRERROR_BUF];
-
- strerror_r(errno, buf, sizeof(buf));
- _malloc_message(_getprogname(),
- ": (malloc) Error in close(): ", buf, "\n");
- if (opt_abort)
- abort();
- }
-}
-#endif
-
-static void *
-chunk_recycle_reserve(size_t size, bool zero)
-{
- extent_node_t *node, key;
-
-#ifdef MALLOC_DECOMMIT
- if (size != chunksize)
- return (NULL);
-#endif
-
- key.addr = NULL;
- key.size = size;
- malloc_mutex_lock(&reserve_mtx);
- node = extent_tree_szad_nsearch(&reserve_chunks_szad, &key);
- if (node != NULL) {
- void *ret = node->addr;
-
- /* Remove node from the tree. */
- extent_tree_szad_remove(&reserve_chunks_szad, node);
-#ifndef MALLOC_DECOMMIT
- if (node->size == size) {
-#else
- assert(node->size == size);
-#endif
- extent_tree_ad_remove(&reserve_chunks_ad, node);
- base_node_dealloc(node);
-#ifndef MALLOC_DECOMMIT
- } else {
- /*
- * Insert the remainder of node's address range as a
- * smaller chunk. Its position within reserve_chunks_ad
- * does not change.
- */
- assert(node->size > size);
- node->addr = (void *)((uintptr_t)node->addr + size);
- node->size -= size;
- extent_tree_szad_insert(&reserve_chunks_szad, node);
- }
-#endif
- reserve_cur -= size;
- /*
- * Try to replenish the reserve if this allocation depleted it.
- */
-#ifndef MALLOC_DECOMMIT
- if (reserve_cur < reserve_min) {
- size_t diff = reserve_min - reserve_cur;
-#else
- while (reserve_cur < reserve_min) {
-# define diff chunksize
-#endif
- void *chunk;
-
- malloc_mutex_unlock(&reserve_mtx);
- chunk = chunk_alloc_mmap(diff, true);
- malloc_mutex_lock(&reserve_mtx);
- if (chunk == NULL) {
- uint64_t seq = 0;
-
- do {
- seq = reserve_notify(RESERVE_CND_LOW,
- size, seq);
- if (seq == 0)
- goto MALLOC_OUT;
- } while (reserve_cur < reserve_min);
- } else {
- extent_node_t *node;
-
- node = chunk_dealloc_reserve(chunk, diff);
- if (node == NULL) {
- uint64_t seq = 0;
-
- pages_unmap(chunk, diff);
- do {
- seq = reserve_notify(
- RESERVE_CND_LOW, size, seq);
- if (seq == 0)
- goto MALLOC_OUT;
- } while (reserve_cur < reserve_min);
- }
- }
- }
-MALLOC_OUT:
- malloc_mutex_unlock(&reserve_mtx);
-
-#ifdef MALLOC_DECOMMIT
- pages_commit(ret, size);
-# undef diff
-#else
- if (zero)
- memset(ret, 0, size);
-#endif
- return (ret);
- }
- malloc_mutex_unlock(&reserve_mtx);
-
- return (NULL);
-}
-
-static void *
-chunk_alloc(size_t size, bool zero, bool pagefile)
-{
- void *ret;
-
- assert(size != 0);
- assert((size & chunksize_mask) == 0);
-
- ret = chunk_recycle_reserve(size, zero);
- if (ret != NULL)
- goto RETURN;
-
- ret = chunk_alloc_mmap(size, pagefile);
- if (ret != NULL) {
- goto RETURN;
- }
-
- /* All strategies for allocation failed. */
- ret = NULL;
-RETURN:
-#ifdef MALLOC_STATS
- if (ret != NULL)
- stats_chunks.curchunks += (size / chunksize);
- if (stats_chunks.curchunks > stats_chunks.highchunks)
- stats_chunks.highchunks = stats_chunks.curchunks;
-#endif
-
-#ifdef MALLOC_VALIDATE
- if (ret != NULL) {
- if (malloc_rtree_set(chunk_rtree, (uintptr_t)ret, ret)) {
- chunk_dealloc(ret, size);
- return (NULL);
- }
- }
-#endif
-
- assert(CHUNK_ADDR2BASE(ret) == ret);
- return (ret);
-}
-
-static extent_node_t *
-chunk_dealloc_reserve(void *chunk, size_t size)
-{
- extent_node_t *node;
-
-#ifdef MALLOC_DECOMMIT
- if (size != chunksize)
- return (NULL);
-#else
- extent_node_t *prev, key;
-
- key.addr = (void *)((uintptr_t)chunk + size);
- node = extent_tree_ad_nsearch(&reserve_chunks_ad, &key);
- /* Try to coalesce forward. */
- if (node != NULL && node->addr == key.addr) {
- /*
- * Coalesce chunk with the following address range. This does
- * not change the position within reserve_chunks_ad, so only
- * remove/insert from/into reserve_chunks_szad.
- */
- extent_tree_szad_remove(&reserve_chunks_szad, node);
- node->addr = chunk;
- node->size += size;
- extent_tree_szad_insert(&reserve_chunks_szad, node);
- } else {
-#endif
- /* Coalescing forward failed, so insert a new node. */
- node = base_node_alloc();
- if (node == NULL)
- return (NULL);
- node->addr = chunk;
- node->size = size;
- extent_tree_ad_insert(&reserve_chunks_ad, node);
- extent_tree_szad_insert(&reserve_chunks_szad, node);
-#ifndef MALLOC_DECOMMIT
- }
-
- /* Try to coalesce backward. */
- prev = extent_tree_ad_prev(&reserve_chunks_ad, node);
- if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
- chunk) {
- /*
- * Coalesce chunk with the previous address range. This does
- * not change the position within reserve_chunks_ad, so only
- * remove/insert node from/into reserve_chunks_szad.
- */
- extent_tree_szad_remove(&reserve_chunks_szad, prev);
- extent_tree_ad_remove(&reserve_chunks_ad, prev);
-
- extent_tree_szad_remove(&reserve_chunks_szad, node);
- node->addr = prev->addr;
- node->size += prev->size;
- extent_tree_szad_insert(&reserve_chunks_szad, node);
-
- base_node_dealloc(prev);
- }
-#endif
-
-#ifdef MALLOC_DECOMMIT
- pages_decommit(chunk, size);
-#else
- madvise(chunk, size, MADV_FREE);
-#endif
-
- reserve_cur += size;
- if (reserve_cur > reserve_max)
- reserve_shrink();
-
- return (node);
-}
-
-static void
-chunk_dealloc_mmap(void *chunk, size_t size)
-{
-
- pages_unmap(chunk, size);
-}
-
-static void
-chunk_dealloc(void *chunk, size_t size)
-{
- extent_node_t *node;
-
- assert(chunk != NULL);
- assert(CHUNK_ADDR2BASE(chunk) == chunk);
- assert(size != 0);
- assert((size & chunksize_mask) == 0);
-
-#ifdef MALLOC_STATS
- stats_chunks.curchunks -= (size / chunksize);
-#endif
-#ifdef MALLOC_VALIDATE
- malloc_rtree_set(chunk_rtree, (uintptr_t)chunk, NULL);
-#endif
-
- /* Try to merge chunk into the reserve. */
- malloc_mutex_lock(&reserve_mtx);
- node = chunk_dealloc_reserve(chunk, size);
- malloc_mutex_unlock(&reserve_mtx);
- if (node == NULL)
- chunk_dealloc_mmap(chunk, size);
-}
-
-/*
- * End chunk management functions.
- */
-/******************************************************************************/
-/*
- * Begin arena.
- */
-
-/*
- * Choose an arena based on a per-thread value (fast-path code, calls slow-path
- * code if necessary).
- */
-static inline arena_t *
-choose_arena(void)
-{
- arena_t *ret;
-
- /*
- * We can only use TLS if this is a PIC library, since for the static
- * library version, libc's malloc is used by TLS allocation, which
- * introduces a bootstrapping issue.
- */
-#ifndef NO_TLS
- if (__isthreaded == false) {
- /* Avoid the overhead of TLS for single-threaded operation. */
- return (arenas[0]);
- }
-
-# ifdef MOZ_MEMORY_WINDOWS
- ret = (arena_t*)TlsGetValue(tlsIndex);
-# else
- ret = arenas_map;
-# endif
-
- if (ret == NULL) {
- ret = choose_arena_hard();
- assert(ret != NULL);
- }
-#else
- if (__isthreaded && narenas > 1) {
- unsigned long ind;
-
- /*
- * Hash _pthread_self() to one of the arenas. There is a prime
- * number of arenas, so this has a reasonable chance of
- * working. Even so, the hashing can be easily thwarted by
- * inconvenient _pthread_self() values. Without specific
- * knowledge of how _pthread_self() calculates values, we can't
- * easily do much better than this.
- */
- ind = (unsigned long) _pthread_self() % narenas;
-
- /*
- * Optimistially assume that arenas[ind] has been initialized.
- * At worst, we find out that some other thread has already
- * done so, after acquiring the lock in preparation. Note that
- * this lazy locking also has the effect of lazily forcing
- * cache coherency; without the lock acquisition, there's no
- * guarantee that modification of arenas[ind] by another thread
- * would be seen on this CPU for an arbitrary amount of time.
- *
- * In general, this approach to modifying a synchronized value
- * isn't a good idea, but in this case we only ever modify the
- * value once, so things work out well.
- */
- ret = arenas[ind];
- if (ret == NULL) {
- /*
- * Avoid races with another thread that may have already
- * initialized arenas[ind].
- */
- malloc_spin_lock(&arenas_lock);
- if (arenas[ind] == NULL)
- ret = arenas_extend((unsigned)ind);
- else
- ret = arenas[ind];
- malloc_spin_unlock(&arenas_lock);
- }
- } else
- ret = arenas[0];
-#endif
-
- assert(ret != NULL);
- return (ret);
-}
-
-#ifndef NO_TLS
-/*
- * Choose an arena based on a per-thread value (slow-path code only, called
- * only by choose_arena()).
- */
-static arena_t *
-choose_arena_hard(void)
-{
- arena_t *ret;
-
- assert(__isthreaded);
-
-#ifdef MALLOC_BALANCE
- /* Seed the PRNG used for arena load balancing. */
- SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
-#endif
-
- if (narenas > 1) {
-#ifdef MALLOC_BALANCE
- unsigned ind;
-
- ind = PRN(balance, narenas_2pow);
- if ((ret = arenas[ind]) == NULL) {
- malloc_spin_lock(&arenas_lock);
- if ((ret = arenas[ind]) == NULL)
- ret = arenas_extend(ind);
- malloc_spin_unlock(&arenas_lock);
- }
-#else
- malloc_spin_lock(&arenas_lock);
- if ((ret = arenas[next_arena]) == NULL)
- ret = arenas_extend(next_arena);
- next_arena = (next_arena + 1) % narenas;
- malloc_spin_unlock(&arenas_lock);
-#endif
- } else
- ret = arenas[0];
-
-#ifdef MOZ_MEMORY_WINDOWS
- TlsSetValue(tlsIndex, ret);
-#else
- arenas_map = ret;
-#endif
-
- return (ret);
-}
-#endif
-
-static inline int
-arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
-{
- uintptr_t a_chunk = (uintptr_t)a;
- uintptr_t b_chunk = (uintptr_t)b;
-
- assert(a != NULL);
- assert(b != NULL);
-
- return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
- arena_chunk_t, link_dirty, arena_chunk_comp)
-
-static inline int
-arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
- uintptr_t a_mapelm = (uintptr_t)a;
- uintptr_t b_mapelm = (uintptr_t)b;
-
- assert(a != NULL);
- assert(b != NULL);
-
- return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, link,
- arena_run_comp)
-
-static inline int
-arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
-{
- int ret;
- size_t a_size = a->bits & ~pagesize_mask;
- size_t b_size = b->bits & ~pagesize_mask;
-
- ret = (a_size > b_size) - (a_size < b_size);
- if (ret == 0) {
- uintptr_t a_mapelm, b_mapelm;
-
- if ((a->bits & CHUNK_MAP_KEY) == 0)
- a_mapelm = (uintptr_t)a;
- else {
- /*
- * Treat keys as though they are lower than anything
- * else.
- */
- a_mapelm = 0;
- }
- b_mapelm = (uintptr_t)b;
-
- ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
- }
-
- return (ret);
-}
-
-/* Wrap red-black tree macros in functions. */
-rb_wrap(static, arena_avail_tree_, arena_avail_tree_t, arena_chunk_map_t, link,
- arena_avail_comp)
-
-static inline void *
-arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
-{
- void *ret;
- unsigned i, mask, bit, regind;
-
- assert(run->magic == ARENA_RUN_MAGIC);
- assert(run->regs_minelm < bin->regs_mask_nelms);
-
- /*
- * Move the first check outside the loop, so that run->regs_minelm can
- * be updated unconditionally, without the possibility of updating it
- * multiple times.
- */
- i = run->regs_minelm;
- mask = run->regs_mask[i];
- if (mask != 0) {
- /* Usable allocation found. */
- bit = ffs((int)mask) - 1;
-
- regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
- assert(regind < bin->nregs);
- ret = (void *)(((uintptr_t)run) + bin->reg0_offset
- + (bin->reg_size * regind));
-
- /* Clear bit. */
- mask ^= (1U << bit);
- run->regs_mask[i] = mask;
-
- return (ret);
- }
-
- for (i++; i < bin->regs_mask_nelms; i++) {
- mask = run->regs_mask[i];
- if (mask != 0) {
- /* Usable allocation found. */
- bit = ffs((int)mask) - 1;
-
- regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
- assert(regind < bin->nregs);
- ret = (void *)(((uintptr_t)run) + bin->reg0_offset
- + (bin->reg_size * regind));
-
- /* Clear bit. */
- mask ^= (1U << bit);
- run->regs_mask[i] = mask;
-
- /*
- * Make a note that nothing before this element
- * contains a free region.
- */
- run->regs_minelm = i; /* Low payoff: + (mask == 0); */
-
- return (ret);
- }
- }
- /* Not reached. */
- assert(0);
- return (NULL);
-}
-
-static inline void
-arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
-{
- /*
- * To divide by a number D that is not a power of two we multiply
- * by (2^21 / D) and then right shift by 21 positions.
- *
- * X / D
- *
- * becomes
- *
- * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
- */
-#define SIZE_INV_SHIFT 21
-#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
- static const unsigned size_invs[] = {
- SIZE_INV(3),
- SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
- SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
- SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
- SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
- SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
- SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
- SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
-#if (QUANTUM_2POW_MIN < 4)
- ,
- SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
- SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
- SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
- SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
- SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
- SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
- SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
- SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
-#endif
- };
- unsigned diff, regind, elm, bit;
-
- assert(run->magic == ARENA_RUN_MAGIC);
- assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
- >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
-
- /*
- * Avoid doing division with a variable divisor if possible. Using
- * actual division here can reduce allocator throughput by over 20%!
- */
- diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
- if ((size & (size - 1)) == 0) {
- /*
- * log2_table allows fast division of a power of two in the
- * [1..128] range.
- *
- * (x / divisor) becomes (x >> log2_table[divisor - 1]).
- */
- static const unsigned char log2_table[] = {
- 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
- 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
- };
-
- if (size <= 128)
- regind = (diff >> log2_table[size - 1]);
- else if (size <= 32768)
- regind = diff >> (8 + log2_table[(size >> 8) - 1]);
- else {
- /*
- * The run size is too large for us to use the lookup
- * table. Use real division.
- */
- regind = diff / size;
- }
- } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
- << QUANTUM_2POW_MIN) + 2) {
- regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
- regind >>= SIZE_INV_SHIFT;
- } else {
- /*
- * size_invs isn't large enough to handle this size class, so
- * calculate regind using actual division. This only happens
- * if the user increases small_max via the 'S' runtime
- * configuration option.
- */
- regind = diff / size;
- };
- assert(diff == regind * size);
- assert(regind < bin->nregs);
-
- elm = regind >> (SIZEOF_INT_2POW + 3);
- if (elm < run->regs_minelm)
- run->regs_minelm = elm;
- bit = regind - (elm << (SIZEOF_INT_2POW + 3));
- assert((run->regs_mask[elm] & (1U << bit)) == 0);
- run->regs_mask[elm] |= (1U << bit);
-#undef SIZE_INV
-#undef SIZE_INV_SHIFT
-}
-
-static void
-arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
- bool zero)
-{
- arena_chunk_t *chunk;
- size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
- old_ndirty = chunk->ndirty;
- run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
- >> pagesize_2pow);
- total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
- pagesize_2pow;
- need_pages = (size >> pagesize_2pow);
- assert(need_pages > 0);
- assert(need_pages <= total_pages);
- rem_pages = total_pages - need_pages;
-
- arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
-
- /* Keep track of trailing unused pages for later use. */
- if (rem_pages > 0) {
- chunk->map[run_ind+need_pages].bits = (rem_pages <<
- pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
- pagesize_mask);
- chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
- pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
- pagesize_mask);
- arena_avail_tree_insert(&arena->runs_avail,
- &chunk->map[run_ind+need_pages]);
- }
-
- for (i = 0; i < need_pages; i++) {
-#ifdef MALLOC_DECOMMIT
- /*
- * Commit decommitted pages if necessary. If a decommitted
- * page is encountered, commit all needed adjacent decommitted
- * pages in one operation, in order to reduce system call
- * overhead.
- */
- if (chunk->map[run_ind + i].bits & CHUNK_MAP_DECOMMITTED) {
- size_t j;
-
- /*
- * Advance i+j to just past the index of the last page
- * to commit. Clear CHUNK_MAP_DECOMMITTED along the
- * way.
- */
- for (j = 0; i + j < need_pages && (chunk->map[run_ind +
- i + j].bits & CHUNK_MAP_DECOMMITTED); j++) {
- chunk->map[run_ind + i + j].bits ^=
- CHUNK_MAP_DECOMMITTED;
- }
-
- pages_commit((void *)((uintptr_t)chunk + ((run_ind + i)
- << pagesize_2pow)), (j << pagesize_2pow));
-# ifdef MALLOC_STATS
- arena->stats.ncommit++;
-# endif
- } else /* No need to zero since commit zeros. */
-#endif
-
- /* Zero if necessary. */
- if (zero) {
- if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
- == 0) {
- VALGRIND_MALLOCLIKE_BLOCK((void *)((uintptr_t)
- chunk + ((run_ind + i) << pagesize_2pow)),
- pagesize, 0, false);
- memset((void *)((uintptr_t)chunk + ((run_ind
- + i) << pagesize_2pow)), 0, pagesize);
- VALGRIND_FREELIKE_BLOCK((void *)((uintptr_t)
- chunk + ((run_ind + i) << pagesize_2pow)),
- 0);
- /* CHUNK_MAP_ZEROED is cleared below. */
- }
- }
-
- /* Update dirty page accounting. */
- if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
- chunk->ndirty--;
- arena->ndirty--;
- /* CHUNK_MAP_DIRTY is cleared below. */
- }
-
- /* Initialize the chunk map. */
- if (large) {
- chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
- | CHUNK_MAP_ALLOCATED;
- } else {
- chunk->map[run_ind + i].bits = (size_t)run
- | CHUNK_MAP_ALLOCATED;
- }
- }
-
- /*
- * Set the run size only in the first element for large runs. This is
- * primarily a debugging aid, since the lack of size info for trailing
- * pages only matters if the application tries to operate on an
- * interior pointer.
- */
- if (large)
- chunk->map[run_ind].bits |= size;
-
- if (chunk->ndirty == 0 && old_ndirty > 0)
- arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
-}
-
-static void
-arena_chunk_init(arena_t *arena, arena_chunk_t *chunk)
-{
- arena_run_t *run;
- size_t i;
-
- VALGRIND_MALLOCLIKE_BLOCK(chunk, (arena_chunk_header_npages <<
- pagesize_2pow), 0, false);
-#ifdef MALLOC_STATS
- arena->stats.mapped += chunksize;
-#endif
-
- chunk->arena = arena;
-
- /*
- * Claim that no pages are in use, since the header is merely overhead.
- */
- chunk->ndirty = 0;
-
- /* Initialize the map to contain one maximal free untouched run. */
- run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
- pagesize_2pow));
- for (i = 0; i < arena_chunk_header_npages; i++)
- chunk->map[i].bits = 0;
- chunk->map[i].bits = arena_maxclass
-#ifdef MALLOC_DECOMMIT
- | CHUNK_MAP_DECOMMITTED
-#endif
- | CHUNK_MAP_ZEROED;
- for (i++; i < chunk_npages-1; i++) {
- chunk->map[i].bits =
-#ifdef MALLOC_DECOMMIT
- CHUNK_MAP_DECOMMITTED |
-#endif
- CHUNK_MAP_ZEROED;
- }
- chunk->map[chunk_npages-1].bits = arena_maxclass
-#ifdef MALLOC_DECOMMIT
- | CHUNK_MAP_DECOMMITTED
-#endif
- | CHUNK_MAP_ZEROED;
-
-#ifdef MALLOC_DECOMMIT
- /*
- * Start out decommitted, in order to force a closer correspondence
- * between dirty pages and committed untouched pages.
- */
- pages_decommit(run, arena_maxclass);
-# ifdef MALLOC_STATS
- arena->stats.ndecommit++;
- arena->stats.decommitted += (chunk_npages - arena_chunk_header_npages);
-# endif
-#endif
-
- /* Insert the run into the runs_avail tree. */
- arena_avail_tree_insert(&arena->runs_avail,
- &chunk->map[arena_chunk_header_npages]);
-}
-
-static void
-arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
-{
-
- if (arena->spare != NULL) {
- if (arena->spare->ndirty > 0) {
- arena_chunk_tree_dirty_remove(
- &chunk->arena->chunks_dirty, arena->spare);
- arena->ndirty -= arena->spare->ndirty;
- }
- VALGRIND_FREELIKE_BLOCK(arena->spare, 0);
- chunk_dealloc((void *)arena->spare, chunksize);
-#ifdef MALLOC_STATS
- arena->stats.mapped -= chunksize;
-#endif
- }
-
- /*
- * Remove run from runs_avail, regardless of whether this chunk
- * will be cached, so that the arena does not use it. Dirty page
- * flushing only uses the chunks_dirty tree, so leaving this chunk in
- * the chunks_* trees is sufficient for that purpose.
- */
- arena_avail_tree_remove(&arena->runs_avail,
- &chunk->map[arena_chunk_header_npages]);
-
- arena->spare = chunk;
-}
-
-static arena_run_t *
-arena_run_alloc(arena_t *arena, arena_bin_t *bin, size_t size, bool large,
- bool zero)
-{
- arena_chunk_t *chunk;
- arena_run_t *run;
- arena_chunk_map_t *mapelm, key;
-
- assert(size <= arena_maxclass);
- assert((size & pagesize_mask) == 0);
-
- chunk = NULL;
- while (true) {
- /* Search the arena's chunks for the lowest best fit. */
- key.bits = size | CHUNK_MAP_KEY;
- mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
- if (mapelm != NULL) {
- arena_chunk_t *run_chunk = (arena_chunk_t*)CHUNK_ADDR2BASE(mapelm);
- size_t pageind = ((uintptr_t)mapelm -
- (uintptr_t)run_chunk->map) /
- sizeof(arena_chunk_map_t);
-
- if (chunk != NULL)
- chunk_dealloc(chunk, chunksize);
- run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
- << pagesize_2pow));
- arena_run_split(arena, run, size, large, zero);
- return (run);
- }
-
- if (arena->spare != NULL) {
- /* Use the spare. */
- chunk = arena->spare;
- arena->spare = NULL;
- run = (arena_run_t *)((uintptr_t)chunk +
- (arena_chunk_header_npages << pagesize_2pow));
- /* Insert the run into the runs_avail tree. */
- arena_avail_tree_insert(&arena->runs_avail,
- &chunk->map[arena_chunk_header_npages]);
- arena_run_split(arena, run, size, large, zero);
- return (run);
- }
-
- /*
- * No usable runs. Create a new chunk from which to allocate
- * the run.
- */
- if (chunk == NULL) {
- uint64_t chunk_seq;
-
- /*
- * Record the chunk allocation sequence number in order
- * to detect races.
- */
- arena->chunk_seq++;
- chunk_seq = arena->chunk_seq;
-
- /*
- * Drop the arena lock while allocating a chunk, since
- * reserve notifications may cause recursive
- * allocation. Dropping the lock here opens an
- * allocataion race, but we recover.
- */
- malloc_mutex_unlock(&arena->lock);
- chunk = (arena_chunk_t *)chunk_alloc(chunksize, true,
- true);
- malloc_mutex_lock(&arena->lock);
-
- /*
- * Check whether a race allowed a usable run to appear.
- */
- if (bin != NULL && (run = bin->runcur) != NULL &&
- run->nfree > 0) {
- if (chunk != NULL)
- chunk_dealloc(chunk, chunksize);
- return (run);
- }
-
- /*
- * If this thread raced with another such that multiple
- * chunks were allocated, make sure that there is still
- * inadequate space before using this chunk.
- */
- if (chunk_seq != arena->chunk_seq)
- continue;
-
- /*
- * Check for an error *after* checking for a race,
- * since a race could also cause a transient OOM
- * condition.
- */
- if (chunk == NULL)
- return (NULL);
- }
-
- arena_chunk_init(arena, chunk);
- run = (arena_run_t *)((uintptr_t)chunk +
- (arena_chunk_header_npages << pagesize_2pow));
- /* Update page map. */
- arena_run_split(arena, run, size, large, zero);
- return (run);
- }
-}
-
-static void
-arena_purge(arena_t *arena)
-{
- arena_chunk_t *chunk;
- size_t i, npages;
-#ifdef MALLOC_DEBUG
- size_t ndirty = 0;
- rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
- chunk) {
- ndirty += chunk->ndirty;
- } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
- assert(ndirty == arena->ndirty);
-#endif
- assert(arena->ndirty > opt_dirty_max);
-
-#ifdef MALLOC_STATS
- arena->stats.npurge++;
-#endif
-
- /*
- * Iterate downward through chunks until enough dirty memory has been
- * purged. Terminate as soon as possible in order to minimize the
- * number of system calls, even if a chunk has only been partially
- * purged.
- */
- while (arena->ndirty > (opt_dirty_max >> 1)) {
- chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
- assert(chunk != NULL);
-
- for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
- assert(i >= arena_chunk_header_npages);
-
- if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
-#ifdef MALLOC_DECOMMIT
- assert((chunk->map[i].bits &
- CHUNK_MAP_DECOMMITTED) == 0);
-#endif
- chunk->map[i].bits ^=
-#ifdef MALLOC_DECOMMIT
- CHUNK_MAP_DECOMMITTED |
-#endif
- CHUNK_MAP_DIRTY;
- /* Find adjacent dirty run(s). */
- for (npages = 1; i > arena_chunk_header_npages
- && (chunk->map[i - 1].bits &
- CHUNK_MAP_DIRTY); npages++) {
- i--;
-#ifdef MALLOC_DECOMMIT
- assert((chunk->map[i].bits &
- CHUNK_MAP_DECOMMITTED) == 0);
-#endif
- chunk->map[i].bits ^=
-#ifdef MALLOC_DECOMMIT
- CHUNK_MAP_DECOMMITTED |
-#endif
- CHUNK_MAP_DIRTY;
- }
- chunk->ndirty -= npages;
- arena->ndirty -= npages;
-
-#ifdef MALLOC_DECOMMIT
- pages_decommit((void *)((uintptr_t)
- chunk + (i << pagesize_2pow)),
- (npages << pagesize_2pow));
-# ifdef MALLOC_STATS
- arena->stats.ndecommit++;
- arena->stats.decommitted += npages;
-# endif
-#else
- madvise((void *)((uintptr_t)chunk + (i <<
- pagesize_2pow)), (npages << pagesize_2pow),
- MADV_FREE);
-#endif
-#ifdef MALLOC_STATS
- arena->stats.nmadvise++;
- arena->stats.purged += npages;
-#endif
- if (arena->ndirty <= (opt_dirty_max >> 1))
- break;
- }
- }
-
- if (chunk->ndirty == 0) {
- arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
- chunk);
- }
- }
-}
-
-static void
-arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
-{
- arena_chunk_t *chunk;
- size_t size, run_ind, run_pages;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
- run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
- >> pagesize_2pow);
- assert(run_ind >= arena_chunk_header_npages);
- assert(run_ind < chunk_npages);
- if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
- size = chunk->map[run_ind].bits & ~pagesize_mask;
- else
- size = run->bin->run_size;
- run_pages = (size >> pagesize_2pow);
-
- /* Mark pages as unallocated in the chunk map. */
- if (dirty) {
- size_t i;
-
- for (i = 0; i < run_pages; i++) {
- assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
- == 0);
- chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
- }
-
- if (chunk->ndirty == 0) {
- arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
- chunk);
- }
- chunk->ndirty += run_pages;
- arena->ndirty += run_pages;
- } else {
- size_t i;
-
- for (i = 0; i < run_pages; i++) {
- chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED);
- }
- }
- chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
- pagesize_mask);
- chunk->map[run_ind+run_pages-1].bits = size |
- (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
-
- /* Try to coalesce forward. */
- if (run_ind + run_pages < chunk_npages &&
- (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
- size_t nrun_size = chunk->map[run_ind+run_pages].bits &
- ~pagesize_mask;
-
- /*
- * Remove successor from runs_avail; the coalesced run is
- * inserted later.
- */
- arena_avail_tree_remove(&arena->runs_avail,
- &chunk->map[run_ind+run_pages]);
-
- size += nrun_size;
- run_pages = size >> pagesize_2pow;
-
- assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
- == nrun_size);
- chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
- pagesize_mask);
- chunk->map[run_ind+run_pages-1].bits = size |
- (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
- }
-
- /* Try to coalesce backward. */
- if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
- CHUNK_MAP_ALLOCATED) == 0) {
- size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
-
- run_ind -= prun_size >> pagesize_2pow;
-
- /*
- * Remove predecessor from runs_avail; the coalesced run is
- * inserted later.
- */
- arena_avail_tree_remove(&arena->runs_avail,
- &chunk->map[run_ind]);
-
- size += prun_size;
- run_pages = size >> pagesize_2pow;
-
- assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
- prun_size);
- chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
- pagesize_mask);
- chunk->map[run_ind+run_pages-1].bits = size |
- (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
- }
-
- /* Insert into runs_avail, now that coalescing is complete. */
- arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
-
- /* Deallocate chunk if it is now completely unused. */
- if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
- CHUNK_MAP_ALLOCATED)) == arena_maxclass)
- arena_chunk_dealloc(arena, chunk);
-
- /* Enforce opt_dirty_max. */
- if (arena->ndirty > opt_dirty_max)
- arena_purge(arena);
-}
-
-static void
-arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
- size_t oldsize, size_t newsize)
-{
- size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
- size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
-
- assert(oldsize > newsize);
-
- /*
- * Update the chunk map so that arena_run_dalloc() can treat the
- * leading run as separately allocated.
- */
- chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
- chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
-
- arena_run_dalloc(arena, run, false);
-}
-
-static void
-arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
- size_t oldsize, size_t newsize, bool dirty)
-{
- size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
- size_t npages = newsize >> pagesize_2pow;
-
- assert(oldsize > newsize);
-
- /*
- * Update the chunk map so that arena_run_dalloc() can treat the
- * trailing run as separately allocated.
- */
- chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
- chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
- | CHUNK_MAP_ALLOCATED;
-
- arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
- dirty);
-}
-
-static arena_run_t *
-arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
-{
- arena_chunk_map_t *mapelm;
- arena_run_t *run;
- unsigned i, remainder;
-
- /* Look for a usable run. */
- mapelm = arena_run_tree_first(&bin->runs);
- if (mapelm != NULL) {
- /* run is guaranteed to have available space. */
- arena_run_tree_remove(&bin->runs, mapelm);
- run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
-#ifdef MALLOC_STATS
- bin->stats.reruns++;
-#endif
- return (run);
- }
- /* No existing runs have any space available. */
-
- /* Allocate a new run. */
- run = arena_run_alloc(arena, bin, bin->run_size, false, false);
- if (run == NULL)
- return (NULL);
- /*
- * Don't initialize if a race in arena_run_alloc() allowed an existing
- * run to become usable.
- */
- if (run == bin->runcur)
- return (run);
-
- VALGRIND_MALLOCLIKE_BLOCK(run, sizeof(arena_run_t) + (sizeof(unsigned) *
- (bin->regs_mask_nelms - 1)), 0, false);
-
- /* Initialize run internals. */
- run->bin = bin;
-
- for (i = 0; i < bin->regs_mask_nelms - 1; i++)
- run->regs_mask[i] = UINT_MAX;
- remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
- if (remainder == 0)
- run->regs_mask[i] = UINT_MAX;
- else {
- /* The last element has spare bits that need to be unset. */
- run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
- - remainder));
- }
-
- run->regs_minelm = 0;
-
- run->nfree = bin->nregs;
-#ifdef MALLOC_DEBUG
- run->magic = ARENA_RUN_MAGIC;
-#endif
-
-#ifdef MALLOC_STATS
- bin->stats.nruns++;
- bin->stats.curruns++;
- if (bin->stats.curruns > bin->stats.highruns)
- bin->stats.highruns = bin->stats.curruns;
-#endif
- return (run);
-}
-
-/* bin->runcur must have space available before this function is called. */
-static inline void *
-arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
-{
- void *ret;
-
- assert(run->magic == ARENA_RUN_MAGIC);
- assert(run->nfree > 0);
-
- ret = arena_run_reg_alloc(run, bin);
- assert(ret != NULL);
- run->nfree--;
-
- return (ret);
-}
-
-/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
-static void *
-arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
-{
-
- bin->runcur = arena_bin_nonfull_run_get(arena, bin);
- if (bin->runcur == NULL)
- return (NULL);
- assert(bin->runcur->magic == ARENA_RUN_MAGIC);
- assert(bin->runcur->nfree > 0);
-
- return (arena_bin_malloc_easy(arena, bin, bin->runcur));
-}
-
-/*
- * Calculate bin->run_size such that it meets the following constraints:
- *
- * *) bin->run_size >= min_run_size
- * *) bin->run_size <= arena_maxclass
- * *) bin->run_size <= RUN_MAX_SMALL
- * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
- *
- * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
- * also calculated here, since these settings are all interdependent.
- */
-static size_t
-arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
-{
- size_t try_run_size, good_run_size;
- unsigned good_nregs, good_mask_nelms, good_reg0_offset;
- unsigned try_nregs, try_mask_nelms, try_reg0_offset;
-
- assert(min_run_size >= pagesize);
- assert(min_run_size <= arena_maxclass);
- assert(min_run_size <= RUN_MAX_SMALL);
-
- /*
- * Calculate known-valid settings before entering the run_size
- * expansion loop, so that the first part of the loop always copies
- * valid settings.
- *
- * The do..while loop iteratively reduces the number of regions until
- * the run header and the regions no longer overlap. A closed formula
- * would be quite messy, since there is an interdependency between the
- * header's mask length and the number of regions.
- */
- try_run_size = min_run_size;
- try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
- + 1; /* Counter-act try_nregs-- in loop. */
- do {
- try_nregs--;
- try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
- ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
- try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
- } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
- > try_reg0_offset);
-
- /* run_size expansion loop. */
- do {
- /*
- * Copy valid settings before trying more aggressive settings.
- */
- good_run_size = try_run_size;
- good_nregs = try_nregs;
- good_mask_nelms = try_mask_nelms;
- good_reg0_offset = try_reg0_offset;
-
- /* Try more aggressive settings. */
- try_run_size += pagesize;
- try_nregs = ((try_run_size - sizeof(arena_run_t)) /
- bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
- do {
- try_nregs--;
- try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
- ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
- 1 : 0);
- try_reg0_offset = try_run_size - (try_nregs *
- bin->reg_size);
- } while (sizeof(arena_run_t) + (sizeof(unsigned) *
- (try_mask_nelms - 1)) > try_reg0_offset);
- } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
- && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
- && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
-
- assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
- <= good_reg0_offset);
- assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
-
- /* Copy final settings. */
- bin->run_size = good_run_size;
- bin->nregs = good_nregs;
- bin->regs_mask_nelms = good_mask_nelms;
- bin->reg0_offset = good_reg0_offset;
-
- return (good_run_size);
-}
-
-#ifdef MALLOC_BALANCE
-static inline void
-arena_lock_balance(arena_t *arena)
-{
- unsigned contention;
-
- contention = malloc_spin_lock(&arena->lock);
- if (narenas > 1) {
- /*
- * Calculate the exponentially averaged contention for this
- * arena. Due to integer math always rounding down, this value
- * decays somewhat faster then normal.
- */
- arena->contention = (((uint64_t)arena->contention
- * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
- + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
- if (arena->contention >= opt_balance_threshold)
- arena_lock_balance_hard(arena);
- }
-}
-
-static void
-arena_lock_balance_hard(arena_t *arena)
-{
- uint32_t ind;
-
- arena->contention = 0;
-#ifdef MALLOC_STATS
- arena->stats.nbalance++;
-#endif
- ind = PRN(balance, narenas_2pow);
- if (arenas[ind] != NULL) {
-#ifdef MOZ_MEMORY_WINDOWS
- TlsSetValue(tlsIndex, arenas[ind]);
-#else
- arenas_map = arenas[ind];
-#endif
- } else {
- malloc_spin_lock(&arenas_lock);
- if (arenas[ind] != NULL) {
-#ifdef MOZ_MEMORY_WINDOWS
- TlsSetValue(tlsIndex, arenas[ind]);
-#else
- arenas_map = arenas[ind];
-#endif
- } else {
-#ifdef MOZ_MEMORY_WINDOWS
- TlsSetValue(tlsIndex, arenas_extend(ind));
-#else
- arenas_map = arenas_extend(ind);
-#endif
- }
- malloc_spin_unlock(&arenas_lock);
- }
-}
-#endif
-
-static inline void *
-arena_malloc_small(arena_t *arena, size_t size, bool zero)
-{
- void *ret;
- arena_bin_t *bin;
- arena_run_t *run;
-
- if (size < small_min) {
- /* Tiny. */
- size = pow2_ceil(size);
- bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
- 1)))];
-#if (!defined(NDEBUG) || defined(MALLOC_STATS))
- /*
- * Bin calculation is always correct, but we may need
- * to fix size for the purposes of assertions and/or
- * stats accuracy.
- */
- if (size < (1U << TINY_MIN_2POW))
- size = (1U << TINY_MIN_2POW);
-#endif
- } else if (size <= small_max) {
- /* Quantum-spaced. */
- size = QUANTUM_CEILING(size);
- bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
- - 1];
- } else {
- /* Sub-page. */
- size = pow2_ceil(size);
- bin = &arena->bins[ntbins + nqbins
- + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
- }
- assert(size == bin->reg_size);
-
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- if ((run = bin->runcur) != NULL && run->nfree > 0)
- ret = arena_bin_malloc_easy(arena, bin, run);
- else
- ret = arena_bin_malloc_hard(arena, bin);
-
- if (ret == NULL) {
- malloc_spin_unlock(&arena->lock);
- return (NULL);
- }
-
-#ifdef MALLOC_STATS
- bin->stats.nrequests++;
- arena->stats.nmalloc_small++;
- arena->stats.allocated_small += size;
-#endif
- malloc_spin_unlock(&arena->lock);
-
- VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero);
- if (zero == false) {
-#ifdef MALLOC_FILL
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
-#endif
- } else
- memset(ret, 0, size);
-
- return (ret);
-}
-
-static void *
-arena_malloc_large(arena_t *arena, size_t size, bool zero)
-{
- void *ret;
-
- /* Large allocation. */
- size = PAGE_CEILING(size);
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- ret = (void *)arena_run_alloc(arena, NULL, size, true, zero);
- if (ret == NULL) {
- malloc_spin_unlock(&arena->lock);
- return (NULL);
- }
-#ifdef MALLOC_STATS
- arena->stats.nmalloc_large++;
- arena->stats.allocated_large += size;
-#endif
- malloc_spin_unlock(&arena->lock);
-
- VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero);
- if (zero == false) {
-#ifdef MALLOC_FILL
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
-#endif
- }
-
- return (ret);
-}
-
-static inline void *
-arena_malloc(arena_t *arena, size_t size, bool zero)
-{
-
- assert(arena != NULL);
- assert(arena->magic == ARENA_MAGIC);
- assert(size != 0);
- assert(QUANTUM_CEILING(size) <= arena_maxclass);
-
- if (size <= bin_maxclass) {
- return (arena_malloc_small(arena, size, zero));
- } else
- return (arena_malloc_large(arena, size, zero));
-}
-
-static inline void *
-imalloc(size_t size)
-{
-
- assert(size != 0);
-
- if (size <= arena_maxclass)
- return (arena_malloc(choose_arena(), size, false));
- else
- return (huge_malloc(size, false));
-}
-
-static inline void *
-icalloc(size_t size)
-{
-
- if (size <= arena_maxclass)
- return (arena_malloc(choose_arena(), size, true));
- else
- return (huge_malloc(size, true));
-}
-
-/* Only handles large allocations that require more than page alignment. */
-static void *
-arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
-{
- void *ret;
- size_t offset;
- arena_chunk_t *chunk;
-
- assert((size & pagesize_mask) == 0);
- assert((alignment & pagesize_mask) == 0);
-
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- ret = (void *)arena_run_alloc(arena, NULL, alloc_size, true, false);
- if (ret == NULL) {
- malloc_spin_unlock(&arena->lock);
- return (NULL);
- }
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
-
- offset = (uintptr_t)ret & (alignment - 1);
- assert((offset & pagesize_mask) == 0);
- assert(offset < alloc_size);
- if (offset == 0)
- arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, alloc_size, size, false);
- else {
- size_t leadsize, trailsize;
-
- leadsize = alignment - offset;
- if (leadsize > 0) {
- arena_run_trim_head(arena, chunk, (arena_run_t*)ret, alloc_size,
- alloc_size - leadsize);
- ret = (void *)((uintptr_t)ret + leadsize);
- }
-
- trailsize = alloc_size - leadsize - size;
- if (trailsize != 0) {
- /* Trim trailing space. */
- assert(trailsize < alloc_size);
- arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, size + trailsize,
- size, false);
- }
- }
-
-#ifdef MALLOC_STATS
- arena->stats.nmalloc_large++;
- arena->stats.allocated_large += size;
-#endif
- malloc_spin_unlock(&arena->lock);
-
- VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false);
-#ifdef MALLOC_FILL
- if (opt_junk)
- memset(ret, 0xa5, size);
- else if (opt_zero)
- memset(ret, 0, size);
-#endif
- return (ret);
-}
-
-static inline void *
-ipalloc(size_t alignment, size_t size)
-{
- void *ret;
- size_t ceil_size;
-
- /*
- * Round size up to the nearest multiple of alignment.
- *
- * This done, we can take advantage of the fact that for each small
- * size class, every object is aligned at the smallest power of two
- * that is non-zero in the base two representation of the size. For
- * example:
- *
- * Size | Base 2 | Minimum alignment
- * -----+----------+------------------
- * 96 | 1100000 | 32
- * 144 | 10100000 | 32
- * 192 | 11000000 | 64
- *
- * Depending on runtime settings, it is possible that arena_malloc()
- * will further round up to a power of two, but that never causes
- * correctness issues.
- */
- ceil_size = (size + (alignment - 1)) & (-alignment);
- /*
- * (ceil_size < size) protects against the combination of maximal
- * alignment and size greater than maximal alignment.
- */
- if (ceil_size < size) {
- /* size_t overflow. */
- return (NULL);
- }
-
- if (ceil_size <= pagesize || (alignment <= pagesize
- && ceil_size <= arena_maxclass))
- ret = arena_malloc(choose_arena(), ceil_size, false);
- else {
- size_t run_size;
-
- /*
- * We can't achieve sub-page alignment, so round up alignment
- * permanently; it makes later calculations simpler.
- */
- alignment = PAGE_CEILING(alignment);
- ceil_size = PAGE_CEILING(size);
- /*
- * (ceil_size < size) protects against very large sizes within
- * pagesize of SIZE_T_MAX.
- *
- * (ceil_size + alignment < ceil_size) protects against the
- * combination of maximal alignment and ceil_size large enough
- * to cause overflow. This is similar to the first overflow
- * check above, but it needs to be repeated due to the new
- * ceil_size value, which may now be *equal* to maximal
- * alignment, whereas before we only detected overflow if the
- * original size was *greater* than maximal alignment.
- */
- if (ceil_size < size || ceil_size + alignment < ceil_size) {
- /* size_t overflow. */
- return (NULL);
- }
-
- /*
- * Calculate the size of the over-size run that arena_palloc()
- * would need to allocate in order to guarantee the alignment.
- */
- if (ceil_size >= alignment)
- run_size = ceil_size + alignment - pagesize;
- else {
- /*
- * It is possible that (alignment << 1) will cause
- * overflow, but it doesn't matter because we also
- * subtract pagesize, which in the case of overflow
- * leaves us with a very large run_size. That causes
- * the first conditional below to fail, which means
- * that the bogus run_size value never gets used for
- * anything important.
- */
- run_size = (alignment << 1) - pagesize;
- }
-
- if (run_size <= arena_maxclass) {
- ret = arena_palloc(choose_arena(), alignment, ceil_size,
- run_size);
- } else if (alignment <= chunksize)
- ret = huge_malloc(ceil_size, false);
- else
- ret = huge_palloc(alignment, ceil_size);
- }
-
- assert(((uintptr_t)ret & (alignment - 1)) == 0);
- return (ret);
-}
-
-/* Return the size of the allocation pointed to by ptr. */
-static size_t
-arena_salloc(const void *ptr)
-{
- size_t ret;
- arena_chunk_t *chunk;
- size_t pageind, mapbits;
-
- assert(ptr != NULL);
- assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
- mapbits = chunk->map[pageind].bits;
- assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
- if ((mapbits & CHUNK_MAP_LARGE) == 0) {
- arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
- assert(run->magic == ARENA_RUN_MAGIC);
- ret = run->bin->reg_size;
- } else {
- ret = mapbits & ~pagesize_mask;
- assert(ret != 0);
- }
-
- return (ret);
-}
-
-#if (defined(MALLOC_VALIDATE) || defined(MOZ_MEMORY_DARWIN))
-/*
- * Validate ptr before assuming that it points to an allocation. Currently,
- * the following validation is performed:
- *
- * + Check that ptr is not NULL.
- *
- * + Check that ptr lies within a mapped chunk.
- */
-static inline size_t
-isalloc_validate(const void *ptr)
-{
- arena_chunk_t *chunk;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- if (chunk == NULL)
- return (0);
-
- if (malloc_rtree_get(chunk_rtree, (uintptr_t)chunk) == NULL)
- return (0);
-
- if (chunk != ptr) {
- assert(chunk->arena->magic == ARENA_MAGIC);
- return (arena_salloc(ptr));
- } else {
- size_t ret;
- extent_node_t *node;
- extent_node_t key;
-
- /* Chunk. */
- key.addr = (void *)chunk;
- malloc_mutex_lock(&huge_mtx);
- node = extent_tree_ad_search(&huge, &key);
- if (node != NULL)
- ret = node->size;
- else
- ret = 0;
- malloc_mutex_unlock(&huge_mtx);
- return (ret);
- }
-}
-#endif
-
-static inline size_t
-isalloc(const void *ptr)
-{
- size_t ret;
- arena_chunk_t *chunk;
-
- assert(ptr != NULL);
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- if (chunk != ptr) {
- /* Region. */
- assert(chunk->arena->magic == ARENA_MAGIC);
-
- ret = arena_salloc(ptr);
- } else {
- extent_node_t *node, key;
-
- /* Chunk (huge allocation). */
-
- malloc_mutex_lock(&huge_mtx);
-
- /* Extract from tree of huge allocations. */
- key.addr = __DECONST(void *, ptr);
- node = extent_tree_ad_search(&huge, &key);
- assert(node != NULL);
-
- ret = node->size;
-
- malloc_mutex_unlock(&huge_mtx);
- }
-
- return (ret);
-}
-
-static inline void
-arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
- arena_chunk_map_t *mapelm)
-{
- arena_run_t *run;
- arena_bin_t *bin;
- size_t size;
-
- run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
- assert(run->magic == ARENA_RUN_MAGIC);
- bin = run->bin;
- size = bin->reg_size;
-
-#ifdef MALLOC_FILL
- if (opt_junk)
- memset(ptr, 0x5a, size);
-#endif
-
- arena_run_reg_dalloc(run, bin, ptr, size);
- run->nfree++;
-
- if (run->nfree == bin->nregs) {
- /* Deallocate run. */
- if (run == bin->runcur)
- bin->runcur = NULL;
- else if (bin->nregs != 1) {
- size_t run_pageind = (((uintptr_t)run -
- (uintptr_t)chunk)) >> pagesize_2pow;
- arena_chunk_map_t *run_mapelm =
- &chunk->map[run_pageind];
- /*
- * This block's conditional is necessary because if the
- * run only contains one region, then it never gets
- * inserted into the non-full runs tree.
- */
- assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
- run_mapelm);
- arena_run_tree_remove(&bin->runs, run_mapelm);
- }
-#ifdef MALLOC_DEBUG
- run->magic = 0;
-#endif
- VALGRIND_FREELIKE_BLOCK(run, 0);
- arena_run_dalloc(arena, run, true);
-#ifdef MALLOC_STATS
- bin->stats.curruns--;
-#endif
- } else if (run->nfree == 1 && run != bin->runcur) {
- /*
- * Make sure that bin->runcur always refers to the lowest
- * non-full run, if one exists.
- */
- if (bin->runcur == NULL)
- bin->runcur = run;
- else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
- /* Switch runcur. */
- if (bin->runcur->nfree > 0) {
- arena_chunk_t *runcur_chunk =
- (arena_chunk_t*)CHUNK_ADDR2BASE(bin->runcur);
- size_t runcur_pageind =
- (((uintptr_t)bin->runcur -
- (uintptr_t)runcur_chunk)) >> pagesize_2pow;
- arena_chunk_map_t *runcur_mapelm =
- &runcur_chunk->map[runcur_pageind];
-
- /* Insert runcur. */
- assert(arena_run_tree_search(&bin->runs,
- runcur_mapelm) == NULL);
- arena_run_tree_insert(&bin->runs,
- runcur_mapelm);
- }
- bin->runcur = run;
- } else {
- size_t run_pageind = (((uintptr_t)run -
- (uintptr_t)chunk)) >> pagesize_2pow;
- arena_chunk_map_t *run_mapelm =
- &chunk->map[run_pageind];
-
- assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
- NULL);
- arena_run_tree_insert(&bin->runs, run_mapelm);
- }
- }
-#ifdef MALLOC_STATS
- arena->stats.allocated_small -= size;
- arena->stats.ndalloc_small++;
-#endif
-}
-
-static void
-arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
- /* Large allocation. */
- malloc_spin_lock(&arena->lock);
-
-#ifdef MALLOC_FILL
-#ifndef MALLOC_STATS
- if (opt_junk)
-#endif
-#endif
- {
- size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
- pagesize_2pow;
- size_t size = chunk->map[pageind].bits & ~pagesize_mask;
-
-#ifdef MALLOC_FILL
-#ifdef MALLOC_STATS
- if (opt_junk)
-#endif
- memset(ptr, 0x5a, size);
-#endif
-#ifdef MALLOC_STATS
- arena->stats.allocated_large -= size;
-#endif
- }
-#ifdef MALLOC_STATS
- arena->stats.ndalloc_large++;
-#endif
-
- arena_run_dalloc(arena, (arena_run_t *)ptr, true);
- malloc_spin_unlock(&arena->lock);
-}
-
-static inline void
-arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
-{
- size_t pageind;
- arena_chunk_map_t *mapelm;
-
- assert(arena != NULL);
- assert(arena->magic == ARENA_MAGIC);
- assert(chunk->arena == arena);
- assert(ptr != NULL);
- assert(CHUNK_ADDR2BASE(ptr) != ptr);
-
- pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
- mapelm = &chunk->map[pageind];
- assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
- if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
- /* Small allocation. */
- malloc_spin_lock(&arena->lock);
- arena_dalloc_small(arena, chunk, ptr, mapelm);
- malloc_spin_unlock(&arena->lock);
- } else
- arena_dalloc_large(arena, chunk, ptr);
- VALGRIND_FREELIKE_BLOCK(ptr, 0);
-}
-
-static inline void
-idalloc(void *ptr)
-{
- arena_chunk_t *chunk;
-
- assert(ptr != NULL);
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- if (chunk != ptr)
- arena_dalloc(chunk->arena, chunk, ptr);
- else
- huge_dalloc(ptr);
-}
-
-static void
-arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
- size_t size, size_t oldsize)
-{
-
- assert(size < oldsize);
-
- /*
- * Shrink the run, and make trailing pages available for other
- * allocations.
- */
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
- true);
-#ifdef MALLOC_STATS
- arena->stats.allocated_large -= oldsize - size;
-#endif
- malloc_spin_unlock(&arena->lock);
-}
-
-static bool
-arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
- size_t size, size_t oldsize)
-{
- size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
- size_t npages = oldsize >> pagesize_2pow;
-
- assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
-
- /* Try to extend the run. */
- assert(size > oldsize);
-#ifdef MALLOC_BALANCE
- arena_lock_balance(arena);
-#else
- malloc_spin_lock(&arena->lock);
-#endif
- if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
- & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
- ~pagesize_mask) >= size - oldsize) {
- /*
- * The next run is available and sufficiently large. Split the
- * following run, then merge the first part with the existing
- * allocation.
- */
- arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
- ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
- false);
-
- chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
- chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
- CHUNK_MAP_ALLOCATED;
-
-#ifdef MALLOC_STATS
- arena->stats.allocated_large += size - oldsize;
-#endif
- malloc_spin_unlock(&arena->lock);
- return (false);
- }
- malloc_spin_unlock(&arena->lock);
-
- return (true);
-}
-
-/*
- * Try to resize a large allocation, in order to avoid copying. This will
- * always fail if growing an object, and the following run is already in use.
- */
-static bool
-arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
-{
- size_t psize;
-
- psize = PAGE_CEILING(size);
- if (psize == oldsize) {
- /* Same size class. */
-#ifdef MALLOC_FILL
- if (opt_junk && size < oldsize) {
- memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
- size);
- }
-#endif
- return (false);
- } else {
- arena_chunk_t *chunk;
- arena_t *arena;
-
- chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
- arena = chunk->arena;
- assert(arena->magic == ARENA_MAGIC);
-
- if (psize < oldsize) {
-#ifdef MALLOC_FILL
- /* Fill before shrinking in order avoid a race. */
- if (opt_junk) {
- memset((void *)((uintptr_t)ptr + size), 0x5a,
- oldsize - size);
- }
-#endif
- arena_ralloc_large_shrink(arena, chunk, ptr, psize,
- oldsize);
- return (false);
- } else {
- bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
- psize, oldsize);
-#ifdef MALLOC_FILL
- if (ret == false && opt_zero) {
- memset((void *)((uintptr_t)ptr + oldsize), 0,
- size - oldsize);
- }
-#endif
- return (ret);
- }
- }
-}
-
-static void *
-arena_ralloc(void *ptr, size_t size, size_t oldsize)
-{
- void *ret;
- size_t copysize;
-
- /* Try to avoid moving the allocation. */
- if (size < small_min) {
- if (oldsize < small_min &&
- ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
- == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
- goto IN_PLACE; /* Same size class. */
- } else if (size <= small_max) {
- if (oldsize >= small_min && oldsize <= small_max &&
- (QUANTUM_CEILING(size) >> opt_quantum_2pow)
- == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
- goto IN_PLACE; /* Same size class. */
- } else if (size <= bin_maxclass) {
- if (oldsize > small_max && oldsize <= bin_maxclass &&
- pow2_ceil(size) == pow2_ceil(oldsize))
- goto IN_PLACE; /* Same size class. */
- } else if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
- assert(size > bin_maxclass);
- if (arena_ralloc_large(ptr, size, oldsize) == false)
- return (ptr);
- }
-
- /*
- * If we get here, then size and oldsize are different enough that we
- * need to move the object. In that case, fall back to allocating new
- * space and copying.
- */
- ret = arena_malloc(choose_arena(), size, false);
- if (ret == NULL)
- return (NULL);
-
- /* Junk/zero-filling were already done by arena_malloc(). */
- copysize = (size < oldsize) ? size : oldsize;
-#ifdef VM_COPY_MIN
- if (copysize >= VM_COPY_MIN)
- pages_copy(ret, ptr, copysize);
- else
-#endif
- memcpy(ret, ptr, copysize);
- idalloc(ptr);
- return (ret);
-IN_PLACE:
-#ifdef MALLOC_FILL
- if (opt_junk && size < oldsize)
- memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
- else if (opt_zero && size > oldsize)
- memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
-#endif
- return (ptr);
-}
-
-static inline void *
-iralloc(void *ptr, size_t size)
-{
- size_t oldsize;
-
- assert(ptr != NULL);
- assert(size != 0);
-
- oldsize = isalloc(ptr);
-
-#ifndef MALLOC_VALGRIND
- if (size <= arena_maxclass)
- return (arena_ralloc(ptr, size, oldsize));
- else
- return (huge_ralloc(ptr, size, oldsize));
-#else
- /*
- * Valgrind does not provide a public interface for modifying an
- * existing allocation, so use malloc/memcpy/free instead.
- */
- {
- void *ret = imalloc(size);
- if (ret != NULL) {
- if (oldsize < size)
- memcpy(ret, ptr, oldsize);
- else
- memcpy(ret, ptr, size);
- idalloc(ptr);
- }
- return (ret);
- }
-#endif
-}
-
-static bool
-arena_new(arena_t *arena)
-{
- unsigned i;
- arena_bin_t *bin;
- size_t pow2_size, prev_run_size;
-
- if (malloc_spin_init(&arena->lock))
- return (true);
-
-#ifdef MALLOC_STATS
- memset(&arena->stats, 0, sizeof(arena_stats_t));
-#endif
-
- arena->chunk_seq = 0;
-
- /* Initialize chunks. */
- arena_chunk_tree_dirty_new(&arena->chunks_dirty);
- arena->spare = NULL;
-
- arena->ndirty = 0;
-
- arena_avail_tree_new(&arena->runs_avail);
-
-#ifdef MALLOC_BALANCE
- arena->contention = 0;
-#endif
-
- /* Initialize bins. */
- prev_run_size = pagesize;
-
- /* (2^n)-spaced tiny bins. */
- for (i = 0; i < ntbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = (1U << (TINY_MIN_2POW + i));
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-
- /* Quantum-spaced bins. */
- for (; i < ntbins + nqbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = quantum * (i - ntbins + 1);
-
- pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-
- /* (2^n)-spaced sub-page bins. */
- for (; i < ntbins + nqbins + nsbins; i++) {
- bin = &arena->bins[i];
- bin->runcur = NULL;
- arena_run_tree_new(&bin->runs);
-
- bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
-
- prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
-
-#ifdef MALLOC_STATS
- memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
-#endif
- }
-
-#ifdef MALLOC_DEBUG
- arena->magic = ARENA_MAGIC;
-#endif
-
- return (false);
-}
-
-/* Create a new arena and insert it into the arenas array at index ind. */
-static arena_t *
-arenas_extend(unsigned ind)
-{
- arena_t *ret;
-
- /* Allocate enough space for trailing bins. */
- ret = (arena_t *)base_alloc(sizeof(arena_t)
- + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
- if (ret != NULL && arena_new(ret) == false) {
- arenas[ind] = ret;
- return (ret);
- }
- /* Only reached if there is an OOM error. */
-
- /*
- * OOM here is quite inconvenient to propagate, since dealing with it
- * would require a check for failure in the fast path. Instead, punt
- * by using arenas[0]. In practice, this is an extremely unlikely
- * failure.
- */
- _malloc_message(_getprogname(),
- ": (malloc) Error initializing arena\n", "", "");
- if (opt_abort)
- abort();
-
- return (arenas[0]);
-}
-
-/*
- * End arena.
- */
-/******************************************************************************/
-/*
- * Begin general internal functions.
- */
-
-static void *
-huge_malloc(size_t size, bool zero)
-{
- void *ret;
- size_t csize;
-#ifdef MALLOC_DECOMMIT
- size_t psize;
-#endif
- extent_node_t *node;
-
- /* Allocate one or more contiguous chunks for this request. */
-
- csize = CHUNK_CEILING(size);
- if (csize == 0) {
- /* size is large enough to cause size_t wrap-around. */
- return (NULL);
- }
-
- /* Allocate an extent node with which to track the chunk. */
- node = base_node_alloc();
- if (node == NULL)
- return (NULL);
-
- ret = chunk_alloc(csize, zero, true);
- if (ret == NULL) {
- base_node_dealloc(node);
- return (NULL);
- }
-
- /* Insert node into huge. */
- node->addr = ret;
-#ifdef MALLOC_DECOMMIT
- psize = PAGE_CEILING(size);
- node->size = psize;
-#else
- node->size = csize;
-#endif
-
- malloc_mutex_lock(&huge_mtx);
- extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
- huge_nmalloc++;
-# ifdef MALLOC_DECOMMIT
- huge_allocated += psize;
-# else
- huge_allocated += csize;
-# endif
-#endif
- malloc_mutex_unlock(&huge_mtx);
-
-#ifdef MALLOC_DECOMMIT
- if (csize - psize > 0)
- pages_decommit((void *)((uintptr_t)ret + psize), csize - psize);
-#endif
-
-#ifdef MALLOC_DECOMMIT
- VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, zero);
-#else
- VALGRIND_MALLOCLIKE_BLOCK(ret, csize, 0, zero);
-#endif
-
-#ifdef MALLOC_FILL
- if (zero == false) {
- if (opt_junk)
-# ifdef MALLOC_DECOMMIT
- memset(ret, 0xa5, psize);
-# else
- memset(ret, 0xa5, csize);
-# endif
- else if (opt_zero)
-# ifdef MALLOC_DECOMMIT
- memset(ret, 0, psize);
-# else
- memset(ret, 0, csize);
-# endif
- }
-#endif
-
- return (ret);
-}
-
-/* Only handles large allocations that require more than chunk alignment. */
-static void *
-huge_palloc(size_t alignment, size_t size)
-{
- void *ret;
- size_t alloc_size, chunk_size, offset;
-#ifdef MALLOC_DECOMMIT
- size_t psize;
-#endif
- extent_node_t *node;
- int pfd;
-
- /*
- * This allocation requires alignment that is even larger than chunk
- * alignment. This means that huge_malloc() isn't good enough.
- *
- * Allocate almost twice as many chunks as are demanded by the size or
- * alignment, in order to assure the alignment can be achieved, then
- * unmap leading and trailing chunks.
- */
- assert(alignment >= chunksize);
-
- chunk_size = CHUNK_CEILING(size);
-
- if (size >= alignment)
- alloc_size = chunk_size + alignment - chunksize;
- else
- alloc_size = (alignment << 1) - chunksize;
-
- /* Allocate an extent node with which to track the chunk. */
- node = base_node_alloc();
- if (node == NULL)
- return (NULL);
-
- /*
- * Windows requires that there be a 1:1 mapping between VM
- * allocation/deallocation operations. Therefore, take care here to
- * acquire the final result via one mapping operation.
- *
- * The MALLOC_PAGEFILE code also benefits from this mapping algorithm,
- * since it reduces the number of page files.
- */
-#ifdef MALLOC_PAGEFILE
- if (opt_pagefile) {
- pfd = pagefile_init(size);
- if (pfd == -1)
- return (NULL);
- } else
-#endif
- pfd = -1;
-#ifdef JEMALLOC_USES_MAP_ALIGN
- ret = pages_map_align(chunk_size, pfd, alignment);
-#else
- do {
- void *over;
-
- over = chunk_alloc(alloc_size, false, false);
- if (over == NULL) {
- base_node_dealloc(node);
- ret = NULL;
- goto RETURN;
- }
-
- offset = (uintptr_t)over & (alignment - 1);
- assert((offset & chunksize_mask) == 0);
- assert(offset < alloc_size);
- ret = (void *)((uintptr_t)over + offset);
- chunk_dealloc(over, alloc_size);
- ret = pages_map(ret, chunk_size, pfd);
- /*
- * Failure here indicates a race with another thread, so try
- * again.
- */
- } while (ret == NULL);
-#endif
- /* Insert node into huge. */
- node->addr = ret;
-#ifdef MALLOC_DECOMMIT
- psize = PAGE_CEILING(size);
- node->size = psize;
-#else
- node->size = chunk_size;
-#endif
-
- malloc_mutex_lock(&huge_mtx);
- extent_tree_ad_insert(&huge, node);
-#ifdef MALLOC_STATS
- huge_nmalloc++;
-# ifdef MALLOC_DECOMMIT
- huge_allocated += psize;
-# else
- huge_allocated += chunk_size;
-# endif
-#endif
- malloc_mutex_unlock(&huge_mtx);
-
-#ifdef MALLOC_DECOMMIT
- if (chunk_size - psize > 0) {
- pages_decommit((void *)((uintptr_t)ret + psize),
- chunk_size - psize);
- }
-#endif
-
-#ifdef MALLOC_DECOMMIT
- VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, false);
-#else
- VALGRIND_MALLOCLIKE_BLOCK(ret, chunk_size, 0, false);
-#endif
-
-#ifdef MALLOC_FILL
- if (opt_junk)
-# ifdef MALLOC_DECOMMIT
- memset(ret, 0xa5, psize);
-# else
- memset(ret, 0xa5, chunk_size);
-# endif
- else if (opt_zero)
-# ifdef MALLOC_DECOMMIT
- memset(ret, 0, psize);
-# else
- memset(ret, 0, chunk_size);
-# endif
-#endif
-
-RETURN:
-#ifdef MALLOC_PAGEFILE
- if (pfd != -1)
- pagefile_close(pfd);
-#endif
- return (ret);
-}
-
-static void *
-huge_ralloc(void *ptr, size_t size, size_t oldsize)
-{
- void *ret;
- size_t copysize;
-
- /* Avoid moving the allocation if the size class would not change. */
-
- if (oldsize > arena_maxclass &&
- CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
-#ifdef MALLOC_DECOMMIT
- size_t psize = PAGE_CEILING(size);
-#endif
-#ifdef MALLOC_FILL
- if (opt_junk && size < oldsize) {
- memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
- - size);
- }
-#endif
-#ifdef MALLOC_DECOMMIT
- if (psize < oldsize) {
- extent_node_t *node, key;
-
- pages_decommit((void *)((uintptr_t)ptr + psize),
- oldsize - psize);
-
- /* Update recorded size. */
- malloc_mutex_lock(&huge_mtx);
- key.addr = __DECONST(void *, ptr);
- node = extent_tree_ad_search(&huge, &key);
- assert(node != NULL);
- assert(node->size == oldsize);
-# ifdef MALLOC_STATS
- huge_allocated -= oldsize - psize;
-# endif
- node->size = psize;
- malloc_mutex_unlock(&huge_mtx);
- } else if (psize > oldsize) {
- extent_node_t *node, key;
-
- pages_commit((void *)((uintptr_t)ptr + oldsize),
- psize - oldsize);
-
- /* Update recorded size. */
- malloc_mutex_lock(&huge_mtx);
- key.addr = __DECONST(void *, ptr);
- node = extent_tree_ad_search(&huge, &key);
- assert(node != NULL);
- assert(node->size == oldsize);
-# ifdef MALLOC_STATS
- huge_allocated += psize - oldsize;
-# endif
- node->size = psize;
- malloc_mutex_unlock(&huge_mtx);
- }
-#endif
-#ifdef MALLOC_FILL
- if (opt_zero && size > oldsize) {
- memset((void *)((uintptr_t)ptr + oldsize), 0, size
- - oldsize);
- }
-#endif
- return (ptr);
- }
-
- /*
- * If we get here, then size and oldsize are different enough that we
- * need to use a different size class. In that case, fall back to
- * allocating new space and copying.
- */
- ret = huge_malloc(size, false);
- if (ret == NULL)
- return (NULL);
-
- copysize = (size < oldsize) ? size : oldsize;
-#ifdef VM_COPY_MIN
- if (copysize >= VM_COPY_MIN)
- pages_copy(ret, ptr, copysize);
- else
-#endif
- memcpy(ret, ptr, copysize);
- idalloc(ptr);
- return (ret);
-}
-
-static void
-huge_dalloc(void *ptr)
-{
- extent_node_t *node, key;
-
- malloc_mutex_lock(&huge_mtx);
-
- /* Extract from tree of huge allocations. */
- key.addr = ptr;
- node = extent_tree_ad_search(&huge, &key);
- assert(node != NULL);
- assert(node->addr == ptr);
- extent_tree_ad_remove(&huge, node);
-
-#ifdef MALLOC_STATS
- huge_ndalloc++;
- huge_allocated -= node->size;
-#endif
-
- malloc_mutex_unlock(&huge_mtx);
-
- /* Unmap chunk. */
-#ifdef MALLOC_FILL
- if (opt_junk)
- memset(node->addr, 0x5a, node->size);
-#endif
-#ifdef MALLOC_DECOMMIT
- chunk_dealloc(node->addr, CHUNK_CEILING(node->size));
-#else
- chunk_dealloc(node->addr, node->size);
-#endif
- VALGRIND_FREELIKE_BLOCK(node->addr, 0);
-
- base_node_dealloc(node);
-}
-
-#ifdef MOZ_MEMORY_BSD
-static inline unsigned
-malloc_ncpus(void)
-{
- unsigned ret;
- int mib[2];
- size_t len;
-
- mib[0] = CTL_HW;
- mib[1] = HW_NCPU;
- len = sizeof(ret);
- if (sysctl(mib, 2, &ret, &len, (void *) 0, 0) == -1) {
- /* Error. */
- return (1);
- }
-
- return (ret);
-}
-#elif (defined(MOZ_MEMORY_LINUX))
-#include <fcntl.h>
-
-static inline unsigned
-malloc_ncpus(void)
-{
- unsigned ret;
- int fd, nread, column;
- char buf[1024];
- static const char matchstr[] = "processor\t:";
- int i;
-
- /*
- * sysconf(3) would be the preferred method for determining the number
- * of CPUs, but it uses malloc internally, which causes untennable
- * recursion during malloc initialization.
- */
- fd = open("/proc/cpuinfo", O_RDONLY);
- if (fd == -1)
- return (1); /* Error. */
- /*
- * Count the number of occurrences of matchstr at the beginnings of
- * lines. This treats hyperthreaded CPUs as multiple processors.
- */
- column = 0;
- ret = 0;
- while (true) {
- nread = read(fd, &buf, sizeof(buf));
- if (nread <= 0)
- break; /* EOF or error. */
- for (i = 0;i < nread;i++) {
- char c = buf[i];
- if (c == '\n')
- column = 0;
- else if (column != -1) {
- if (c == matchstr[column]) {
- column++;
- if (column == sizeof(matchstr) - 1) {
- column = -1;
- ret++;
- }
- } else
- column = -1;
- }
- }
- }
-
- if (ret == 0)
- ret = 1; /* Something went wrong in the parser. */
- close(fd);
-
- return (ret);
-}
-#elif (defined(MOZ_MEMORY_DARWIN))
-#include <mach/mach_init.h>
-#include <mach/mach_host.h>
-
-static inline unsigned
-malloc_ncpus(void)
-{
- kern_return_t error;
- natural_t n;
- processor_info_array_t pinfo;
- mach_msg_type_number_t pinfocnt;
-
- error = host_processor_info(mach_host_self(), PROCESSOR_BASIC_INFO,
- &n, &pinfo, &pinfocnt);
- if (error != KERN_SUCCESS)
- return (1); /* Error. */
- else
- return (n);
-}
-#elif (defined(MOZ_MEMORY_SOLARIS))
-
-static inline unsigned
-malloc_ncpus(void)
-{
- return sysconf(_SC_NPROCESSORS_ONLN);
-}
-#else
-static inline unsigned
-malloc_ncpus(void)
-{
-
- /*
- * We lack a way to determine the number of CPUs on this platform, so
- * assume 1 CPU.
- */
- return (1);
-}
-#endif
-
-static void
-malloc_print_stats(void)
-{
-
- if (opt_print_stats) {
- char s[UMAX2S_BUFSIZE];
- _malloc_message("___ Begin malloc statistics ___\n", "", "",
- "");
- _malloc_message("Assertions ",
-#ifdef NDEBUG
- "disabled",
-#else
- "enabled",
-#endif
- "\n", "");
- _malloc_message("Boolean MALLOC_OPTIONS: ",
- opt_abort ? "A" : "a", "", "");
-#ifdef MALLOC_FILL
- _malloc_message(opt_junk ? "J" : "j", "", "", "");
-#endif
-#ifdef MALLOC_PAGEFILE
- _malloc_message(opt_pagefile ? "o" : "O", "", "", "");
-#endif
- _malloc_message("P", "", "", "");
-#ifdef MALLOC_UTRACE
- _malloc_message(opt_utrace ? "U" : "u", "", "", "");
-#endif
-#ifdef MALLOC_SYSV
- _malloc_message(opt_sysv ? "V" : "v", "", "", "");
-#endif
-#ifdef MALLOC_XMALLOC
- _malloc_message(opt_xmalloc ? "X" : "x", "", "", "");
-#endif
-#ifdef MALLOC_FILL
- _malloc_message(opt_zero ? "Z" : "z", "", "", "");
-#endif
- _malloc_message("\n", "", "", "");
-
- _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
- _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
-#ifdef MALLOC_BALANCE
- _malloc_message("Arena balance threshold: ",
- umax2s(opt_balance_threshold, s), "\n", "");
-#endif
- _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
- "\n", "");
- _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
- _malloc_message("Max small size: ", umax2s(small_max, s), "\n",
- "");
- _malloc_message("Max dirty pages per arena: ",
- umax2s(opt_dirty_max, s), "\n", "");
-
- _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
- _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
-
-#ifdef MALLOC_STATS
- {
- size_t allocated, mapped;
-#ifdef MALLOC_BALANCE
- uint64_t nbalance = 0;
-#endif
- unsigned i;
- arena_t *arena;
-
- /* Calculate and print allocated/mapped stats. */
-
- /* arenas. */
- for (i = 0, allocated = 0; i < narenas; i++) {
- if (arenas[i] != NULL) {
- malloc_spin_lock(&arenas[i]->lock);
- allocated +=
- arenas[i]->stats.allocated_small;
- allocated +=
- arenas[i]->stats.allocated_large;
-#ifdef MALLOC_BALANCE
- nbalance += arenas[i]->stats.nbalance;
-#endif
- malloc_spin_unlock(&arenas[i]->lock);
- }
- }
-
- /* huge/base. */
- malloc_mutex_lock(&huge_mtx);
- allocated += huge_allocated;
- mapped = stats_chunks.curchunks * chunksize;
- malloc_mutex_unlock(&huge_mtx);
-
- malloc_mutex_lock(&base_mtx);
- mapped += base_mapped;
- malloc_mutex_unlock(&base_mtx);
-
-#ifdef MOZ_MEMORY_WINDOWS
- malloc_printf("Allocated: %lu, mapped: %lu\n",
- allocated, mapped);
-#else
- malloc_printf("Allocated: %zu, mapped: %zu\n",
- allocated, mapped);
-#endif
-
- malloc_mutex_lock(&reserve_mtx);
- malloc_printf("Reserve: min "
- "cur max\n");
-#ifdef MOZ_MEMORY_WINDOWS
- malloc_printf(" %12lu %12lu %12lu\n",
- CHUNK_CEILING(reserve_min) >> opt_chunk_2pow,
- reserve_cur >> opt_chunk_2pow,
- reserve_max >> opt_chunk_2pow);
-#else
- malloc_printf(" %12zu %12zu %12zu\n",
- CHUNK_CEILING(reserve_min) >> opt_chunk_2pow,
- reserve_cur >> opt_chunk_2pow,
- reserve_max >> opt_chunk_2pow);
-#endif
- malloc_mutex_unlock(&reserve_mtx);
-
-#ifdef MALLOC_BALANCE
- malloc_printf("Arena balance reassignments: %llu\n",
- nbalance);
-#endif
-
- /* Print chunk stats. */
- {
- chunk_stats_t chunks_stats;
-
- malloc_mutex_lock(&huge_mtx);
- chunks_stats = stats_chunks;
- malloc_mutex_unlock(&huge_mtx);
-
- malloc_printf("chunks: nchunks "
- "highchunks curchunks\n");
- malloc_printf(" %13llu%13lu%13lu\n",
- chunks_stats.nchunks,
- chunks_stats.highchunks,
- chunks_stats.curchunks);
- }
-
- /* Print chunk stats. */
- malloc_printf(
- "huge: nmalloc ndalloc allocated\n");
-#ifdef MOZ_MEMORY_WINDOWS
- malloc_printf(" %12llu %12llu %12lu\n",
- huge_nmalloc, huge_ndalloc, huge_allocated);
-#else
- malloc_printf(" %12llu %12llu %12zu\n",
- huge_nmalloc, huge_ndalloc, huge_allocated);
-#endif
- /* Print stats for each arena. */
- for (i = 0; i < narenas; i++) {
- arena = arenas[i];
- if (arena != NULL) {
- malloc_printf(
- "\narenas[%u]:\n", i);
- malloc_spin_lock(&arena->lock);
- stats_print(arena);
- malloc_spin_unlock(&arena->lock);
- }
- }
- }
-#endif /* #ifdef MALLOC_STATS */
- _malloc_message("--- End malloc statistics ---\n", "", "", "");
- }
-}
-
-/*
- * FreeBSD's pthreads implementation calls malloc(3), so the malloc
- * implementation has to take pains to avoid infinite recursion during
- * initialization.
- */
-#if (defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_DARWIN)) && !defined(MOZ_MEMORY_WINCE)
-#define malloc_init() false
-#else
-static inline bool
-malloc_init(void)
-{
-
- if (malloc_initialized == false)
- return (malloc_init_hard());
-
- return (false);
-}
-#endif
-
-#if !defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_WINCE)
-static
-#endif
-bool
-je_malloc_init_hard(void)
-{
- unsigned i;
- char buf[PATH_MAX + 1];
- const char *opts;
- long result;
-#ifndef MOZ_MEMORY_WINDOWS
- int linklen;
-#endif
-
-#ifndef MOZ_MEMORY_WINDOWS
- malloc_mutex_lock(&init_lock);
-#endif
-
- if (malloc_initialized) {
- /*
- * Another thread initialized the allocator before this one
- * acquired init_lock.
- */
-#ifndef MOZ_MEMORY_WINDOWS
- malloc_mutex_unlock(&init_lock);
-#endif
- return (false);
- }
-
-#ifdef MOZ_MEMORY_WINDOWS
- /* get a thread local storage index */
- tlsIndex = TlsAlloc();
-#endif
-
- /* Get page size and number of CPUs */
-#ifdef MOZ_MEMORY_WINDOWS
- {
- SYSTEM_INFO info;
-
- GetSystemInfo(&info);
- result = info.dwPageSize;
-
- pagesize = (unsigned) result;
-
- ncpus = info.dwNumberOfProcessors;
- }
-#else
- ncpus = malloc_ncpus();
-
- result = sysconf(_SC_PAGESIZE);
- assert(result != -1);
-
- pagesize = (unsigned) result;
-#endif
-
- /*
- * We assume that pagesize is a power of 2 when calculating
- * pagesize_mask and pagesize_2pow.
- */
- assert(((result - 1) & result) == 0);
- pagesize_mask = result - 1;
- pagesize_2pow = ffs((int)result) - 1;
-
-#ifdef MALLOC_PAGEFILE
- /*
- * Determine where to create page files. It is insufficient to
- * unconditionally use P_tmpdir (typically "/tmp"), since for some
- * operating systems /tmp is a separate filesystem that is rather small.
- * Therefore prefer, in order, the following locations:
- *
- * 1) MALLOC_TMPDIR
- * 2) TMPDIR
- * 3) P_tmpdir
- */
- {
- char *s;
- size_t slen;
- static const char suffix[] = "/jemalloc.XXXXXX";
-
- if ((s = getenv("MALLOC_TMPDIR")) == NULL && (s =
- getenv("TMPDIR")) == NULL)
- s = P_tmpdir;
- slen = strlen(s);
- if (slen + sizeof(suffix) > sizeof(pagefile_templ)) {
- _malloc_message(_getprogname(),
- ": (malloc) Page file path too long\n",
- "", "");
- abort();
- }
- memcpy(pagefile_templ, s, slen);
- memcpy(&pagefile_templ[slen], suffix, sizeof(suffix));
- }
-#endif
-
- for (i = 0; i < 3; i++) {
- unsigned j;
-
- /* Get runtime configuration. */
- switch (i) {
- case 0:
-#ifndef MOZ_MEMORY_WINDOWS
- if ((linklen = readlink("/etc/malloc.conf", buf,
- sizeof(buf) - 1)) != -1) {
- /*
- * Use the contents of the "/etc/malloc.conf"
- * symbolic link's name.
- */
- buf[linklen] = '\0';
- opts = buf;
- } else
-#endif
- {
- /* No configuration specified. */
- buf[0] = '\0';
- opts = buf;
- }
- break;
- case 1:
- if (issetugid() == 0 && (opts =
- getenv("MALLOC_OPTIONS")) != NULL) {
- /*
- * Do nothing; opts is already initialized to
- * the value of the MALLOC_OPTIONS environment
- * variable.
- */
- } else {
- /* No configuration specified. */
- buf[0] = '\0';
- opts = buf;
- }
- break;
- case 2:
- if (_malloc_options != NULL) {
- /*
- * Use options that were compiled into the
- * program.
- */
- opts = _malloc_options;
- } else {
- /* No configuration specified. */
- buf[0] = '\0';
- opts = buf;
- }
- break;
- default:
- /* NOTREACHED */
- buf[0] = '\0';
- opts = buf;
- assert(false);
- }
-
- for (j = 0; opts[j] != '\0'; j++) {
- unsigned k, nreps;
- bool nseen;
-
- /* Parse repetition count, if any. */
- for (nreps = 0, nseen = false;; j++, nseen = true) {
- switch (opts[j]) {
- case '0': case '1': case '2': case '3':
- case '4': case '5': case '6': case '7':
- case '8': case '9':
- nreps *= 10;
- nreps += opts[j] - '0';
- break;
- default:
- goto MALLOC_OUT;
- }
- }
-MALLOC_OUT:
- if (nseen == false)
- nreps = 1;
-
- for (k = 0; k < nreps; k++) {
- switch (opts[j]) {
- case 'a':
- opt_abort = false;
- break;
- case 'A':
- opt_abort = true;
- break;
- case 'b':
-#ifdef MALLOC_BALANCE
- opt_balance_threshold >>= 1;
-#endif
- break;
- case 'B':
-#ifdef MALLOC_BALANCE
- if (opt_balance_threshold == 0)
- opt_balance_threshold = 1;
- else if ((opt_balance_threshold << 1)
- > opt_balance_threshold)
- opt_balance_threshold <<= 1;
-#endif
- break;
- case 'f':
- opt_dirty_max >>= 1;
- break;
- case 'F':
- if (opt_dirty_max == 0)
- opt_dirty_max = 1;
- else if ((opt_dirty_max << 1) != 0)
- opt_dirty_max <<= 1;
- break;
- case 'g':
- opt_reserve_range_lshift--;
- break;
- case 'G':
- opt_reserve_range_lshift++;
- break;
-#ifdef MALLOC_FILL
- case 'j':
- opt_junk = false;
- break;
- case 'J':
- opt_junk = true;
- break;
-#endif
- case 'k':
- /*
- * Chunks always require at least one
- * header page, so chunks can never be
- * smaller than two pages.
- */
- if (opt_chunk_2pow > pagesize_2pow + 1)
- opt_chunk_2pow--;
- break;
- case 'K':
- if (opt_chunk_2pow + 1 <
- (sizeof(size_t) << 3))
- opt_chunk_2pow++;
- break;
- case 'n':
- opt_narenas_lshift--;
- break;
- case 'N':
- opt_narenas_lshift++;
- break;
-#ifdef MALLOC_PAGEFILE
- case 'o':
- /* Do not over-commit. */
- opt_pagefile = true;
- break;
- case 'O':
- /* Allow over-commit. */
- opt_pagefile = false;
- break;
-#endif
- case 'p':
- opt_print_stats = false;
- break;
- case 'P':
- opt_print_stats = true;
- break;
- case 'q':
- if (opt_quantum_2pow > QUANTUM_2POW_MIN)
- opt_quantum_2pow--;
- break;
- case 'Q':
- if (opt_quantum_2pow < pagesize_2pow -
- 1)
- opt_quantum_2pow++;
- break;
- case 'r':
- opt_reserve_min_lshift--;
- break;
- case 'R':
- opt_reserve_min_lshift++;
- break;
- case 's':
- if (opt_small_max_2pow >
- QUANTUM_2POW_MIN)
- opt_small_max_2pow--;
- break;
- case 'S':
- if (opt_small_max_2pow < pagesize_2pow
- - 1)
- opt_small_max_2pow++;
- break;
-#ifdef MALLOC_UTRACE
- case 'u':
- opt_utrace = false;
- break;
- case 'U':
- opt_utrace = true;
- break;
-#endif
-#ifdef MALLOC_SYSV
- case 'v':
- opt_sysv = false;
- break;
- case 'V':
- opt_sysv = true;
- break;
-#endif
-#ifdef MALLOC_XMALLOC
- case 'x':
- opt_xmalloc = false;
- break;
- case 'X':
- opt_xmalloc = true;
- break;
-#endif
-#ifdef MALLOC_FILL
- case 'z':
- opt_zero = false;
- break;
- case 'Z':
- opt_zero = true;
- break;
-#endif
- default: {
- char cbuf[2];
-
- cbuf[0] = opts[j];
- cbuf[1] = '\0';
- _malloc_message(_getprogname(),
- ": (malloc) Unsupported character "
- "in malloc options: '", cbuf,
- "'\n");
- }
- }
- }
- }
- }
-
- /* Take care to call atexit() only once. */
- if (opt_print_stats) {
-#ifndef MOZ_MEMORY_WINDOWS
- /* Print statistics at exit. */
- atexit(malloc_print_stats);
-#endif
- }
-
-#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN))
- /* Prevent potential deadlock on malloc locks after fork. */
- pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork);
-#endif
-
- /* Set variables according to the value of opt_small_max_2pow. */
- if (opt_small_max_2pow < opt_quantum_2pow)
- opt_small_max_2pow = opt_quantum_2pow;
- small_max = (1U << opt_small_max_2pow);
-
- /* Set bin-related variables. */
- bin_maxclass = (pagesize >> 1);
- assert(opt_quantum_2pow >= TINY_MIN_2POW);
- ntbins = opt_quantum_2pow - TINY_MIN_2POW;
- assert(ntbins <= opt_quantum_2pow);
- nqbins = (small_max >> opt_quantum_2pow);
- nsbins = pagesize_2pow - opt_small_max_2pow - 1;
-
- /* Set variables according to the value of opt_quantum_2pow. */
- quantum = (1U << opt_quantum_2pow);
- quantum_mask = quantum - 1;
- if (ntbins > 0)
- small_min = (quantum >> 1) + 1;
- else
- small_min = 1;
- assert(small_min <= quantum);
-
- /* Set variables according to the value of opt_chunk_2pow. */
- chunksize = (1LU << opt_chunk_2pow);
- chunksize_mask = chunksize - 1;
- chunk_npages = (chunksize >> pagesize_2pow);
- {
- size_t header_size;
-
- /*
- * Compute the header size such that it is large
- * enough to contain the page map and enough nodes for the
- * worst case: one node per non-header page plus one extra for
- * situations where we briefly have one more node allocated
- * than we will need.
- */
- header_size = sizeof(arena_chunk_t) +
- (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
- arena_chunk_header_npages = (header_size >> pagesize_2pow) +
- ((header_size & pagesize_mask) != 0);
- }
- arena_maxclass = chunksize - (arena_chunk_header_npages <<
- pagesize_2pow);
-
-#ifdef JEMALLOC_USES_MAP_ALIGN
- /*
- * When using MAP_ALIGN, the alignment parameter must be a power of two
- * multiple of the system pagesize, or mmap will fail.
- */
- assert((chunksize % pagesize) == 0);
- assert((1 << (ffs(chunksize / pagesize) - 1)) == (chunksize/pagesize));
-#endif
-
- UTRACE(0, 0, 0);
-
-#ifdef MALLOC_STATS
- memset(&stats_chunks, 0, sizeof(chunk_stats_t));
-#endif
-
- /* Various sanity checks that regard configuration. */
- assert(quantum >= sizeof(void *));
- assert(quantum <= pagesize);
- assert(chunksize >= pagesize);
- assert(quantum * 4 <= chunksize);
-
- /* Initialize chunks data. */
- malloc_mutex_init(&huge_mtx);
- extent_tree_ad_new(&huge);
-#ifdef MALLOC_STATS
- huge_nmalloc = 0;
- huge_ndalloc = 0;
- huge_allocated = 0;
-#endif
-
- /* Initialize base allocation data structures. */
-#ifdef MALLOC_STATS
- base_mapped = 0;
-#endif
- base_nodes = NULL;
- base_reserve_regs = NULL;
- malloc_mutex_init(&base_mtx);
-
-#ifdef MOZ_MEMORY_NARENAS_DEFAULT_ONE
- narenas = 1;
-#else
- if (ncpus > 1) {
- /*
- * For SMP systems, create four times as many arenas as there
- * are CPUs by default.
- */
- opt_narenas_lshift += 2;
- }
-
- /* Determine how many arenas to use. */
- narenas = ncpus;
-#endif
- if (opt_narenas_lshift > 0) {
- if ((narenas << opt_narenas_lshift) > narenas)
- narenas <<= opt_narenas_lshift;
- /*
- * Make sure not to exceed the limits of what base_alloc() can
- * handle.
- */
- if (narenas * sizeof(arena_t *) > chunksize)
- narenas = chunksize / sizeof(arena_t *);
- } else if (opt_narenas_lshift < 0) {
- if ((narenas >> -opt_narenas_lshift) < narenas)
- narenas >>= -opt_narenas_lshift;
- /* Make sure there is at least one arena. */
- if (narenas == 0)
- narenas = 1;
- }
-#ifdef MALLOC_BALANCE
- assert(narenas != 0);
- for (narenas_2pow = 0;
- (narenas >> (narenas_2pow + 1)) != 0;
- narenas_2pow++);
-#endif
-
-#ifdef NO_TLS
- if (narenas > 1) {
- static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
- 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
- 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
- 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
- 223, 227, 229, 233, 239, 241, 251, 257, 263};
- unsigned nprimes, parenas;
-
- /*
- * Pick a prime number of hash arenas that is more than narenas
- * so that direct hashing of pthread_self() pointers tends to
- * spread allocations evenly among the arenas.
- */
- assert((narenas & 1) == 0); /* narenas must be even. */
- nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
- parenas = primes[nprimes - 1]; /* In case not enough primes. */
- for (i = 1; i < nprimes; i++) {
- if (primes[i] > narenas) {
- parenas = primes[i];
- break;
- }
- }
- narenas = parenas;
- }
-#endif
-
-#ifndef NO_TLS
-# ifndef MALLOC_BALANCE
- next_arena = 0;
-# endif
-#endif
-
- /* Allocate and initialize arenas. */
- arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
- if (arenas == NULL) {
-#ifndef MOZ_MEMORY_WINDOWS
- malloc_mutex_unlock(&init_lock);
-#endif
- return (true);
- }
- /*
- * Zero the array. In practice, this should always be pre-zeroed,
- * since it was just mmap()ed, but let's be sure.
- */
- memset(arenas, 0, sizeof(arena_t *) * narenas);
-
- /*
- * Initialize one arena here. The rest are lazily created in
- * choose_arena_hard().
- */
- arenas_extend(0);
- if (arenas[0] == NULL) {
-#ifndef MOZ_MEMORY_WINDOWS
- malloc_mutex_unlock(&init_lock);
-#endif
- return (true);
- }
-#ifndef NO_TLS
- /*
- * Assign the initial arena to the initial thread, in order to avoid
- * spurious creation of an extra arena if the application switches to
- * threaded mode.
- */
-#ifdef MOZ_MEMORY_WINDOWS
- TlsSetValue(tlsIndex, arenas[0]);
-#else
- arenas_map = arenas[0];
-#endif
-#endif
-
- /*
- * Seed here for the initial thread, since choose_arena_hard() is only
- * called for other threads. The seed value doesn't really matter.
- */
-#ifdef MALLOC_BALANCE
- SPRN(balance, 42);
-#endif
-
- malloc_spin_init(&arenas_lock);
-
-#ifdef MALLOC_VALIDATE
- chunk_rtree = malloc_rtree_new((SIZEOF_PTR << 3) - opt_chunk_2pow);
- if (chunk_rtree == NULL)
- return (true);
-#endif
-
- /*
- * Configure and initialize the memory reserve. This needs to happen
- * late during initialization, since chunks are allocated.
- */
- malloc_mutex_init(&reserve_mtx);
- reserve_min = 0;
- reserve_cur = 0;
- reserve_max = 0;
- if (RESERVE_RANGE_2POW_DEFAULT + opt_reserve_range_lshift >= 0) {
- reserve_max += chunksize << (RESERVE_RANGE_2POW_DEFAULT +
- opt_reserve_range_lshift);
- }
- ql_new(&reserve_regs);
- reserve_seq = 0;
- extent_tree_szad_new(&reserve_chunks_szad);
- extent_tree_ad_new(&reserve_chunks_ad);
- if (RESERVE_MIN_2POW_DEFAULT + opt_reserve_min_lshift >= 0) {
- reserve_min_set(chunksize << (RESERVE_MIN_2POW_DEFAULT +
- opt_reserve_min_lshift));
- }
-
- malloc_initialized = true;
-#ifndef MOZ_MEMORY_WINDOWS
- malloc_mutex_unlock(&init_lock);
-#endif
- return (false);
-}
-
-/* XXX Why not just expose malloc_print_stats()? */
-#ifdef MOZ_MEMORY_WINDOWS
-void
-malloc_shutdown()
-{
-
- malloc_print_stats();
-}
-#endif
-
-/*
- * End general internal functions.
- */
-/******************************************************************************/
-/*
- * Begin malloc(3)-compatible functions.
- */
-
-/*
- * Inline the standard malloc functions if they are being subsumed by Darwin's
- * zone infrastructure.
- */
-#ifdef MOZ_MEMORY_DARWIN
-# define ZONE_INLINE inline
-#else
-# define ZONE_INLINE
-#endif
-
-/* Mangle standard interfaces on Darwin and Windows CE,
- in order to avoid linking problems. */
-#ifdef MOZ_MEMORY_DARWIN
-#define DONT_OVERRIDE_LIBC
-#endif
-
-#if defined(DONT_OVERRIDE_LIBC)
-#define malloc(a) je_malloc(a)
-#define valloc(a) je_valloc(a)
-#define calloc(a, b) je_calloc(a, b)
-#define realloc(a, b) je_realloc(a, b)
-#define free(a) je_free(a)
-#define _msize(p) je_msize(p)
-#define _recalloc(p, n, s) je_recalloc(p, n, s)
-#endif
-
-ZONE_INLINE
-void *
-malloc(size_t size)
-{
- void *ret;
-
- if (malloc_init()) {
- ret = NULL;
- goto RETURN;
- }
-
- if (size == 0) {
-#ifdef MALLOC_SYSV
- if (opt_sysv == false)
-#endif
- size = 1;
-#ifdef MALLOC_SYSV
- else {
- ret = NULL;
- goto RETURN;
- }
-#endif
- }
-
- ret = imalloc(size);
-
-RETURN:
- if (ret == NULL) {
-#ifdef MALLOC_XMALLOC
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in malloc(): out of memory\n", "",
- "");
- abort();
- }
-#endif
- errno = ENOMEM;
- }
-
- UTRACE(0, size, ret);
- return (ret);
-}
-
-#ifdef MOZ_MEMORY_SOLARIS
-# ifdef __SUNPRO_C
-void *
-memalign(size_t alignment, size_t size);
-#pragma no_inline(memalign)
-# elif (defined(__GNU_C__))
-__attribute__((noinline))
-# endif
-#else
-inline
-#endif
-void *
-memalign(size_t alignment, size_t size)
-{
- void *ret;
-
- assert(((alignment - 1) & alignment) == 0 && alignment >=
- sizeof(void *));
-
- if (malloc_init()) {
- ret = NULL;
- goto RETURN;
- }
-
- ret = ipalloc(alignment, size);
-
-RETURN:
-#ifdef MALLOC_XMALLOC
- if (opt_xmalloc && ret == NULL) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in memalign(): out of memory\n", "", "");
- abort();
- }
-#endif
- UTRACE(0, size, ret);
- return (ret);
-}
-
-ZONE_INLINE
-int
-posix_memalign(void **memptr, size_t alignment, size_t size)
-{
- void *result;
-
- /* Make sure that alignment is a large enough power of 2. */
- if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) {
-#ifdef MALLOC_XMALLOC
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in posix_memalign(): "
- "invalid alignment\n", "", "");
- abort();
- }
-#endif
- return (EINVAL);
- }
-
-#ifdef MOZ_MEMORY_DARWIN
- result = moz_memalign(alignment, size);
-#else
- result = memalign(alignment, size);
-#endif
- if (result == NULL)
- return (ENOMEM);
-
- *memptr = result;
- return (0);
-}
-
-ZONE_INLINE
-void *
-valloc(size_t size)
-{
-#ifdef MOZ_MEMORY_DARWIN
- return (moz_memalign(pagesize, size));
-#else
- return (memalign(pagesize, size));
-#endif
-}
-
-ZONE_INLINE
-void *
-calloc(size_t num, size_t size)
-{
- void *ret;
- size_t num_size;
-
- if (malloc_init()) {
- num_size = 0;
- ret = NULL;
- goto RETURN;
- }
-
- num_size = num * size;
- if (num_size == 0) {
-#ifdef MALLOC_SYSV
- if ((opt_sysv == false) && ((num == 0) || (size == 0)))
-#endif
- num_size = 1;
-#ifdef MALLOC_SYSV
- else {
- ret = NULL;
- goto RETURN;
- }
-#endif
- /*
- * Try to avoid division here. We know that it isn't possible to
- * overflow during multiplication if neither operand uses any of the
- * most significant half of the bits in a size_t.
- */
- } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
- && (num_size / size != num)) {
- /* size_t overflow. */
- ret = NULL;
- goto RETURN;
- }
-
- ret = icalloc(num_size);
-
-RETURN:
- if (ret == NULL) {
-#ifdef MALLOC_XMALLOC
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in calloc(): out of memory\n", "",
- "");
- abort();
- }
-#endif
- errno = ENOMEM;
- }
-
- UTRACE(0, num_size, ret);
- return (ret);
-}
-
-ZONE_INLINE
-void *
-realloc(void *ptr, size_t size)
-{
- void *ret;
-
- if (size == 0) {
-#ifdef MALLOC_SYSV
- if (opt_sysv == false)
-#endif
- size = 1;
-#ifdef MALLOC_SYSV
- else {
- if (ptr != NULL)
- idalloc(ptr);
- ret = NULL;
- goto RETURN;
- }
-#endif
- }
-
- if (ptr != NULL) {
- assert(malloc_initialized);
-
- ret = iralloc(ptr, size);
-
- if (ret == NULL) {
-#ifdef MALLOC_XMALLOC
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in realloc(): out of "
- "memory\n", "", "");
- abort();
- }
-#endif
- errno = ENOMEM;
- }
- } else {
- if (malloc_init())
- ret = NULL;
- else
- ret = imalloc(size);
-
- if (ret == NULL) {
-#ifdef MALLOC_XMALLOC
- if (opt_xmalloc) {
- _malloc_message(_getprogname(),
- ": (malloc) Error in realloc(): out of "
- "memory\n", "", "");
- abort();
- }
-#endif
- errno = ENOMEM;
- }
- }
-
-#ifdef MALLOC_SYSV
-RETURN:
-#endif
- UTRACE(ptr, size, ret);
- return (ret);
-}
-
-ZONE_INLINE
-void
-free(void *ptr)
-{
-
- UTRACE(ptr, 0, 0);
- if (ptr != NULL) {
- assert(malloc_initialized);
-
- idalloc(ptr);
- }
-}
-
-/*
- * End malloc(3)-compatible functions.
- */
-/******************************************************************************/
-/*
- * Begin non-standard functions.
- */
-
-size_t
-malloc_usable_size(const void *ptr)
-{
-
-#ifdef MALLOC_VALIDATE
- return (isalloc_validate(ptr));
-#else
- assert(ptr != NULL);
-
- return (isalloc(ptr));
-#endif
-}
-
-void
-jemalloc_stats(jemalloc_stats_t *stats)
-{
- size_t i;
-
- assert(stats != NULL);
-
- /*
- * Gather runtime settings.
- */
- stats->opt_abort = opt_abort;
- stats->opt_junk =
-#ifdef MALLOC_FILL
- opt_junk ? true :
-#endif
- false;
- stats->opt_utrace =
-#ifdef MALLOC_UTRACE
- opt_utrace ? true :
-#endif
- false;
- stats->opt_sysv =
-#ifdef MALLOC_SYSV
- opt_sysv ? true :
-#endif
- false;
- stats->opt_xmalloc =
-#ifdef MALLOC_XMALLOC
- opt_xmalloc ? true :
-#endif
- false;
- stats->opt_zero =
-#ifdef MALLOC_FILL
- opt_zero ? true :
-#endif
- false;
- stats->narenas = narenas;
- stats->balance_threshold =
-#ifdef MALLOC_BALANCE
- opt_balance_threshold
-#else
- SIZE_T_MAX
-#endif
- ;
- stats->quantum = quantum;
- stats->small_max = small_max;
- stats->large_max = arena_maxclass;
- stats->chunksize = chunksize;
- stats->dirty_max = opt_dirty_max;
-
- malloc_mutex_lock(&reserve_mtx);
- stats->reserve_min = reserve_min;
- stats->reserve_max = reserve_max;
- stats->reserve_cur = reserve_cur;
- malloc_mutex_unlock(&reserve_mtx);
-
- /*
- * Gather current memory usage statistics.
- */
- stats->mapped = 0;
- stats->committed = 0;
- stats->allocated = 0;
- stats->dirty = 0;
-
- /* Get huge mapped/allocated. */
- malloc_mutex_lock(&huge_mtx);
- stats->mapped += stats_chunks.curchunks * chunksize;
-#ifdef MALLOC_DECOMMIT
- stats->committed += huge_allocated;
-#endif
- stats->allocated += huge_allocated;
- malloc_mutex_unlock(&huge_mtx);
-
- /* Get base mapped. */
- malloc_mutex_lock(&base_mtx);
- stats->mapped += base_mapped;
-#ifdef MALLOC_DECOMMIT
- stats->committed += base_mapped;
-#endif
- malloc_mutex_unlock(&base_mtx);
-
- /* Iterate over arenas and their chunks. */
- for (i = 0; i < narenas; i++) {
- arena_t *arena = arenas[i];
- if (arena != NULL) {
- arena_chunk_t *chunk;
-
- malloc_spin_lock(&arena->lock);
- stats->allocated += arena->stats.allocated_small;
- stats->allocated += arena->stats.allocated_large;
-#ifdef MALLOC_DECOMMIT
- rb_foreach_begin(arena_chunk_t, link_dirty,
- &arena->chunks_dirty, chunk) {
- size_t j;
-
- for (j = 0; j < chunk_npages; j++) {
- if ((chunk->map[j].bits &
- CHUNK_MAP_DECOMMITTED) == 0)
- stats->committed += pagesize;
- }
- } rb_foreach_end(arena_chunk_t, link_dirty,
- &arena->chunks_dirty, chunk)
-#endif
- stats->dirty += (arena->ndirty << pagesize_2pow);
- malloc_spin_unlock(&arena->lock);
- }
- }
-
-#ifndef MALLOC_DECOMMIT
- stats->committed = stats->mapped;
-#endif
-}
-
-void *
-xmalloc(size_t size)
-{
- void *ret;
-
- if (malloc_init())
- reserve_fail(size, "xmalloc");
-
- if (size == 0) {
-#ifdef MALLOC_SYSV
- if (opt_sysv == false)
-#endif
- size = 1;
-#ifdef MALLOC_SYSV
- else {
- _malloc_message(_getprogname(),
- ": (malloc) Error in xmalloc(): ",
- "invalid size 0", "\n");
- abort();
- }
-#endif
- }
-
- ret = imalloc(size);
- if (ret == NULL) {
- uint64_t seq = 0;
-
- do {
- seq = reserve_crit(size, "xmalloc", seq);
- ret = imalloc(size);
- } while (ret == NULL);
- }
-
- UTRACE(0, size, ret);
- return (ret);
-}
-
-void *
-xcalloc(size_t num, size_t size)
-{
- void *ret;
- size_t num_size;
-
- num_size = num * size;
- if (malloc_init())
- reserve_fail(num_size, "xcalloc");
-
- if (num_size == 0) {
-#ifdef MALLOC_SYSV
- if ((opt_sysv == false) && ((num == 0) || (size == 0)))
-#endif
- num_size = 1;
-#ifdef MALLOC_SYSV
- else {
- _malloc_message(_getprogname(),
- ": (malloc) Error in xcalloc(): ",
- "invalid size 0", "\n");
- abort();
- }
-#endif
- /*
- * Try to avoid division here. We know that it isn't possible to
- * overflow during multiplication if neither operand uses any of the
- * most significant half of the bits in a size_t.
- */
- } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
- && (num_size / size != num)) {
- /* size_t overflow. */
- _malloc_message(_getprogname(),
- ": (malloc) Error in xcalloc(): ",
- "size overflow", "\n");
- abort();
- }
-
- ret = icalloc(num_size);
- if (ret == NULL) {
- uint64_t seq = 0;
-
- do {
- seq = reserve_crit(num_size, "xcalloc", seq);
- ret = icalloc(num_size);
- } while (ret == NULL);
- }
-
- UTRACE(0, num_size, ret);
- return (ret);
-}
-
-void *
-xrealloc(void *ptr, size_t size)
-{
- void *ret;
-
- if (size == 0) {
-#ifdef MALLOC_SYSV
- if (opt_sysv == false)
-#endif
- size = 1;
-#ifdef MALLOC_SYSV
- else {
- if (ptr != NULL)
- idalloc(ptr);
- _malloc_message(_getprogname(),
- ": (malloc) Error in xrealloc(): ",
- "invalid size 0", "\n");
- abort();
- }
-#endif
- }
-
- if (ptr != NULL) {
- assert(malloc_initialized);
-
- ret = iralloc(ptr, size);
- if (ret == NULL) {
- uint64_t seq = 0;
-
- do {
- seq = reserve_crit(size, "xrealloc", seq);
- ret = iralloc(ptr, size);
- } while (ret == NULL);
- }
- } else {
- if (malloc_init())
- reserve_fail(size, "xrealloc");
-
- ret = imalloc(size);
- if (ret == NULL) {
- uint64_t seq = 0;
-
- do {
- seq = reserve_crit(size, "xrealloc", seq);
- ret = imalloc(size);
- } while (ret == NULL);
- }
- }
-
- UTRACE(ptr, size, ret);
- return (ret);
-}
-
-void *
-xmemalign(size_t alignment, size_t size)
-{
- void *ret;
-
- assert(((alignment - 1) & alignment) == 0 && alignment >=
- sizeof(void *));
-
- if (malloc_init())
- reserve_fail(size, "xmemalign");
-
- ret = ipalloc(alignment, size);
- if (ret == NULL) {
- uint64_t seq = 0;
-
- do {
- seq = reserve_crit(size, "xmemalign", seq);
- ret = ipalloc(alignment, size);
- } while (ret == NULL);
- }
-
- UTRACE(0, size, ret);
- return (ret);
-}
-
-static void
-reserve_shrink(void)
-{
- extent_node_t *node;
-
- assert(reserve_cur > reserve_max);
-#ifdef MALLOC_DEBUG
- {
- extent_node_t *node;
- size_t reserve_size;
-
- reserve_size = 0;
- rb_foreach_begin(extent_node_t, link_szad, &reserve_chunks_szad,
- node) {
- reserve_size += node->size;
- } rb_foreach_end(extent_node_t, link_szad, &reserve_chunks_szad,
- node)
- assert(reserve_size == reserve_cur);
-
- reserve_size = 0;
- rb_foreach_begin(extent_node_t, link_ad, &reserve_chunks_ad,
- node) {
- reserve_size += node->size;
- } rb_foreach_end(extent_node_t, link_ad, &reserve_chunks_ad,
- node)
- assert(reserve_size == reserve_cur);
- }
-#endif
-
- /* Discard chunks until the the reserve is below the size limit. */
- rb_foreach_reverse_begin(extent_node_t, link_ad, &reserve_chunks_ad,
- node) {
-#ifndef MALLOC_DECOMMIT
- if (node->size <= reserve_cur - reserve_max) {
-#endif
- extent_node_t *tnode = extent_tree_ad_prev(
- &reserve_chunks_ad, node);
-
-#ifdef MALLOC_DECOMMIT
- assert(node->size <= reserve_cur - reserve_max);
-#endif
-
- /* Discard the entire [multi-]chunk. */
- extent_tree_szad_remove(&reserve_chunks_szad, node);
- extent_tree_ad_remove(&reserve_chunks_ad, node);
- reserve_cur -= node->size;
- pages_unmap(node->addr, node->size);
-#ifdef MALLOC_STATS
- stats_chunks.curchunks -= (node->size / chunksize);
-#endif
- base_node_dealloc(node);
- if (reserve_cur == reserve_max)
- break;
-
- rb_foreach_reverse_prev(extent_node_t, link_ad,
- extent_ad_comp, &reserve_chunks_ad, tnode);
-#ifndef MALLOC_DECOMMIT
- } else {
- /* Discard the end of the multi-chunk. */
- extent_tree_szad_remove(&reserve_chunks_szad, node);
- node->size -= reserve_cur - reserve_max;
- extent_tree_szad_insert(&reserve_chunks_szad, node);
- pages_unmap((void *)((uintptr_t)node->addr +
- node->size), reserve_cur - reserve_max);
-#ifdef MALLOC_STATS
- stats_chunks.curchunks -= ((reserve_cur - reserve_max) /
- chunksize);
-#endif
- reserve_cur = reserve_max;
- break;
- }
-#endif
- assert(reserve_cur > reserve_max);
- } rb_foreach_reverse_end(extent_node_t, link_ad, &reserve_chunks_ad,
- node)
-}
-
-/* Send a condition notification. */
-static uint64_t
-reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq)
-{
- reserve_reg_t *reg;
-
- /* seq is used to keep track of distinct condition-causing events. */
- if (seq == 0) {
- /* Allocate new sequence number. */
- reserve_seq++;
- seq = reserve_seq;
- }
-
- /*
- * Advance to the next callback registration and send a notification,
- * unless one has already been sent for this condition-causing event.
- */
- reg = ql_first(&reserve_regs);
- if (reg == NULL)
- return (0);
- ql_first(&reserve_regs) = ql_next(&reserve_regs, reg, link);
- if (reg->seq == seq)
- return (0);
- reg->seq = seq;
- malloc_mutex_unlock(&reserve_mtx);
- reg->cb(reg->ctx, cnd, size);
- malloc_mutex_lock(&reserve_mtx);
-
- return (seq);
-}
-
-/* Allocation failure due to OOM. Try to free some memory via callbacks. */
-static uint64_t
-reserve_crit(size_t size, const char *fname, uint64_t seq)
-{
-
- /*
- * Send one condition notification. Iteration is handled by the
- * caller of this function.
- */
- malloc_mutex_lock(&reserve_mtx);
- seq = reserve_notify(RESERVE_CND_CRIT, size, seq);
- malloc_mutex_unlock(&reserve_mtx);
-
- /* If no notification could be sent, then no further recourse exists. */
- if (seq == 0)
- reserve_fail(size, fname);
-
- return (seq);
-}
-
-/* Permanent allocation failure due to OOM. */
-static void
-reserve_fail(size_t size, const char *fname)
-{
- uint64_t seq = 0;
-
- /* Send fail notifications. */
- malloc_mutex_lock(&reserve_mtx);
- do {
- seq = reserve_notify(RESERVE_CND_FAIL, size, seq);
- } while (seq != 0);
- malloc_mutex_unlock(&reserve_mtx);
-
- /* Terminate the application. */
- _malloc_message(_getprogname(),
- ": (malloc) Error in ", fname, "(): out of memory\n");
- abort();
-}
-
-bool
-reserve_cb_register(reserve_cb_t *cb, void *ctx)
-{
- reserve_reg_t *reg = base_reserve_reg_alloc();
- if (reg == NULL)
- return (true);
-
- ql_elm_new(reg, link);
- reg->cb = cb;
- reg->ctx = ctx;
- reg->seq = 0;
-
- malloc_mutex_lock(&reserve_mtx);
- ql_head_insert(&reserve_regs, reg, link);
- malloc_mutex_unlock(&reserve_mtx);
-
- return (false);
-}
-
-bool
-reserve_cb_unregister(reserve_cb_t *cb, void *ctx)
-{
- reserve_reg_t *reg = NULL;
-
- malloc_mutex_lock(&reserve_mtx);
- ql_foreach(reg, &reserve_regs, link) {
- if (reg->cb == cb && reg->ctx == ctx) {
- ql_remove(&reserve_regs, reg, link);
- break;
- }
- }
- malloc_mutex_unlock(&reserve_mtx);
-
- if (reg != NULL)
- base_reserve_reg_dealloc(reg);
- return (false);
- return (true);
-}
-
-size_t
-reserve_cur_get(void)
-{
- size_t ret;
-
- malloc_mutex_lock(&reserve_mtx);
- ret = reserve_cur;
- malloc_mutex_unlock(&reserve_mtx);
-
- return (ret);
-}
-
-size_t
-reserve_min_get(void)
-{
- size_t ret;
-
- malloc_mutex_lock(&reserve_mtx);
- ret = reserve_min;
- malloc_mutex_unlock(&reserve_mtx);
-
- return (ret);
-}
-
-bool
-reserve_min_set(size_t min)
-{
-
- min = CHUNK_CEILING(min);
-
- malloc_mutex_lock(&reserve_mtx);
- /* Keep |reserve_max - reserve_min| the same. */
- if (min < reserve_min) {
- reserve_max -= reserve_min - min;
- reserve_min = min;
- } else {
- /* Protect against wrap-around. */
- if (reserve_max + min - reserve_min < reserve_max) {
- reserve_min = SIZE_T_MAX - (reserve_max - reserve_min)
- - chunksize + 1;
- reserve_max = SIZE_T_MAX - chunksize + 1;
- } else {
- reserve_max += min - reserve_min;
- reserve_min = min;
- }
- }
-
- /* Resize the reserve if necessary. */
- if (reserve_cur < reserve_min) {
- size_t size = reserve_min - reserve_cur;
-
- /* Force the reserve to grow by allocating/deallocating. */
- malloc_mutex_unlock(&reserve_mtx);
-#ifdef MALLOC_DECOMMIT
- {
- void **chunks;
- size_t i, n;
-
- n = size >> opt_chunk_2pow;
- chunks = (void**)imalloc(n * sizeof(void *));
- if (chunks == NULL)
- return (true);
- for (i = 0; i < n; i++) {
- chunks[i] = huge_malloc(chunksize, false);
- if (chunks[i] == NULL) {
- size_t j;
-
- for (j = 0; j < i; j++) {
- huge_dalloc(chunks[j]);
- }
- idalloc(chunks);
- return (true);
- }
- }
- for (i = 0; i < n; i++)
- huge_dalloc(chunks[i]);
- idalloc(chunks);
- }
-#else
- {
- void *x = huge_malloc(size, false);
- if (x == NULL) {
- return (true);
- }
- huge_dalloc(x);
- }
-#endif
- } else if (reserve_cur > reserve_max) {
- reserve_shrink();
- malloc_mutex_unlock(&reserve_mtx);
- } else
- malloc_mutex_unlock(&reserve_mtx);
-
- return (false);
-}
-
-#ifdef MOZ_MEMORY_WINDOWS
-void*
-_recalloc(void *ptr, size_t count, size_t size)
-{
- size_t oldsize = (ptr != NULL) ? isalloc(ptr) : 0;
- size_t newsize = count * size;
-
- /*
- * In order for all trailing bytes to be zeroed, the caller needs to
- * use calloc(), followed by recalloc(). However, the current calloc()
- * implementation only zeros the bytes requested, so if recalloc() is
- * to work 100% correctly, calloc() will need to change to zero
- * trailing bytes.
- */
-
- ptr = realloc(ptr, newsize);
- if (ptr != NULL && oldsize < newsize) {
- memset((void *)((uintptr_t)ptr + oldsize), 0, newsize -
- oldsize);
- }
-
- return ptr;
-}
-
-/*
- * This impl of _expand doesn't ever actually expand or shrink blocks: it
- * simply replies that you may continue using a shrunk block.
- */
-void*
-_expand(void *ptr, size_t newsize)
-{
- if (isalloc(ptr) >= newsize)
- return ptr;
-
- return NULL;
-}
-
-size_t
-_msize(const void *ptr)
-{
- return malloc_usable_size(ptr);
-}
-#endif
-
-/*
- * End non-standard functions.
- */
-/******************************************************************************/
-/*
- * Begin library-private functions, used by threading libraries for protection
- * of malloc during fork(). These functions are only called if the program is
- * running in threaded mode, so there is no need to check whether the program
- * is threaded here.
- */
-
-void
-_malloc_prefork(void)
-{
- unsigned i;
-
- /* Acquire all mutexes in a safe order. */
-
- malloc_spin_lock(&arenas_lock);
- for (i = 0; i < narenas; i++) {
- if (arenas[i] != NULL)
- malloc_spin_lock(&arenas[i]->lock);
- }
- malloc_spin_unlock(&arenas_lock);
-
- malloc_mutex_lock(&base_mtx);
-
- malloc_mutex_lock(&huge_mtx);
-}
-
-void
-_malloc_postfork(void)
-{
- unsigned i;
-
- /* Release all mutexes, now that fork() has completed. */
-
- malloc_mutex_unlock(&huge_mtx);
-
- malloc_mutex_unlock(&base_mtx);
-
- malloc_spin_lock(&arenas_lock);
- for (i = 0; i < narenas; i++) {
- if (arenas[i] != NULL)
- malloc_spin_unlock(&arenas[i]->lock);
- }
- malloc_spin_unlock(&arenas_lock);
-}
-
-/*
- * End library-private functions.
- */
-/******************************************************************************/
-
-#ifdef HAVE_LIBDL
-# include <dlfcn.h>
-#endif
-
-#ifdef MOZ_MEMORY_DARWIN
-static malloc_zone_t zone;
-static struct malloc_introspection_t zone_introspect;
-
-static size_t
-zone_size(malloc_zone_t *zone, void *ptr)
-{
-
- /*
- * There appear to be places within Darwin (such as setenv(3)) that
- * cause calls to this function with pointers that *no* zone owns. If
- * we knew that all pointers were owned by *some* zone, we could split
- * our zone into two parts, and use one as the default allocator and
- * the other as the default deallocator/reallocator. Since that will
- * not work in practice, we must check all pointers to assure that they
- * reside within a mapped chunk before determining size.
- */
- return (isalloc_validate(ptr));
-}
-
-static void *
-zone_malloc(malloc_zone_t *zone, size_t size)
-{
-
- return (malloc(size));
-}
-
-static void *
-zone_calloc(malloc_zone_t *zone, size_t num, size_t size)
-{
-
- return (calloc(num, size));
-}
-
-static void *
-zone_valloc(malloc_zone_t *zone, size_t size)
-{
- void *ret = NULL; /* Assignment avoids useless compiler warning. */
-
- posix_memalign(&ret, pagesize, size);
-
- return (ret);
-}
-
-static void
-zone_free(malloc_zone_t *zone, void *ptr)
-{
-
- free(ptr);
-}
-
-static void *
-zone_realloc(malloc_zone_t *zone, void *ptr, size_t size)
-{
-
- return (realloc(ptr, size));
-}
-
-static void *
-zone_destroy(malloc_zone_t *zone)
-{
-
- /* This function should never be called. */
- assert(false);
- return (NULL);
-}
-
-static size_t
-zone_good_size(malloc_zone_t *zone, size_t size)
-{
- size_t ret;
- void *p;
-
- /*
- * Actually create an object of the appropriate size, then find out
- * how large it could have been without moving up to the next size
- * class.
- */
- p = malloc(size);
- if (p != NULL) {
- ret = isalloc(p);
- free(p);
- } else
- ret = size;
-
- return (ret);
-}
-
-static void
-zone_force_lock(malloc_zone_t *zone)
-{
-
- _malloc_prefork();
-}
-
-static void
-zone_force_unlock(malloc_zone_t *zone)
-{
-
- _malloc_postfork();
-}
-
-static malloc_zone_t *
-create_zone(void)
-{
-
- assert(malloc_initialized);
-
- zone.size = (void *)zone_size;
- zone.malloc = (void *)zone_malloc;
- zone.calloc = (void *)zone_calloc;
- zone.valloc = (void *)zone_valloc;
- zone.free = (void *)zone_free;
- zone.realloc = (void *)zone_realloc;
- zone.destroy = (void *)zone_destroy;
- zone.zone_name = "jemalloc_zone";
- zone.batch_malloc = NULL;
- zone.batch_free = NULL;
- zone.introspect = &zone_introspect;
-
- zone_introspect.enumerator = NULL;
- zone_introspect.good_size = (void *)zone_good_size;
- zone_introspect.check = NULL;
- zone_introspect.print = NULL;
- zone_introspect.log = NULL;
- zone_introspect.force_lock = (void *)zone_force_lock;
- zone_introspect.force_unlock = (void *)zone_force_unlock;
- zone_introspect.statistics = NULL;
-
- return (&zone);
-}
-
-__attribute__((constructor))
-void
-jemalloc_darwin_init(void)
-{
- extern unsigned malloc_num_zones;
- extern malloc_zone_t **malloc_zones;
-
- if (malloc_init_hard())
- abort();
-
- /*
- * The following code is *not* thread-safe, so it's critical that
- * initialization be manually triggered.
- */
-
- /* Register the custom zones. */
- malloc_zone_register(create_zone());
- assert(malloc_zones[malloc_num_zones - 1] == &zone);
-
- /*
- * Shift malloc_zones around so that zone is first, which makes it the
- * default zone.
- */
- assert(malloc_num_zones > 1);
- memmove(&malloc_zones[1], &malloc_zones[0],
- sizeof(malloc_zone_t *) * (malloc_num_zones - 1));
- malloc_zones[0] = &zone;
-}
-
-#elif defined(__GLIBC__) && !defined(__UCLIBC__)
-/*
- * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
- * to inconsistently reference libc's malloc(3)-compatible functions
- * (bug 493541).
- *
- * These definitions interpose hooks in glibc. The functions are actually
- * passed an extra argument for the caller return address, which will be
- * ignored.
- */
-void (*__free_hook)(void *ptr) = free;
-void *(*__malloc_hook)(size_t size) = malloc;
-void *(*__realloc_hook)(void *ptr, size_t size) = realloc;
-void *(*__memalign_hook)(size_t alignment, size_t size) = memalign;
-
-#elif defined(RTLD_DEEPBIND)
-/*
- * XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their
- * implementations permit similar inconsistencies? Should STV_SINGLETON
- * visibility be used for interposition where available?
- */
-# error "Interposing malloc is unsafe on this system without libc malloc hooks."
-#endif
-
+/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */ +/* vim:set softtabstop=8 shiftwidth=8: */ +/*- + * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice(s), this list of conditions and the following disclaimer as + * the first lines of this file unmodified other than the possible + * addition of one or more copyright notices. + * 2. Redistributions in binary form must reproduce the above copyright + * notice(s), this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE + * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ******************************************************************************* + * + * This allocator implementation is designed to provide scalable performance + * for multi-threaded programs on multi-processor systems. The following + * features are included for this purpose: + * + * + Multiple arenas are used if there are multiple CPUs, which reduces lock + * contention and cache sloshing. + * + * + Cache line sharing between arenas is avoided for internal data + * structures. + * + * + Memory is managed in chunks and runs (chunks can be split into runs), + * rather than as individual pages. This provides a constant-time + * mechanism for associating allocations with particular arenas. + * + * Allocation requests are rounded up to the nearest size class, and no record + * of the original request size is maintained. Allocations are broken into + * categories according to size class. Assuming runtime defaults, 4 kB pages + * and a 16 byte quantum on a 32-bit system, the size classes in each category + * are as follows: + * + * |=====================================| + * | Category | Subcategory | Size | + * |=====================================| + * | Small | Tiny | 2 | + * | | | 4 | + * | | | 8 | + * | |----------------+---------| + * | | Quantum-spaced | 16 | + * | | | 32 | + * | | | 48 | + * | | | ... | + * | | | 480 | + * | | | 496 | + * | | | 512 | + * | |----------------+---------| + * | | Sub-page | 1 kB | + * | | | 2 kB | + * |=====================================| + * | Large | 4 kB | + * | | 8 kB | + * | | 12 kB | + * | | ... | + * | | 1012 kB | + * | | 1016 kB | + * | | 1020 kB | + * |=====================================| + * | Huge | 1 MB | + * | | 2 MB | + * | | 3 MB | + * | | ... | + * |=====================================| + * + * A different mechanism is used for each category: + * + * Small : Each size class is segregated into its own set of runs. Each run + * maintains a bitmap of which regions are free/allocated. + * + * Large : Each allocation is backed by a dedicated run. Metadata are stored + * in the associated arena chunk header maps. + * + * Huge : Each allocation is backed by a dedicated contiguous set of chunks. + * Metadata are stored in a separate red-black tree. + * + ******************************************************************************* + */ + +/* + * NOTE(mbelshe): Added these defines to fit within chromium build system. + */ +#define MOZ_MEMORY_WINDOWS +#define MOZ_MEMORY +#define DONT_OVERRIDE_LIBC + +/* + * MALLOC_PRODUCTION disables assertions and statistics gathering. It also + * defaults the A and J runtime options to off. These settings are appropriate + * for production systems. + */ +#ifndef MOZ_MEMORY_DEBUG +# define MALLOC_PRODUCTION +#endif + +/* + * Use only one arena by default. Mozilla does not currently make extensive + * use of concurrent allocation, so the increased fragmentation associated with + * multiple arenas is not warranted. + */ +#define MOZ_MEMORY_NARENAS_DEFAULT_ONE + +/* + * MALLOC_STATS enables statistics calculation, and is required for + * jemalloc_stats(). + */ +#define MALLOC_STATS + +#ifndef MALLOC_PRODUCTION + /* + * MALLOC_DEBUG enables assertions and other sanity checks, and disables + * inline functions. + */ +# define MALLOC_DEBUG + + /* Memory filling (junk/zero). */ +# define MALLOC_FILL + + /* Allocation tracing. */ +# ifndef MOZ_MEMORY_WINDOWS +# define MALLOC_UTRACE +# endif + + /* Support optional abort() on OOM. */ +# define MALLOC_XMALLOC + + /* Support SYSV semantics. */ +# define MALLOC_SYSV +#endif + +/* + * MALLOC_VALIDATE causes malloc_usable_size() to perform some pointer + * validation. There are many possible errors that validation does not even + * attempt to detect. + */ +#define MALLOC_VALIDATE + +/* Embed no-op macros that support memory allocation tracking via valgrind. */ +#ifdef MOZ_VALGRIND +# define MALLOC_VALGRIND +#endif +#ifdef MALLOC_VALGRIND +# include <valgrind/valgrind.h> +#else +# define VALGRIND_MALLOCLIKE_BLOCK(addr, sizeB, rzB, is_zeroed) +# define VALGRIND_FREELIKE_BLOCK(addr, rzB) +#endif + +/* + * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically + * re-balances arena load if exponentially averaged contention exceeds a + * certain threshold. + */ +/* #define MALLOC_BALANCE */ + +#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN)) + /* + * MALLOC_PAGEFILE causes all mmap()ed memory to be backed by temporary + * files, so that if a chunk is mapped, it is guaranteed to be swappable. + * This avoids asynchronous OOM failures that are due to VM over-commit. + * + * XXX OS X over-commits, so we should probably use mmap() instead of + * vm_allocate(), so that MALLOC_PAGEFILE works. + */ +#define MALLOC_PAGEFILE +#endif + +#ifdef MALLOC_PAGEFILE +/* Write size when initializing a page file. */ +# define MALLOC_PAGEFILE_WRITE_SIZE 512 +#endif + +#ifdef MOZ_MEMORY_LINUX +#define _GNU_SOURCE /* For mremap(2). */ +#define issetugid() 0 +#if 0 /* Enable in order to test decommit code on Linux. */ +# define MALLOC_DECOMMIT +#endif +#endif + +#ifndef MOZ_MEMORY_WINCE +#include <sys/types.h> + +#include <errno.h> +#include <stdlib.h> +#endif +#include <limits.h> +#include <stdarg.h> +#include <stdio.h> +#include <string.h> + +#ifdef MOZ_MEMORY_WINDOWS +#ifndef MOZ_MEMORY_WINCE +//#include <cruntime.h> +//#include <internal.h> +#include <io.h> +#else +#include <cmnintrin.h> +#include <crtdefs.h> +#define SIZE_MAX UINT_MAX +#endif +#include <windows.h> + +#pragma warning( disable: 4267 4996 4146 ) + +#define false FALSE +#define true TRUE +#define inline __inline +#define SIZE_T_MAX SIZE_MAX +#define STDERR_FILENO 2 +#define PATH_MAX MAX_PATH +#define vsnprintf _vsnprintf + +#ifndef NO_TLS +static unsigned long tlsIndex = 0xffffffff; +#endif + +#define __thread +#ifdef MOZ_MEMORY_WINCE +#define _pthread_self() GetCurrentThreadId() +#else +#define _pthread_self() __threadid() +#endif +#define issetugid() 0 + +#ifndef MOZ_MEMORY_WINCE +/* use MSVC intrinsics */ +#pragma intrinsic(_BitScanForward) +static __forceinline int +ffs(int x) +{ + unsigned long i; + + if (_BitScanForward(&i, x) != 0) + return (i + 1); + + return (0); +} + +/* Implement getenv without using malloc */ +static char mozillaMallocOptionsBuf[64]; + +#define getenv xgetenv +static char * +getenv(const char *name) +{ + + if (GetEnvironmentVariableA(name, (LPSTR)&mozillaMallocOptionsBuf, + sizeof(mozillaMallocOptionsBuf)) > 0) + return (mozillaMallocOptionsBuf); + + return (NULL); +} + +#else /* WIN CE */ + +#define ENOMEM 12 +#define EINVAL 22 + +static __forceinline int +ffs(int x) +{ + + return 32 - _CountLeadingZeros((-x) & x); +} +#endif + +typedef unsigned char uint8_t; +typedef unsigned uint32_t; +typedef unsigned long long uint64_t; +typedef unsigned long long uintmax_t; +typedef long ssize_t; + +#define MALLOC_DECOMMIT +#endif + +#ifndef MOZ_MEMORY_WINDOWS +#ifndef MOZ_MEMORY_SOLARIS +#include <sys/cdefs.h> +#endif +#ifndef __DECONST +# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var)) +#endif +#ifndef MOZ_MEMORY +__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 180599 2008-07-18 19:35:44Z jasone $"); +#include "libc_private.h" +#ifdef MALLOC_DEBUG +# define _LOCK_DEBUG +#endif +#include "spinlock.h" +#include "namespace.h" +#endif +#include <sys/mman.h> +#ifndef MADV_FREE +# define MADV_FREE MADV_DONTNEED +#endif +#ifndef MAP_NOSYNC +# define MAP_NOSYNC 0 +#endif +#include <sys/param.h> +#ifndef MOZ_MEMORY +#include <sys/stddef.h> +#endif +#include <sys/time.h> +#include <sys/types.h> +#ifndef MOZ_MEMORY_SOLARIS +#include <sys/sysctl.h> +#endif +#include <sys/uio.h> +#ifndef MOZ_MEMORY +#include <sys/ktrace.h> /* Must come after several other sys/ includes. */ + +#include <machine/atomic.h> +#include <machine/cpufunc.h> +#include <machine/vmparam.h> +#endif + +#include <errno.h> +#include <limits.h> +#ifndef SIZE_T_MAX +# define SIZE_T_MAX SIZE_MAX +#endif +#include <pthread.h> +#ifdef MOZ_MEMORY_DARWIN +#define _pthread_self pthread_self +#define _pthread_mutex_init pthread_mutex_init +#define _pthread_mutex_trylock pthread_mutex_trylock +#define _pthread_mutex_lock pthread_mutex_lock +#define _pthread_mutex_unlock pthread_mutex_unlock +#endif +#include <sched.h> +#include <stdarg.h> +#include <stdbool.h> +#include <stdio.h> +#include <stdint.h> +#include <stdlib.h> +#include <string.h> +#ifndef MOZ_MEMORY_DARWIN +#include <strings.h> +#endif +#include <unistd.h> + +#ifdef MOZ_MEMORY_DARWIN +#include <libkern/OSAtomic.h> +#include <mach/mach_error.h> +#include <mach/mach_init.h> +#include <mach/vm_map.h> +#include <malloc/malloc.h> +#endif + +#ifndef MOZ_MEMORY +#include "un-namespace.h" +#endif + +#endif + +#include "jemalloc.h" + +#undef bool +#define bool jemalloc_bool + +#ifdef MOZ_MEMORY_DARWIN +static const bool __isthreaded = true; +#endif + +#if defined(MOZ_MEMORY_SOLARIS) && defined(MAP_ALIGN) && !defined(JEMALLOC_NEVER_USES_MAP_ALIGN) +#define JEMALLOC_USES_MAP_ALIGN /* Required on Solaris 10. Might improve performance elsewhere. */ +#endif + +#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6) +#define JEMALLOC_USES_MAP_ALIGN /* Required for Windows CE < 6 */ +#endif + +#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var)) + +#include "qr.h" +#include "ql.h" +#ifdef MOZ_MEMORY_WINDOWS + /* MSVC++ does not support C99 variable-length arrays. */ +# define RB_NO_C99_VARARRAYS +#endif +#include "rb.h" + +#ifdef MALLOC_DEBUG + /* Disable inlining to make debugging easier. */ +#ifdef inline +#undef inline +#endif + +# define inline +#endif + +/* Size of stack-allocated buffer passed to strerror_r(). */ +#define STRERROR_BUF 64 + +/* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */ +# define QUANTUM_2POW_MIN 4 +#ifdef MOZ_MEMORY_SIZEOF_PTR_2POW +# define SIZEOF_PTR_2POW MOZ_MEMORY_SIZEOF_PTR_2POW +#else +# define SIZEOF_PTR_2POW 2 +#endif +#define PIC +#ifndef MOZ_MEMORY_DARWIN +static const bool __isthreaded = true; +#else +# define NO_TLS +#endif +#if 0 +#ifdef __i386__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR_2POW 2 +# define CPU_SPINWAIT __asm__ volatile("pause") +#endif +#ifdef __ia64__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR_2POW 3 +#endif +#ifdef __alpha__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR_2POW 3 +# define NO_TLS +#endif +#ifdef __sparc64__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR_2POW 3 +# define NO_TLS +#endif +#ifdef __amd64__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR_2POW 3 +# define CPU_SPINWAIT __asm__ volatile("pause") +#endif +#ifdef __arm__ +# define QUANTUM_2POW_MIN 3 +# define SIZEOF_PTR_2POW 2 +# define NO_TLS +#endif +#ifdef __mips__ +# define QUANTUM_2POW_MIN 3 +# define SIZEOF_PTR_2POW 2 +# define NO_TLS +#endif +#ifdef __powerpc__ +# define QUANTUM_2POW_MIN 4 +# define SIZEOF_PTR_2POW 2 +#endif +#endif + +#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW) + +/* sizeof(int) == (1U << SIZEOF_INT_2POW). */ +#ifndef SIZEOF_INT_2POW +# define SIZEOF_INT_2POW 2 +#endif + +/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */ +#if (!defined(PIC) && !defined(NO_TLS)) +# define NO_TLS +#endif + +#ifdef NO_TLS + /* MALLOC_BALANCE requires TLS. */ +# ifdef MALLOC_BALANCE +# undef MALLOC_BALANCE +# endif +#endif + +/* + * Size and alignment of memory chunks that are allocated by the OS's virtual + * memory system. + */ +#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6) +#define CHUNK_2POW_DEFAULT 21 +#else +#define CHUNK_2POW_DEFAULT 20 +#endif +/* Maximum number of dirty pages per arena. */ +#define DIRTY_MAX_DEFAULT (1U << 10) + +/* Default reserve chunks. */ +#define RESERVE_MIN_2POW_DEFAULT 1 +/* + * Default range (in chunks) between reserve_min and reserve_max, in addition + * to the mandatory one chunk per arena. + */ +#ifdef MALLOC_PAGEFILE +# define RESERVE_RANGE_2POW_DEFAULT 5 +#else +# define RESERVE_RANGE_2POW_DEFAULT 0 +#endif + +/* + * Maximum size of L1 cache line. This is used to avoid cache line aliasing, + * so over-estimates are okay (up to a point), but under-estimates will + * negatively affect performance. + */ +#define CACHELINE_2POW 6 +#define CACHELINE ((size_t)(1U << CACHELINE_2POW)) + +/* Smallest size class to support. */ +#define TINY_MIN_2POW 1 + +/* + * Maximum size class that is a multiple of the quantum, but not (necessarily) + * a power of 2. Above this size, allocations are rounded up to the nearest + * power of 2. + */ +#define SMALL_MAX_2POW_DEFAULT 9 +#define SMALL_MAX_DEFAULT (1U << SMALL_MAX_2POW_DEFAULT) + +/* + * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized + * as small as possible such that this setting is still honored, without + * violating other constraints. The goal is to make runs as small as possible + * without exceeding a per run external fragmentation threshold. + * + * We use binary fixed point math for overhead computations, where the binary + * point is implicitly RUN_BFP bits to the left. + * + * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be + * honored for some/all object sizes, since there is one bit of header overhead + * per object (plus a constant). This constraint is relaxed (ignored) for runs + * that are so small that the per-region overhead is greater than: + * + * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP)) + */ +#define RUN_BFP 12 +/* \/ Implicit binary fixed point. */ +#define RUN_MAX_OVRHD 0x0000003dU +#define RUN_MAX_OVRHD_RELAX 0x00001800U + +/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */ +#define RUN_MAX_SMALL_2POW 15 +#define RUN_MAX_SMALL (1U << RUN_MAX_SMALL_2POW) + +/* + * Hyper-threaded CPUs may need a special instruction inside spin loops in + * order to yield to another virtual CPU. If no such instruction is defined + * above, make CPU_SPINWAIT a no-op. + */ +#ifndef CPU_SPINWAIT +# define CPU_SPINWAIT +#endif + +/* + * Adaptive spinning must eventually switch to blocking, in order to avoid the + * potential for priority inversion deadlock. Backing off past a certain point + * can actually waste time. + */ +#define SPIN_LIMIT_2POW 11 + +/* + * Conversion from spinning to blocking is expensive; we use (1U << + * BLOCK_COST_2POW) to estimate how many more times costly blocking is than + * worst-case spinning. + */ +#define BLOCK_COST_2POW 4 + +#ifdef MALLOC_BALANCE + /* + * We use an exponential moving average to track recent lock contention, + * where the size of the history window is N, and alpha=2/(N+1). + * + * Due to integer math rounding, very small values here can cause + * substantial degradation in accuracy, thus making the moving average decay + * faster than it would with precise calculation. + */ +# define BALANCE_ALPHA_INV_2POW 9 + + /* + * Threshold value for the exponential moving contention average at which to + * re-assign a thread. + */ +# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4)) +#endif + +/******************************************************************************/ + +/* + * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all + * places, because they require malloc()ed memory, which causes bootstrapping + * issues in some cases. + */ +#if defined(MOZ_MEMORY_WINDOWS) +#define malloc_mutex_t CRITICAL_SECTION +#define malloc_spinlock_t CRITICAL_SECTION +#elif defined(MOZ_MEMORY_DARWIN) +typedef struct { + OSSpinLock lock; +} malloc_mutex_t; +typedef struct { + OSSpinLock lock; +} malloc_spinlock_t; +#elif defined(MOZ_MEMORY) +typedef pthread_mutex_t malloc_mutex_t; +typedef pthread_mutex_t malloc_spinlock_t; +#else +/* XXX these should #ifdef these for freebsd (and linux?) only */ +typedef struct { + spinlock_t lock; +} malloc_mutex_t; +typedef malloc_spinlock_t malloc_mutex_t; +#endif + +/* Set to true once the allocator has been initialized. */ +static bool malloc_initialized = false; + +#if defined(MOZ_MEMORY_WINDOWS) +/* No init lock for Windows. */ +#elif defined(MOZ_MEMORY_DARWIN) +static malloc_mutex_t init_lock = {OS_SPINLOCK_INIT}; +#elif defined(MOZ_MEMORY_LINUX) +static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP; +#elif defined(MOZ_MEMORY) +static malloc_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER; +#else +static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER}; +#endif + +/******************************************************************************/ +/* + * Statistics data structures. + */ + +#ifdef MALLOC_STATS + +typedef struct malloc_bin_stats_s malloc_bin_stats_t; +struct malloc_bin_stats_s { + /* + * Number of allocation requests that corresponded to the size of this + * bin. + */ + uint64_t nrequests; + + /* Total number of runs created for this bin's size class. */ + uint64_t nruns; + + /* + * Total number of runs reused by extracting them from the runs tree for + * this bin's size class. + */ + uint64_t reruns; + + /* High-water mark for this bin. */ + unsigned long highruns; + + /* Current number of runs in this bin. */ + unsigned long curruns; +}; + +typedef struct arena_stats_s arena_stats_t; +struct arena_stats_s { + /* Number of bytes currently mapped. */ + size_t mapped; + + /* + * Total number of purge sweeps, total number of madvise calls made, + * and total pages purged in order to keep dirty unused memory under + * control. + */ + uint64_t npurge; + uint64_t nmadvise; + uint64_t purged; +#ifdef MALLOC_DECOMMIT + /* + * Total number of decommit/commit operations, and total number of + * pages decommitted. + */ + uint64_t ndecommit; + uint64_t ncommit; + uint64_t decommitted; +#endif + + /* Per-size-category statistics. */ + size_t allocated_small; + uint64_t nmalloc_small; + uint64_t ndalloc_small; + + size_t allocated_large; + uint64_t nmalloc_large; + uint64_t ndalloc_large; + +#ifdef MALLOC_BALANCE + /* Number of times this arena reassigned a thread due to contention. */ + uint64_t nbalance; +#endif +}; + +typedef struct chunk_stats_s chunk_stats_t; +struct chunk_stats_s { + /* Number of chunks that were allocated. */ + uint64_t nchunks; + + /* High-water mark for number of chunks allocated. */ + unsigned long highchunks; + + /* + * Current number of chunks allocated. This value isn't maintained for + * any other purpose, so keep track of it in order to be able to set + * highchunks. + */ + unsigned long curchunks; +}; + +#endif /* #ifdef MALLOC_STATS */ + +/******************************************************************************/ +/* + * Extent data structures. + */ + +/* Tree of extents. */ +typedef struct extent_node_s extent_node_t; +struct extent_node_s { + /* Linkage for the size/address-ordered tree. */ + rb_node(extent_node_t) link_szad; + + /* Linkage for the address-ordered tree. */ + rb_node(extent_node_t) link_ad; + + /* Pointer to the extent that this tree node is responsible for. */ + void *addr; + + /* Total region size. */ + size_t size; +}; +typedef rb_tree(extent_node_t) extent_tree_t; + +/******************************************************************************/ +/* + * Radix tree data structures. + */ + +#ifdef MALLOC_VALIDATE + /* + * Size of each radix tree node (must be a power of 2). This impacts tree + * depth. + */ +# if (SIZEOF_PTR == 4) +# define MALLOC_RTREE_NODESIZE (1U << 14) +# else +# define MALLOC_RTREE_NODESIZE CACHELINE +# endif + +typedef struct malloc_rtree_s malloc_rtree_t; +struct malloc_rtree_s { + malloc_spinlock_t lock; + void **root; + unsigned height; + unsigned level2bits[1]; /* Dynamically sized. */ +}; +#endif + +/******************************************************************************/ +/* + * Reserve data structures. + */ + +/* Callback registration. */ +typedef struct reserve_reg_s reserve_reg_t; +struct reserve_reg_s { + /* Linkage for list of all registered callbacks. */ + ql_elm(reserve_reg_t) link; + + /* Callback function pointer. */ + reserve_cb_t *cb; + + /* Opaque application data pointer. */ + void *ctx; + + /* + * Sequence number of condition notification most recently sent to this + * callback. + */ + uint64_t seq; +}; + +/******************************************************************************/ +/* + * Arena data structures. + */ + +typedef struct arena_s arena_t; +typedef struct arena_bin_s arena_bin_t; + +/* Each element of the chunk map corresponds to one page within the chunk. */ +typedef struct arena_chunk_map_s arena_chunk_map_t; +struct arena_chunk_map_s { + /* + * Linkage for run trees. There are two disjoint uses: + * + * 1) arena_t's runs_avail tree. + * 2) arena_run_t conceptually uses this linkage for in-use non-full + * runs, rather than directly embedding linkage. + */ + rb_node(arena_chunk_map_t) link; + + /* + * Run address (or size) and various flags are stored together. The bit + * layout looks like (assuming 32-bit system): + * + * ???????? ???????? ????---- --ckdzla + * + * ? : Unallocated: Run address for first/last pages, unset for internal + * pages. + * Small: Run address. + * Large: Run size for first page, unset for trailing pages. + * - : Unused. + * c : decommitted? + * k : key? + * d : dirty? + * z : zeroed? + * l : large? + * a : allocated? + * + * Following are example bit patterns for the three types of runs. + * + * r : run address + * s : run size + * x : don't care + * - : 0 + * [cdzla] : bit set + * + * Unallocated: + * ssssssss ssssssss ssss---- --c----- + * xxxxxxxx xxxxxxxx xxxx---- ----d--- + * ssssssss ssssssss ssss---- -----z-- + * + * Small: + * rrrrrrrr rrrrrrrr rrrr---- -------a + * rrrrrrrr rrrrrrrr rrrr---- -------a + * rrrrrrrr rrrrrrrr rrrr---- -------a + * + * Large: + * ssssssss ssssssss ssss---- ------la + * -------- -------- -------- ------la + * -------- -------- -------- ------la + */ + size_t bits; +#ifdef MALLOC_DECOMMIT +#define CHUNK_MAP_DECOMMITTED ((size_t)0x20U) +#endif +#define CHUNK_MAP_KEY ((size_t)0x10U) +#define CHUNK_MAP_DIRTY ((size_t)0x08U) +#define CHUNK_MAP_ZEROED ((size_t)0x04U) +#define CHUNK_MAP_LARGE ((size_t)0x02U) +#define CHUNK_MAP_ALLOCATED ((size_t)0x01U) +}; +typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t; +typedef rb_tree(arena_chunk_map_t) arena_run_tree_t; + +/* Arena chunk header. */ +typedef struct arena_chunk_s arena_chunk_t; +struct arena_chunk_s { + /* Arena that owns the chunk. */ + arena_t *arena; + + /* Linkage for the arena's chunks_dirty tree. */ + rb_node(arena_chunk_t) link_dirty; + + /* Number of dirty pages. */ + size_t ndirty; + + /* Map of pages within chunk that keeps track of free/large/small. */ + arena_chunk_map_t map[1]; /* Dynamically sized. */ +}; +typedef rb_tree(arena_chunk_t) arena_chunk_tree_t; + +typedef struct arena_run_s arena_run_t; +struct arena_run_s { +#ifdef MALLOC_DEBUG + uint32_t magic; +# define ARENA_RUN_MAGIC 0x384adf93 +#endif + + /* Bin this run is associated with. */ + arena_bin_t *bin; + + /* Index of first element that might have a free region. */ + unsigned regs_minelm; + + /* Number of free regions in run. */ + unsigned nfree; + + /* Bitmask of in-use regions (0: in use, 1: free). */ + unsigned regs_mask[1]; /* Dynamically sized. */ +}; + +struct arena_bin_s { + /* + * Current run being used to service allocations of this bin's size + * class. + */ + arena_run_t *runcur; + + /* + * Tree of non-full runs. This tree is used when looking for an + * existing run when runcur is no longer usable. We choose the + * non-full run that is lowest in memory; this policy tends to keep + * objects packed well, and it can also help reduce the number of + * almost-empty chunks. + */ + arena_run_tree_t runs; + + /* Size of regions in a run for this bin's size class. */ + size_t reg_size; + + /* Total size of a run for this bin's size class. */ + size_t run_size; + + /* Total number of regions in a run for this bin's size class. */ + uint32_t nregs; + + /* Number of elements in a run's regs_mask for this bin's size class. */ + uint32_t regs_mask_nelms; + + /* Offset of first region in a run for this bin's size class. */ + uint32_t reg0_offset; + +#ifdef MALLOC_STATS + /* Bin statistics. */ + malloc_bin_stats_t stats; +#endif +}; + +struct arena_s { +#ifdef MALLOC_DEBUG + uint32_t magic; +# define ARENA_MAGIC 0x947d3d24 +#endif + + /* All operations on this arena require that lock be locked. */ +#ifdef MOZ_MEMORY + malloc_spinlock_t lock; +#else + pthread_mutex_t lock; +#endif + +#ifdef MALLOC_STATS + arena_stats_t stats; +#endif + + /* + * Chunk allocation sequence number, used to detect races with other + * threads during chunk allocation, and then discard unnecessary chunks. + */ + uint64_t chunk_seq; + + /* Tree of dirty-page-containing chunks this arena manages. */ + arena_chunk_tree_t chunks_dirty; + + /* + * In order to avoid rapid chunk allocation/deallocation when an arena + * oscillates right on the cusp of needing a new chunk, cache the most + * recently freed chunk. The spare is left in the arena's chunk trees + * until it is deleted. + * + * There is one spare chunk per arena, rather than one spare total, in + * order to avoid interactions between multiple threads that could make + * a single spare inadequate. + */ + arena_chunk_t *spare; + + /* + * Current count of pages within unused runs that are potentially + * dirty, and for which madvise(... MADV_FREE) has not been called. By + * tracking this, we can institute a limit on how much dirty unused + * memory is mapped for each arena. + */ + size_t ndirty; + + /* + * Size/address-ordered tree of this arena's available runs. This tree + * is used for first-best-fit run allocation. + */ + arena_avail_tree_t runs_avail; + +#ifdef MALLOC_BALANCE + /* + * The arena load balancing machinery needs to keep track of how much + * lock contention there is. This value is exponentially averaged. + */ + uint32_t contention; +#endif + + /* + * bins is used to store rings of free regions of the following sizes, + * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS. + * + * bins[i] | size | + * --------+------+ + * 0 | 2 | + * 1 | 4 | + * 2 | 8 | + * --------+------+ + * 3 | 16 | + * 4 | 32 | + * 5 | 48 | + * 6 | 64 | + * : : + * : : + * 33 | 496 | + * 34 | 512 | + * --------+------+ + * 35 | 1024 | + * 36 | 2048 | + * --------+------+ + */ + arena_bin_t bins[1]; /* Dynamically sized. */ +}; + +/******************************************************************************/ +/* + * Data. + */ + +/* Number of CPUs. */ +static unsigned ncpus; + +/* VM page size. */ +static size_t pagesize; +static size_t pagesize_mask; +static size_t pagesize_2pow; + +/* Various bin-related settings. */ +static size_t bin_maxclass; /* Max size class for bins. */ +static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */ +static unsigned nqbins; /* Number of quantum-spaced bins. */ +static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */ +static size_t small_min; +static size_t small_max; + +/* Various quantum-related settings. */ +static size_t quantum; +static size_t quantum_mask; /* (quantum - 1). */ + +/* Various chunk-related settings. */ +static size_t chunksize; +static size_t chunksize_mask; /* (chunksize - 1). */ +static size_t chunk_npages; +static size_t arena_chunk_header_npages; +static size_t arena_maxclass; /* Max size class for arenas. */ + +/********/ +/* + * Chunks. + */ + +#ifdef MALLOC_VALIDATE +static malloc_rtree_t *chunk_rtree; +#endif + +/* Protects chunk-related data structures. */ +static malloc_mutex_t huge_mtx; + +/* Tree of chunks that are stand-alone huge allocations. */ +static extent_tree_t huge; + +#ifdef MALLOC_STATS +/* Huge allocation statistics. */ +static uint64_t huge_nmalloc; +static uint64_t huge_ndalloc; +static size_t huge_allocated; +#endif + +/****************/ +/* + * Memory reserve. + */ + +#ifdef MALLOC_PAGEFILE +static char pagefile_templ[PATH_MAX]; +#endif + +/* Protects reserve-related data structures. */ +static malloc_mutex_t reserve_mtx; + +/* + * Bounds on acceptable reserve size, and current reserve size. Reserve + * depletion may cause (reserve_cur < reserve_min). + */ +static size_t reserve_min; +static size_t reserve_cur; +static size_t reserve_max; + +/* List of registered callbacks. */ +static ql_head(reserve_reg_t) reserve_regs; + +/* + * Condition notification sequence number, used to determine whether all + * registered callbacks have been notified of the most current condition. + */ +static uint64_t reserve_seq; + +/* + * Trees of chunks currently in the memory reserve. Depending on function, + * different tree orderings are needed, which is why there are two trees with + * the same contents. + */ +static extent_tree_t reserve_chunks_szad; +static extent_tree_t reserve_chunks_ad; + +/****************************/ +/* + * base (internal allocation). + */ + +/* + * Current pages that are being used for internal memory allocations. These + * pages are carved up in cacheline-size quanta, so that there is no chance of + * false cache line sharing. + */ +static void *base_pages; +static void *base_next_addr; +#ifdef MALLOC_DECOMMIT +static void *base_next_decommitted; +#endif +static void *base_past_addr; /* Addr immediately past base_pages. */ +static extent_node_t *base_nodes; +static reserve_reg_t *base_reserve_regs; +static malloc_mutex_t base_mtx; +#ifdef MALLOC_STATS +static size_t base_mapped; +#endif + +/********/ +/* + * Arenas. + */ + +/* + * Arenas that are used to service external requests. Not all elements of the + * arenas array are necessarily used; arenas are created lazily as needed. + */ +static arena_t **arenas; +static unsigned narenas; +static unsigned narenas_2pow; +#ifndef NO_TLS +# ifdef MALLOC_BALANCE +static unsigned narenas_2pow; +# else +static unsigned next_arena; +# endif +#endif +#ifdef MOZ_MEMORY +static malloc_spinlock_t arenas_lock; /* Protects arenas initialization. */ +#else +static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */ +#endif + +#ifndef NO_TLS +/* + * Map of pthread_self() --> arenas[???], used for selecting an arena to use + * for allocations. + */ +#ifndef MOZ_MEMORY_WINDOWS +static __thread arena_t *arenas_map; +#endif +#endif + +#ifdef MALLOC_STATS +/* Chunk statistics. */ +static chunk_stats_t stats_chunks; +#endif + +/*******************************/ +/* + * Runtime configuration options. + */ +const char *_malloc_options; + +#ifndef MALLOC_PRODUCTION +static bool opt_abort = true; +#ifdef MALLOC_FILL +static bool opt_junk = true; +#endif +#else +static bool opt_abort = false; +#ifdef MALLOC_FILL +static bool opt_junk = false; +#endif +#endif +static size_t opt_dirty_max = DIRTY_MAX_DEFAULT; +#ifdef MALLOC_BALANCE +static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT; +#endif +static bool opt_print_stats = false; +static size_t opt_quantum_2pow = QUANTUM_2POW_MIN; +static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT; +static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT; +static int opt_reserve_min_lshift = 0; +static int opt_reserve_range_lshift = 0; +#ifdef MALLOC_PAGEFILE +static bool opt_pagefile = false; +#endif +#ifdef MALLOC_UTRACE +static bool opt_utrace = false; +#endif +#ifdef MALLOC_SYSV +static bool opt_sysv = false; +#endif +#ifdef MALLOC_XMALLOC +static bool opt_xmalloc = false; +#endif +#ifdef MALLOC_FILL +static bool opt_zero = false; +#endif +static int opt_narenas_lshift = 0; + +#ifdef MALLOC_UTRACE +typedef struct { + void *p; + size_t s; + void *r; +} malloc_utrace_t; + +#define UTRACE(a, b, c) \ + if (opt_utrace) { \ + malloc_utrace_t ut; \ + ut.p = (a); \ + ut.s = (b); \ + ut.r = (c); \ + utrace(&ut, sizeof(ut)); \ + } +#else +#define UTRACE(a, b, c) +#endif + +/******************************************************************************/ +/* + * Begin function prototypes for non-inline static functions. + */ + +static char *umax2s(uintmax_t x, char *s); +static bool malloc_mutex_init(malloc_mutex_t *mutex); +static bool malloc_spin_init(malloc_spinlock_t *lock); +static void wrtmessage(const char *p1, const char *p2, const char *p3, + const char *p4); +#ifdef MALLOC_STATS +#ifdef MOZ_MEMORY_DARWIN +/* Avoid namespace collision with OS X's malloc APIs. */ +#define malloc_printf moz_malloc_printf +#endif +static void malloc_printf(const char *format, ...); +#endif +static bool base_pages_alloc_mmap(size_t minsize); +static bool base_pages_alloc(size_t minsize); +static void *base_alloc(size_t size); +static void *base_calloc(size_t number, size_t size); +static extent_node_t *base_node_alloc(void); +static void base_node_dealloc(extent_node_t *node); +static reserve_reg_t *base_reserve_reg_alloc(void); +static void base_reserve_reg_dealloc(reserve_reg_t *reg); +#ifdef MALLOC_STATS +static void stats_print(arena_t *arena); +#endif +static void *pages_map(void *addr, size_t size, int pfd); +static void pages_unmap(void *addr, size_t size); +static void *chunk_alloc_mmap(size_t size, bool pagefile); +#ifdef MALLOC_PAGEFILE +static int pagefile_init(size_t size); +static void pagefile_close(int pfd); +#endif +static void *chunk_recycle_reserve(size_t size, bool zero); +static void *chunk_alloc(size_t size, bool zero, bool pagefile); +static extent_node_t *chunk_dealloc_reserve(void *chunk, size_t size); +static void chunk_dealloc_mmap(void *chunk, size_t size); +static void chunk_dealloc(void *chunk, size_t size); +#ifndef NO_TLS +static arena_t *choose_arena_hard(void); +#endif +static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size, + bool large, bool zero); +static void arena_chunk_init(arena_t *arena, arena_chunk_t *chunk); +static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk); +static arena_run_t *arena_run_alloc(arena_t *arena, arena_bin_t *bin, + size_t size, bool large, bool zero); +static void arena_purge(arena_t *arena); +static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty); +static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, + arena_run_t *run, size_t oldsize, size_t newsize); +static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, + arena_run_t *run, size_t oldsize, size_t newsize, bool dirty); +static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin); +static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin); +static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size); +#ifdef MALLOC_BALANCE +static void arena_lock_balance_hard(arena_t *arena); +#endif +static void *arena_malloc_large(arena_t *arena, size_t size, bool zero); +static void *arena_palloc(arena_t *arena, size_t alignment, size_t size, + size_t alloc_size); +static size_t arena_salloc(const void *ptr); +static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, + void *ptr); +static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, + void *ptr, size_t size, size_t oldsize); +static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, + void *ptr, size_t size, size_t oldsize); +static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize); +static void *arena_ralloc(void *ptr, size_t size, size_t oldsize); +static bool arena_new(arena_t *arena); +static arena_t *arenas_extend(unsigned ind); +static void *huge_malloc(size_t size, bool zero); +static void *huge_palloc(size_t alignment, size_t size); +static void *huge_ralloc(void *ptr, size_t size, size_t oldsize); +static void huge_dalloc(void *ptr); +static void malloc_print_stats(void); +#ifndef MOZ_MEMORY_WINDOWS +static +#endif +bool malloc_init_hard(void); +static void reserve_shrink(void); +static uint64_t reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq); +static uint64_t reserve_crit(size_t size, const char *fname, uint64_t seq); +static void reserve_fail(size_t size, const char *fname); + +void _malloc_prefork(void); +void _malloc_postfork(void); + +/* + * End function prototypes. + */ +/******************************************************************************/ + +/* + * umax2s() provides minimal integer printing functionality, which is + * especially useful for situations where allocation in vsnprintf() calls would + * potentially cause deadlock. + */ +#define UMAX2S_BUFSIZE 21 +static char * +umax2s(uintmax_t x, char *s) +{ + unsigned i; + + i = UMAX2S_BUFSIZE - 1; + s[i] = '\0'; + do { + i--; + s[i] = "0123456789"[x % 10]; + x /= 10; + } while (x > 0); + + return (&s[i]); +} + +static void +wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4) +{ +#ifdef MOZ_MEMORY_WINCE + wchar_t buf[1024]; +#define WRT_PRINT(s) \ + MultiByteToWideChar(CP_ACP, 0, s, -1, buf, 1024); \ + OutputDebugStringW(buf) + + WRT_PRINT(p1); + WRT_PRINT(p2); + WRT_PRINT(p3); + WRT_PRINT(p4); +#else +#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_WINDOWS) +#define _write write +#endif + _write(STDERR_FILENO, p1, (unsigned int) strlen(p1)); + _write(STDERR_FILENO, p2, (unsigned int) strlen(p2)); + _write(STDERR_FILENO, p3, (unsigned int) strlen(p3)); + _write(STDERR_FILENO, p4, (unsigned int) strlen(p4)); +#endif + +} + +#define _malloc_message malloc_message + +void (*_malloc_message)(const char *p1, const char *p2, const char *p3, + const char *p4) = wrtmessage; + +#ifdef MALLOC_DEBUG +# define assert(e) do { \ + if (!(e)) { \ + char line_buf[UMAX2S_BUFSIZE]; \ + _malloc_message(__FILE__, ":", umax2s(__LINE__, \ + line_buf), ": Failed assertion: "); \ + _malloc_message("\"", #e, "\"\n", ""); \ + abort(); \ + } \ +} while (0) +#else +#define assert(e) +#endif + +/******************************************************************************/ +/* + * Begin mutex. We can't use normal pthread mutexes in all places, because + * they require malloc()ed memory, which causes bootstrapping issues in some + * cases. + */ + +static bool +malloc_mutex_init(malloc_mutex_t *mutex) +{ +#if defined(MOZ_MEMORY_WINCE) + InitializeCriticalSection(mutex); +#elif defined(MOZ_MEMORY_WINDOWS) + // XXXMB + //if (__isthreaded) + // if (! __crtInitCritSecAndSpinCount(mutex, _CRT_SPINCOUNT)) + // return (true); + if (!InitializeCriticalSectionAndSpinCount(mutex, 4000)) + return true; +#elif defined(MOZ_MEMORY_DARWIN) + mutex->lock = OS_SPINLOCK_INIT; +#elif defined(MOZ_MEMORY_LINUX) + pthread_mutexattr_t attr; + if (pthread_mutexattr_init(&attr) != 0) + return (true); + pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP); + if (pthread_mutex_init(mutex, &attr) != 0) { + pthread_mutexattr_destroy(&attr); + return (true); + } + pthread_mutexattr_destroy(&attr); +#elif defined(MOZ_MEMORY) + if (pthread_mutex_init(mutex, NULL) != 0) + return (true); +#else + static const spinlock_t lock = _SPINLOCK_INITIALIZER; + + mutex->lock = lock; +#endif + return (false); +} + +static inline void +malloc_mutex_lock(malloc_mutex_t *mutex) +{ + +#if defined(MOZ_MEMORY_WINDOWS) + EnterCriticalSection(mutex); +#elif defined(MOZ_MEMORY_DARWIN) + OSSpinLockLock(&mutex->lock); +#elif defined(MOZ_MEMORY) + pthread_mutex_lock(mutex); +#else + if (__isthreaded) + _SPINLOCK(&mutex->lock); +#endif +} + +static inline void +malloc_mutex_unlock(malloc_mutex_t *mutex) +{ + +#if defined(MOZ_MEMORY_WINDOWS) + LeaveCriticalSection(mutex); +#elif defined(MOZ_MEMORY_DARWIN) + OSSpinLockUnlock(&mutex->lock); +#elif defined(MOZ_MEMORY) + pthread_mutex_unlock(mutex); +#else + if (__isthreaded) + _SPINUNLOCK(&mutex->lock); +#endif +} + +static bool +malloc_spin_init(malloc_spinlock_t *lock) +{ +#if defined(MOZ_MEMORY_WINCE) + InitializeCriticalSection(lock); +#elif defined(MOZ_MEMORY_WINDOWS) + // XXXMB + //if (__isthreaded) + // if (! __crtInitCritSecAndSpinCount(lock, _CRT_SPINCOUNT)) + // return (true); +#elif defined(MOZ_MEMORY_DARWIN) + lock->lock = OS_SPINLOCK_INIT; +#elif defined(MOZ_MEMORY_LINUX) + pthread_mutexattr_t attr; + if (pthread_mutexattr_init(&attr) != 0) + return (true); + pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP); + if (pthread_mutex_init(lock, &attr) != 0) { + pthread_mutexattr_destroy(&attr); + return (true); + } + pthread_mutexattr_destroy(&attr); +#elif defined(MOZ_MEMORY) + if (pthread_mutex_init(lock, NULL) != 0) + return (true); +#else + lock->lock = _SPINLOCK_INITIALIZER; +#endif + return (false); +} + +static inline void +malloc_spin_lock(malloc_spinlock_t *lock) +{ + +#if defined(MOZ_MEMORY_WINDOWS) + EnterCriticalSection(lock); +#elif defined(MOZ_MEMORY_DARWIN) + OSSpinLockLock(&lock->lock); +#elif defined(MOZ_MEMORY) + pthread_mutex_lock(lock); +#else + if (__isthreaded) + _SPINLOCK(&lock->lock); +#endif +} + +static inline void +malloc_spin_unlock(malloc_spinlock_t *lock) +{ +#if defined(MOZ_MEMORY_WINDOWS) + LeaveCriticalSection(lock); +#elif defined(MOZ_MEMORY_DARWIN) + OSSpinLockUnlock(&lock->lock); +#elif defined(MOZ_MEMORY) + pthread_mutex_unlock(lock); +#else + if (__isthreaded) + _SPINUNLOCK(&lock->lock); +#endif +} + +/* + * End mutex. + */ +/******************************************************************************/ +/* + * Begin spin lock. Spin locks here are actually adaptive mutexes that block + * after a period of spinning, because unbounded spinning would allow for + * priority inversion. + */ + +#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_DARWIN) +# define malloc_spin_init malloc_mutex_init +# define malloc_spin_lock malloc_mutex_lock +# define malloc_spin_unlock malloc_mutex_unlock +#endif + +#ifndef MOZ_MEMORY +/* + * We use an unpublished interface to initialize pthread mutexes with an + * allocation callback, in order to avoid infinite recursion. + */ +int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex, + void *(calloc_cb)(size_t, size_t)); + +__weak_reference(_pthread_mutex_init_calloc_cb_stub, + _pthread_mutex_init_calloc_cb); + +int +_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex, + void *(calloc_cb)(size_t, size_t)) +{ + + return (0); +} + +static bool +malloc_spin_init(pthread_mutex_t *lock) +{ + + if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0) + return (true); + + return (false); +} + +static inline unsigned +malloc_spin_lock(pthread_mutex_t *lock) +{ + unsigned ret = 0; + + if (__isthreaded) { + if (_pthread_mutex_trylock(lock) != 0) { + unsigned i; + volatile unsigned j; + + /* Exponentially back off. */ + for (i = 1; i <= SPIN_LIMIT_2POW; i++) { + for (j = 0; j < (1U << i); j++) + ret++; + + CPU_SPINWAIT; + if (_pthread_mutex_trylock(lock) == 0) + return (ret); + } + + /* + * Spinning failed. Block until the lock becomes + * available, in order to avoid indefinite priority + * inversion. + */ + _pthread_mutex_lock(lock); + assert((ret << BLOCK_COST_2POW) != 0); + return (ret << BLOCK_COST_2POW); + } + } + + return (ret); +} + +static inline void +malloc_spin_unlock(pthread_mutex_t *lock) +{ + + if (__isthreaded) + _pthread_mutex_unlock(lock); +} +#endif + +/* + * End spin lock. + */ +/******************************************************************************/ +/* + * Begin Utility functions/macros. + */ + +/* Return the chunk address for allocation address a. */ +#define CHUNK_ADDR2BASE(a) \ + ((void *)((uintptr_t)(a) & ~chunksize_mask)) + +/* Return the chunk offset of address a. */ +#define CHUNK_ADDR2OFFSET(a) \ + ((size_t)((uintptr_t)(a) & chunksize_mask)) + +/* Return the smallest chunk multiple that is >= s. */ +#define CHUNK_CEILING(s) \ + (((s) + chunksize_mask) & ~chunksize_mask) + +/* Return the smallest cacheline multiple that is >= s. */ +#define CACHELINE_CEILING(s) \ + (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1)) + +/* Return the smallest quantum multiple that is >= a. */ +#define QUANTUM_CEILING(a) \ + (((a) + quantum_mask) & ~quantum_mask) + +/* Return the smallest pagesize multiple that is >= s. */ +#define PAGE_CEILING(s) \ + (((s) + pagesize_mask) & ~pagesize_mask) + +/* Compute the smallest power of 2 that is >= x. */ +static inline size_t +pow2_ceil(size_t x) +{ + + x--; + x |= x >> 1; + x |= x >> 2; + x |= x >> 4; + x |= x >> 8; + x |= x >> 16; +#if (SIZEOF_PTR == 8) + x |= x >> 32; +#endif + x++; + return (x); +} + +#ifdef MALLOC_BALANCE +/* + * Use a simple linear congruential pseudo-random number generator: + * + * prn(y) = (a*x + c) % m + * + * where the following constants ensure maximal period: + * + * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4. + * c == Odd number (relatively prime to 2^n). + * m == 2^32 + * + * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints. + * + * This choice of m has the disadvantage that the quality of the bits is + * proportional to bit position. For example. the lowest bit has a cycle of 2, + * the next has a cycle of 4, etc. For this reason, we prefer to use the upper + * bits. + */ +# define PRN_DEFINE(suffix, var, a, c) \ +static inline void \ +sprn_##suffix(uint32_t seed) \ +{ \ + var = seed; \ +} \ + \ +static inline uint32_t \ +prn_##suffix(uint32_t lg_range) \ +{ \ + uint32_t ret, x; \ + \ + assert(lg_range > 0); \ + assert(lg_range <= 32); \ + \ + x = (var * (a)) + (c); \ + var = x; \ + ret = x >> (32 - lg_range); \ + \ + return (ret); \ +} +# define SPRN(suffix, seed) sprn_##suffix(seed) +# define PRN(suffix, lg_range) prn_##suffix(lg_range) +#endif + +#ifdef MALLOC_BALANCE +/* Define the PRNG used for arena assignment. */ +static __thread uint32_t balance_x; +PRN_DEFINE(balance, balance_x, 1297, 1301) +#endif + +#ifdef MALLOC_UTRACE +static int +utrace(const void *addr, size_t len) +{ + malloc_utrace_t *ut = (malloc_utrace_t *)addr; + + assert(len == sizeof(malloc_utrace_t)); + + if (ut->p == NULL && ut->s == 0 && ut->r == NULL) + malloc_printf("%d x USER malloc_init()\n", getpid()); + else if (ut->p == NULL && ut->r != NULL) { + malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r, + ut->s); + } else if (ut->p != NULL && ut->r != NULL) { + malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(), + ut->r, ut->p, ut->s); + } else + malloc_printf("%d x USER free(%p)\n", getpid(), ut->p); + + return (0); +} +#endif + +static inline const char * +_getprogname(void) +{ + + return ("<jemalloc>"); +} + +#ifdef MALLOC_STATS +/* + * Print to stderr in such a way as to (hopefully) avoid memory allocation. + */ +static void +malloc_printf(const char *format, ...) +{ +#ifndef WINCE + char buf[4096]; + va_list ap; + + va_start(ap, format); + vsnprintf(buf, sizeof(buf), format, ap); + va_end(ap); + _malloc_message(buf, "", "", ""); +#endif +} +#endif + +/******************************************************************************/ + +#ifdef MALLOC_DECOMMIT +static inline void +pages_decommit(void *addr, size_t size) +{ + +#ifdef MOZ_MEMORY_WINDOWS + VirtualFree(addr, size, MEM_DECOMMIT); +#else + if (mmap(addr, size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, + 0) == MAP_FAILED) + abort(); +#endif +} + +static inline void +pages_commit(void *addr, size_t size) +{ + +# ifdef MOZ_MEMORY_WINDOWS + VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE); +# else + if (mmap(addr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE | + MAP_ANON, -1, 0) == MAP_FAILED) + abort(); +# endif +} +#endif + +static bool +base_pages_alloc_mmap(size_t minsize) +{ + bool ret; + size_t csize; +#ifdef MALLOC_DECOMMIT + size_t pminsize; +#endif + int pfd; + + assert(minsize != 0); + csize = CHUNK_CEILING(minsize); +#ifdef MALLOC_PAGEFILE + if (opt_pagefile) { + pfd = pagefile_init(csize); + if (pfd == -1) + return (true); + } else +#endif + pfd = -1; + base_pages = pages_map(NULL, csize, pfd); + if (base_pages == NULL) { + ret = true; + goto RETURN; + } + base_next_addr = base_pages; + base_past_addr = (void *)((uintptr_t)base_pages + csize); +#ifdef MALLOC_DECOMMIT + /* + * Leave enough pages for minsize committed, since otherwise they would + * have to be immediately recommitted. + */ + pminsize = PAGE_CEILING(minsize); + base_next_decommitted = (void *)((uintptr_t)base_pages + pminsize); + if (pminsize < csize) + pages_decommit(base_next_decommitted, csize - pminsize); +#endif +#ifdef MALLOC_STATS + base_mapped += csize; +#endif + + ret = false; +RETURN: +#ifdef MALLOC_PAGEFILE + if (pfd != -1) + pagefile_close(pfd); +#endif + return (false); +} + +static bool +base_pages_alloc(size_t minsize) +{ + + if (base_pages_alloc_mmap(minsize) == false) + return (false); + + return (true); +} + +static void * +base_alloc(size_t size) +{ + void *ret; + size_t csize; + + /* Round size up to nearest multiple of the cacheline size. */ + csize = CACHELINE_CEILING(size); + + malloc_mutex_lock(&base_mtx); + /* Make sure there's enough space for the allocation. */ + if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) { + if (base_pages_alloc(csize)) { + malloc_mutex_unlock(&base_mtx); + return (NULL); + } + } + /* Allocate. */ + ret = base_next_addr; + base_next_addr = (void *)((uintptr_t)base_next_addr + csize); +#ifdef MALLOC_DECOMMIT + /* Make sure enough pages are committed for the new allocation. */ + if ((uintptr_t)base_next_addr > (uintptr_t)base_next_decommitted) { + void *pbase_next_addr = + (void *)(PAGE_CEILING((uintptr_t)base_next_addr)); + + pages_commit(base_next_decommitted, (uintptr_t)pbase_next_addr - + (uintptr_t)base_next_decommitted); + base_next_decommitted = pbase_next_addr; + } +#endif + malloc_mutex_unlock(&base_mtx); + VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false); + + return (ret); +} + +static void * +base_calloc(size_t number, size_t size) +{ + void *ret; + + ret = base_alloc(number * size); +#ifdef MALLOC_VALGRIND + if (ret != NULL) { + VALGRIND_FREELIKE_BLOCK(ret, 0); + VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, true); + } +#endif + memset(ret, 0, number * size); + + return (ret); +} + +static extent_node_t * +base_node_alloc(void) +{ + extent_node_t *ret; + + malloc_mutex_lock(&base_mtx); + if (base_nodes != NULL) { + ret = base_nodes; + base_nodes = *(extent_node_t **)ret; + VALGRIND_FREELIKE_BLOCK(ret, 0); + VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(extent_node_t), 0, false); + malloc_mutex_unlock(&base_mtx); + } else { + malloc_mutex_unlock(&base_mtx); + ret = (extent_node_t *)base_alloc(sizeof(extent_node_t)); + } + + return (ret); +} + +static void +base_node_dealloc(extent_node_t *node) +{ + + malloc_mutex_lock(&base_mtx); + VALGRIND_FREELIKE_BLOCK(node, 0); + VALGRIND_MALLOCLIKE_BLOCK(node, sizeof(extent_node_t *), 0, false); + *(extent_node_t **)node = base_nodes; + base_nodes = node; + malloc_mutex_unlock(&base_mtx); +} + +static reserve_reg_t * +base_reserve_reg_alloc(void) +{ + reserve_reg_t *ret; + + malloc_mutex_lock(&base_mtx); + if (base_reserve_regs != NULL) { + ret = base_reserve_regs; + base_reserve_regs = *(reserve_reg_t **)ret; + VALGRIND_FREELIKE_BLOCK(ret, 0); + VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(reserve_reg_t), 0, false); + malloc_mutex_unlock(&base_mtx); + } else { + malloc_mutex_unlock(&base_mtx); + ret = (reserve_reg_t *)base_alloc(sizeof(reserve_reg_t)); + } + + return (ret); +} + +static void +base_reserve_reg_dealloc(reserve_reg_t *reg) +{ + + malloc_mutex_lock(&base_mtx); + VALGRIND_FREELIKE_BLOCK(reg, 0); + VALGRIND_MALLOCLIKE_BLOCK(reg, sizeof(reserve_reg_t *), 0, false); + *(reserve_reg_t **)reg = base_reserve_regs; + base_reserve_regs = reg; + malloc_mutex_unlock(&base_mtx); +} + +/******************************************************************************/ + +#ifdef MALLOC_STATS +static void +stats_print(arena_t *arena) +{ + unsigned i, gap_start; + +#ifdef MOZ_MEMORY_WINDOWS + malloc_printf("dirty: %Iu page%s dirty, %I64u sweep%s," + " %I64u madvise%s, %I64u page%s purged\n", + arena->ndirty, arena->ndirty == 1 ? "" : "s", + arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s", + arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s", + arena->stats.purged, arena->stats.purged == 1 ? "" : "s"); +# ifdef MALLOC_DECOMMIT + malloc_printf("decommit: %I64u decommit%s, %I64u commit%s," + " %I64u page%s decommitted\n", + arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s", + arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s", + arena->stats.decommitted, + (arena->stats.decommitted == 1) ? "" : "s"); +# endif + + malloc_printf(" allocated nmalloc ndalloc\n"); + malloc_printf("small: %12Iu %12I64u %12I64u\n", + arena->stats.allocated_small, arena->stats.nmalloc_small, + arena->stats.ndalloc_small); + malloc_printf("large: %12Iu %12I64u %12I64u\n", + arena->stats.allocated_large, arena->stats.nmalloc_large, + arena->stats.ndalloc_large); + malloc_printf("total: %12Iu %12I64u %12I64u\n", + arena->stats.allocated_small + arena->stats.allocated_large, + arena->stats.nmalloc_small + arena->stats.nmalloc_large, + arena->stats.ndalloc_small + arena->stats.ndalloc_large); + malloc_printf("mapped: %12Iu\n", arena->stats.mapped); +#else + malloc_printf("dirty: %zu page%s dirty, %llu sweep%s," + " %llu madvise%s, %llu page%s purged\n", + arena->ndirty, arena->ndirty == 1 ? "" : "s", + arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s", + arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s", + arena->stats.purged, arena->stats.purged == 1 ? "" : "s"); +# ifdef MALLOC_DECOMMIT + malloc_printf("decommit: %llu decommit%s, %llu commit%s," + " %llu page%s decommitted\n", + arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s", + arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s", + arena->stats.decommitted, + (arena->stats.decommitted == 1) ? "" : "s"); +# endif + + malloc_printf(" allocated nmalloc ndalloc\n"); + malloc_printf("small: %12zu %12llu %12llu\n", + arena->stats.allocated_small, arena->stats.nmalloc_small, + arena->stats.ndalloc_small); + malloc_printf("large: %12zu %12llu %12llu\n", + arena->stats.allocated_large, arena->stats.nmalloc_large, + arena->stats.ndalloc_large); + malloc_printf("total: %12zu %12llu %12llu\n", + arena->stats.allocated_small + arena->stats.allocated_large, + arena->stats.nmalloc_small + arena->stats.nmalloc_large, + arena->stats.ndalloc_small + arena->stats.ndalloc_large); + malloc_printf("mapped: %12zu\n", arena->stats.mapped); +#endif + malloc_printf("bins: bin size regs pgs requests newruns" + " reruns maxruns curruns\n"); + for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) { + if (arena->bins[i].stats.nrequests == 0) { + if (gap_start == UINT_MAX) + gap_start = i; + } else { + if (gap_start != UINT_MAX) { + if (i > gap_start + 1) { + /* Gap of more than one size class. */ + malloc_printf("[%u..%u]\n", + gap_start, i - 1); + } else { + /* Gap of one size class. */ + malloc_printf("[%u]\n", gap_start); + } + gap_start = UINT_MAX; + } + malloc_printf( +#if defined(MOZ_MEMORY_WINDOWS) + "%13u %1s %4u %4u %3u %9I64u %9I64u" + " %9I64u %7u %7u\n", +#else + "%13u %1s %4u %4u %3u %9llu %9llu" + " %9llu %7lu %7lu\n", +#endif + i, + i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S", + arena->bins[i].reg_size, + arena->bins[i].nregs, + arena->bins[i].run_size >> pagesize_2pow, + arena->bins[i].stats.nrequests, + arena->bins[i].stats.nruns, + arena->bins[i].stats.reruns, + arena->bins[i].stats.highruns, + arena->bins[i].stats.curruns); + } + } + if (gap_start != UINT_MAX) { + if (i > gap_start + 1) { + /* Gap of more than one size class. */ + malloc_printf("[%u..%u]\n", gap_start, i - 1); + } else { + /* Gap of one size class. */ + malloc_printf("[%u]\n", gap_start); + } + } +} +#endif + +/* + * End Utility functions/macros. + */ +/******************************************************************************/ +/* + * Begin extent tree code. + */ + +static inline int +extent_szad_comp(extent_node_t *a, extent_node_t *b) +{ + int ret; + size_t a_size = a->size; + size_t b_size = b->size; + + ret = (a_size > b_size) - (a_size < b_size); + if (ret == 0) { + uintptr_t a_addr = (uintptr_t)a->addr; + uintptr_t b_addr = (uintptr_t)b->addr; + + ret = (a_addr > b_addr) - (a_addr < b_addr); + } + + return (ret); +} + +/* Wrap red-black tree macros in functions. */ +rb_wrap(static, extent_tree_szad_, extent_tree_t, extent_node_t, + link_szad, extent_szad_comp) + +static inline int +extent_ad_comp(extent_node_t *a, extent_node_t *b) +{ + uintptr_t a_addr = (uintptr_t)a->addr; + uintptr_t b_addr = (uintptr_t)b->addr; + + return ((a_addr > b_addr) - (a_addr < b_addr)); +} + +/* Wrap red-black tree macros in functions. */ +rb_wrap(static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad, + extent_ad_comp) + +/* + * End extent tree code. + */ +/******************************************************************************/ +/* + * Begin chunk management functions. + */ + +#ifdef MOZ_MEMORY_WINDOWS +#ifdef MOZ_MEMORY_WINCE +#define ALIGN_ADDR2OFFSET(al, ad) \ + ((uintptr_t)ad & (al - 1)) +static void * +pages_map_align(size_t size, int pfd, size_t alignment) +{ + + void *ret; + int offset; + if (size % alignment) + size += (alignment - (size % alignment)); + assert(size >= alignment); + ret = pages_map(NULL, size, pfd); + offset = ALIGN_ADDR2OFFSET(alignment, ret); + if (offset) { + /* try to over allocate by the ammount we're offset */ + void *tmp; + pages_unmap(ret, size); + tmp = VirtualAlloc(NULL, size + alignment - offset, + MEM_RESERVE, PAGE_NOACCESS); + if (offset == ALIGN_ADDR2OFFSET(alignment, tmp)) + ret = VirtualAlloc((void*)((intptr_t)tmp + alignment + - offset), size, MEM_COMMIT, + PAGE_READWRITE); + else + VirtualFree(tmp, 0, MEM_RELEASE); + offset = ALIGN_ADDR2OFFSET(alignment, ret); + + + if (offset) { + /* over allocate to ensure we have an aligned region */ + ret = VirtualAlloc(NULL, size + alignment, MEM_RESERVE, + PAGE_NOACCESS); + offset = ALIGN_ADDR2OFFSET(alignment, ret); + ret = VirtualAlloc((void*)((intptr_t)ret + + alignment - offset), + size, MEM_COMMIT, PAGE_READWRITE); + } + } + return (ret); +} +#endif + +static void * +pages_map(void *addr, size_t size, int pfd) +{ + void *ret = NULL; +#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6) + void *va_ret; + assert(addr == NULL); + va_ret = VirtualAlloc(addr, size, MEM_RESERVE, PAGE_NOACCESS); + if (va_ret) + ret = VirtualAlloc(va_ret, size, MEM_COMMIT, PAGE_READWRITE); + assert(va_ret == ret); +#else + ret = VirtualAlloc(addr, size, MEM_COMMIT | MEM_RESERVE, + PAGE_READWRITE); +#endif + return (ret); +} + +static void +pages_unmap(void *addr, size_t size) +{ + if (VirtualFree(addr, 0, MEM_RELEASE) == 0) { +#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6) + if (GetLastError() == ERROR_INVALID_PARAMETER) { + MEMORY_BASIC_INFORMATION info; + VirtualQuery(addr, &info, sizeof(info)); + if (VirtualFree(info.AllocationBase, 0, MEM_RELEASE)) + return; + } +#endif + _malloc_message(_getprogname(), + ": (malloc) Error in VirtualFree()\n", "", ""); + if (opt_abort) + abort(); + } +} +#elif (defined(MOZ_MEMORY_DARWIN)) +static void * +pages_map(void *addr, size_t size, int pfd) +{ + void *ret; + kern_return_t err; + int flags; + + if (addr != NULL) { + ret = addr; + flags = 0; + } else + flags = VM_FLAGS_ANYWHERE; + + err = vm_allocate((vm_map_t)mach_task_self(), (vm_address_t *)&ret, + (vm_size_t)size, flags); + if (err != KERN_SUCCESS) + ret = NULL; + + assert(ret == NULL || (addr == NULL && ret != addr) + || (addr != NULL && ret == addr)); + return (ret); +} + +static void +pages_unmap(void *addr, size_t size) +{ + kern_return_t err; + + err = vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)addr, + (vm_size_t)size); + if (err != KERN_SUCCESS) { + malloc_message(_getprogname(), + ": (malloc) Error in vm_deallocate(): ", + mach_error_string(err), "\n"); + if (opt_abort) + abort(); + } +} + +#define VM_COPY_MIN (pagesize << 5) +static inline void +pages_copy(void *dest, const void *src, size_t n) +{ + + assert((void *)((uintptr_t)dest & ~pagesize_mask) == dest); + assert(n >= VM_COPY_MIN); + assert((void *)((uintptr_t)src & ~pagesize_mask) == src); + + vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n, + (vm_address_t)dest); +} +#else /* MOZ_MEMORY_DARWIN */ +#ifdef JEMALLOC_USES_MAP_ALIGN +static void * +pages_map_align(size_t size, int pfd, size_t alignment) +{ + void *ret; + + /* + * We don't use MAP_FIXED here, because it can cause the *replacement* + * of existing mappings, and we only want to create new mappings. + */ +#ifdef MALLOC_PAGEFILE + if (pfd != -1) { + ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | + MAP_NOSYNC | MAP_ALIGN, pfd, 0); + } else +#endif + { + ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | + MAP_NOSYNC | MAP_ALIGN | MAP_ANON, -1, 0); + } + assert(ret != NULL); + + if (ret == MAP_FAILED) + ret = NULL; + return (ret); +} +#endif + +static void * +pages_map(void *addr, size_t size, int pfd) +{ + void *ret; + + /* + * We don't use MAP_FIXED here, because it can cause the *replacement* + * of existing mappings, and we only want to create new mappings. + */ +#ifdef MALLOC_PAGEFILE + if (pfd != -1) { + ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | + MAP_NOSYNC, pfd, 0); + } else +#endif + { + ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | + MAP_ANON, -1, 0); + } + assert(ret != NULL); + + if (ret == MAP_FAILED) + ret = NULL; + else if (addr != NULL && ret != addr) { + /* + * We succeeded in mapping memory, but not in the right place. + */ + if (munmap(ret, size) == -1) { + char buf[STRERROR_BUF]; + + strerror_r(errno, buf, sizeof(buf)); + _malloc_message(_getprogname(), + ": (malloc) Error in munmap(): ", buf, "\n"); + if (opt_abort) + abort(); + } + ret = NULL; + } + + assert(ret == NULL || (addr == NULL && ret != addr) + || (addr != NULL && ret == addr)); + return (ret); +} + +static void +pages_unmap(void *addr, size_t size) +{ + + if (munmap(addr, size) == -1) { + char buf[STRERROR_BUF]; + + strerror_r(errno, buf, sizeof(buf)); + _malloc_message(_getprogname(), + ": (malloc) Error in munmap(): ", buf, "\n"); + if (opt_abort) + abort(); + } +} +#endif + +#ifdef MALLOC_VALIDATE +static inline malloc_rtree_t * +malloc_rtree_new(unsigned bits) +{ + malloc_rtree_t *ret; + unsigned bits_per_level, height, i; + + bits_per_level = ffs(pow2_ceil((MALLOC_RTREE_NODESIZE / + sizeof(void *)))) - 1; + height = bits / bits_per_level; + if (height * bits_per_level != bits) + height++; + assert(height * bits_per_level >= bits); + + ret = (malloc_rtree_t*)base_calloc(1, sizeof(malloc_rtree_t) + (sizeof(unsigned) * + (height - 1))); + if (ret == NULL) + return (NULL); + + malloc_spin_init(&ret->lock); + ret->height = height; + if (bits_per_level * height > bits) + ret->level2bits[0] = bits % bits_per_level; + else + ret->level2bits[0] = bits_per_level; + for (i = 1; i < height; i++) + ret->level2bits[i] = bits_per_level; + + ret->root = (void**)base_calloc(1, sizeof(void *) << ret->level2bits[0]); + if (ret->root == NULL) { + /* + * We leak the rtree here, since there's no generic base + * deallocation. + */ + return (NULL); + } + + return (ret); +} + +/* The least significant bits of the key are ignored. */ +static inline void * +malloc_rtree_get(malloc_rtree_t *rtree, uintptr_t key) +{ + void *ret; + uintptr_t subkey; + unsigned i, lshift, height, bits; + void **node, **child; + + malloc_spin_lock(&rtree->lock); + for (i = lshift = 0, height = rtree->height, node = rtree->root; + i < height - 1; + i++, lshift += bits, node = child) { + bits = rtree->level2bits[i]; + subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); + child = (void**)node[subkey]; + if (child == NULL) { + malloc_spin_unlock(&rtree->lock); + return (NULL); + } + } + + /* node is a leaf, so it contains values rather than node pointers. */ + bits = rtree->level2bits[i]; + subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); + ret = node[subkey]; + malloc_spin_unlock(&rtree->lock); + + return (ret); +} + +static inline bool +malloc_rtree_set(malloc_rtree_t *rtree, uintptr_t key, void *val) +{ + uintptr_t subkey; + unsigned i, lshift, height, bits; + void **node, **child; + + malloc_spin_lock(&rtree->lock); + for (i = lshift = 0, height = rtree->height, node = rtree->root; + i < height - 1; + i++, lshift += bits, node = child) { + bits = rtree->level2bits[i]; + subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); + child = (void**)node[subkey]; + if (child == NULL) { + child = (void**)base_calloc(1, sizeof(void *) << + rtree->level2bits[i+1]); + if (child == NULL) { + malloc_spin_unlock(&rtree->lock); + return (true); + } + node[subkey] = child; + } + } + + /* node is a leaf, so it contains values rather than node pointers. */ + bits = rtree->level2bits[i]; + subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); + node[subkey] = val; + malloc_spin_unlock(&rtree->lock); + + return (false); +} +#endif + +static void * +chunk_alloc_mmap(size_t size, bool pagefile) +{ + void *ret; +#ifndef JEMALLOC_USES_MAP_ALIGN + size_t offset; +#endif + int pfd; + +#ifdef MALLOC_PAGEFILE + if (opt_pagefile && pagefile) { + pfd = pagefile_init(size); + if (pfd == -1) + return (NULL); + } else +#endif + pfd = -1; + + /* + * Windows requires that there be a 1:1 mapping between VM + * allocation/deallocation operations. Therefore, take care here to + * acquire the final result via one mapping operation. This means + * unmapping any preliminary result that is not correctly aligned. + * + * The MALLOC_PAGEFILE code also benefits from this mapping algorithm, + * since it reduces the number of page files. + */ + +#ifdef JEMALLOC_USES_MAP_ALIGN + ret = pages_map_align(size, pfd, chunksize); +#else + ret = pages_map(NULL, size, pfd); + if (ret == NULL) + goto RETURN; + + offset = CHUNK_ADDR2OFFSET(ret); + if (offset != 0) { + /* Deallocate, then try to allocate at (ret + size - offset). */ + pages_unmap(ret, size); + ret = pages_map((void *)((uintptr_t)ret + size - offset), size, + pfd); + while (ret == NULL) { + /* + * Over-allocate in order to map a memory region that + * is definitely large enough. + */ + ret = pages_map(NULL, size + chunksize, -1); + if (ret == NULL) + goto RETURN; + /* + * Deallocate, then allocate the correct size, within + * the over-sized mapping. + */ + offset = CHUNK_ADDR2OFFSET(ret); + pages_unmap(ret, size + chunksize); + if (offset == 0) + ret = pages_map(ret, size, pfd); + else { + ret = pages_map((void *)((uintptr_t)ret + + chunksize - offset), size, pfd); + } + /* + * Failure here indicates a race with another thread, so + * try again. + */ + } + } +RETURN: +#endif +#ifdef MALLOC_PAGEFILE + if (pfd != -1) + pagefile_close(pfd); +#endif +#ifdef MALLOC_STATS + if (ret != NULL) + stats_chunks.nchunks += (size / chunksize); +#endif + return (ret); +} + +#ifdef MALLOC_PAGEFILE +static int +pagefile_init(size_t size) +{ + int ret; + size_t i; + char pagefile_path[PATH_MAX]; + char zbuf[MALLOC_PAGEFILE_WRITE_SIZE]; + + /* + * Create a temporary file, then immediately unlink it so that it will + * not persist. + */ + strcpy(pagefile_path, pagefile_templ); + ret = mkstemp(pagefile_path); + if (ret == -1) + return (ret); + if (unlink(pagefile_path)) { + char buf[STRERROR_BUF]; + + strerror_r(errno, buf, sizeof(buf)); + _malloc_message(_getprogname(), ": (malloc) Error in unlink(\"", + pagefile_path, "\"):"); + _malloc_message(buf, "\n", "", ""); + if (opt_abort) + abort(); + } + + /* + * Write sequential zeroes to the file in order to assure that disk + * space is committed, with minimal fragmentation. It would be + * sufficient to write one zero per disk block, but that potentially + * results in more system calls, for no real gain. + */ + memset(zbuf, 0, sizeof(zbuf)); + for (i = 0; i < size; i += sizeof(zbuf)) { + if (write(ret, zbuf, sizeof(zbuf)) != sizeof(zbuf)) { + if (errno != ENOSPC) { + char buf[STRERROR_BUF]; + + strerror_r(errno, buf, sizeof(buf)); + _malloc_message(_getprogname(), + ": (malloc) Error in write(): ", buf, "\n"); + if (opt_abort) + abort(); + } + pagefile_close(ret); + return (-1); + } + } + + return (ret); +} + +static void +pagefile_close(int pfd) +{ + + if (close(pfd)) { + char buf[STRERROR_BUF]; + + strerror_r(errno, buf, sizeof(buf)); + _malloc_message(_getprogname(), + ": (malloc) Error in close(): ", buf, "\n"); + if (opt_abort) + abort(); + } +} +#endif + +static void * +chunk_recycle_reserve(size_t size, bool zero) +{ + extent_node_t *node, key; + +#ifdef MALLOC_DECOMMIT + if (size != chunksize) + return (NULL); +#endif + + key.addr = NULL; + key.size = size; + malloc_mutex_lock(&reserve_mtx); + node = extent_tree_szad_nsearch(&reserve_chunks_szad, &key); + if (node != NULL) { + void *ret = node->addr; + + /* Remove node from the tree. */ + extent_tree_szad_remove(&reserve_chunks_szad, node); +#ifndef MALLOC_DECOMMIT + if (node->size == size) { +#else + assert(node->size == size); +#endif + extent_tree_ad_remove(&reserve_chunks_ad, node); + base_node_dealloc(node); +#ifndef MALLOC_DECOMMIT + } else { + /* + * Insert the remainder of node's address range as a + * smaller chunk. Its position within reserve_chunks_ad + * does not change. + */ + assert(node->size > size); + node->addr = (void *)((uintptr_t)node->addr + size); + node->size -= size; + extent_tree_szad_insert(&reserve_chunks_szad, node); + } +#endif + reserve_cur -= size; + /* + * Try to replenish the reserve if this allocation depleted it. + */ +#ifndef MALLOC_DECOMMIT + if (reserve_cur < reserve_min) { + size_t diff = reserve_min - reserve_cur; +#else + while (reserve_cur < reserve_min) { +# define diff chunksize +#endif + void *chunk; + + malloc_mutex_unlock(&reserve_mtx); + chunk = chunk_alloc_mmap(diff, true); + malloc_mutex_lock(&reserve_mtx); + if (chunk == NULL) { + uint64_t seq = 0; + + do { + seq = reserve_notify(RESERVE_CND_LOW, + size, seq); + if (seq == 0) + goto MALLOC_OUT; + } while (reserve_cur < reserve_min); + } else { + extent_node_t *node; + + node = chunk_dealloc_reserve(chunk, diff); + if (node == NULL) { + uint64_t seq = 0; + + pages_unmap(chunk, diff); + do { + seq = reserve_notify( + RESERVE_CND_LOW, size, seq); + if (seq == 0) + goto MALLOC_OUT; + } while (reserve_cur < reserve_min); + } + } + } +MALLOC_OUT: + malloc_mutex_unlock(&reserve_mtx); + +#ifdef MALLOC_DECOMMIT + pages_commit(ret, size); +# undef diff +#else + if (zero) + memset(ret, 0, size); +#endif + return (ret); + } + malloc_mutex_unlock(&reserve_mtx); + + return (NULL); +} + +static void * +chunk_alloc(size_t size, bool zero, bool pagefile) +{ + void *ret; + + assert(size != 0); + assert((size & chunksize_mask) == 0); + + ret = chunk_recycle_reserve(size, zero); + if (ret != NULL) + goto RETURN; + + ret = chunk_alloc_mmap(size, pagefile); + if (ret != NULL) { + goto RETURN; + } + + /* All strategies for allocation failed. */ + ret = NULL; +RETURN: +#ifdef MALLOC_STATS + if (ret != NULL) + stats_chunks.curchunks += (size / chunksize); + if (stats_chunks.curchunks > stats_chunks.highchunks) + stats_chunks.highchunks = stats_chunks.curchunks; +#endif + +#ifdef MALLOC_VALIDATE + if (ret != NULL) { + if (malloc_rtree_set(chunk_rtree, (uintptr_t)ret, ret)) { + chunk_dealloc(ret, size); + return (NULL); + } + } +#endif + + assert(CHUNK_ADDR2BASE(ret) == ret); + return (ret); +} + +static extent_node_t * +chunk_dealloc_reserve(void *chunk, size_t size) +{ + extent_node_t *node; + +#ifdef MALLOC_DECOMMIT + if (size != chunksize) + return (NULL); +#else + extent_node_t *prev, key; + + key.addr = (void *)((uintptr_t)chunk + size); + node = extent_tree_ad_nsearch(&reserve_chunks_ad, &key); + /* Try to coalesce forward. */ + if (node != NULL && node->addr == key.addr) { + /* + * Coalesce chunk with the following address range. This does + * not change the position within reserve_chunks_ad, so only + * remove/insert from/into reserve_chunks_szad. + */ + extent_tree_szad_remove(&reserve_chunks_szad, node); + node->addr = chunk; + node->size += size; + extent_tree_szad_insert(&reserve_chunks_szad, node); + } else { +#endif + /* Coalescing forward failed, so insert a new node. */ + node = base_node_alloc(); + if (node == NULL) + return (NULL); + node->addr = chunk; + node->size = size; + extent_tree_ad_insert(&reserve_chunks_ad, node); + extent_tree_szad_insert(&reserve_chunks_szad, node); +#ifndef MALLOC_DECOMMIT + } + + /* Try to coalesce backward. */ + prev = extent_tree_ad_prev(&reserve_chunks_ad, node); + if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) == + chunk) { + /* + * Coalesce chunk with the previous address range. This does + * not change the position within reserve_chunks_ad, so only + * remove/insert node from/into reserve_chunks_szad. + */ + extent_tree_szad_remove(&reserve_chunks_szad, prev); + extent_tree_ad_remove(&reserve_chunks_ad, prev); + + extent_tree_szad_remove(&reserve_chunks_szad, node); + node->addr = prev->addr; + node->size += prev->size; + extent_tree_szad_insert(&reserve_chunks_szad, node); + + base_node_dealloc(prev); + } +#endif + +#ifdef MALLOC_DECOMMIT + pages_decommit(chunk, size); +#else + madvise(chunk, size, MADV_FREE); +#endif + + reserve_cur += size; + if (reserve_cur > reserve_max) + reserve_shrink(); + + return (node); +} + +static void +chunk_dealloc_mmap(void *chunk, size_t size) +{ + + pages_unmap(chunk, size); +} + +static void +chunk_dealloc(void *chunk, size_t size) +{ + extent_node_t *node; + + assert(chunk != NULL); + assert(CHUNK_ADDR2BASE(chunk) == chunk); + assert(size != 0); + assert((size & chunksize_mask) == 0); + +#ifdef MALLOC_STATS + stats_chunks.curchunks -= (size / chunksize); +#endif +#ifdef MALLOC_VALIDATE + malloc_rtree_set(chunk_rtree, (uintptr_t)chunk, NULL); +#endif + + /* Try to merge chunk into the reserve. */ + malloc_mutex_lock(&reserve_mtx); + node = chunk_dealloc_reserve(chunk, size); + malloc_mutex_unlock(&reserve_mtx); + if (node == NULL) + chunk_dealloc_mmap(chunk, size); +} + +/* + * End chunk management functions. + */ +/******************************************************************************/ +/* + * Begin arena. + */ + +/* + * Choose an arena based on a per-thread value (fast-path code, calls slow-path + * code if necessary). + */ +static inline arena_t * +choose_arena(void) +{ + arena_t *ret; + + /* + * We can only use TLS if this is a PIC library, since for the static + * library version, libc's malloc is used by TLS allocation, which + * introduces a bootstrapping issue. + */ +#ifndef NO_TLS + if (__isthreaded == false) { + /* Avoid the overhead of TLS for single-threaded operation. */ + return (arenas[0]); + } + +# ifdef MOZ_MEMORY_WINDOWS + ret = (arena_t*)TlsGetValue(tlsIndex); +# else + ret = arenas_map; +# endif + + if (ret == NULL) { + ret = choose_arena_hard(); + assert(ret != NULL); + } +#else + if (__isthreaded && narenas > 1) { + unsigned long ind; + + /* + * Hash _pthread_self() to one of the arenas. There is a prime + * number of arenas, so this has a reasonable chance of + * working. Even so, the hashing can be easily thwarted by + * inconvenient _pthread_self() values. Without specific + * knowledge of how _pthread_self() calculates values, we can't + * easily do much better than this. + */ + ind = (unsigned long) _pthread_self() % narenas; + + /* + * Optimistially assume that arenas[ind] has been initialized. + * At worst, we find out that some other thread has already + * done so, after acquiring the lock in preparation. Note that + * this lazy locking also has the effect of lazily forcing + * cache coherency; without the lock acquisition, there's no + * guarantee that modification of arenas[ind] by another thread + * would be seen on this CPU for an arbitrary amount of time. + * + * In general, this approach to modifying a synchronized value + * isn't a good idea, but in this case we only ever modify the + * value once, so things work out well. + */ + ret = arenas[ind]; + if (ret == NULL) { + /* + * Avoid races with another thread that may have already + * initialized arenas[ind]. + */ + malloc_spin_lock(&arenas_lock); + if (arenas[ind] == NULL) + ret = arenas_extend((unsigned)ind); + else + ret = arenas[ind]; + malloc_spin_unlock(&arenas_lock); + } + } else + ret = arenas[0]; +#endif + + assert(ret != NULL); + return (ret); +} + +#ifndef NO_TLS +/* + * Choose an arena based on a per-thread value (slow-path code only, called + * only by choose_arena()). + */ +static arena_t * +choose_arena_hard(void) +{ + arena_t *ret; + + assert(__isthreaded); + +#ifdef MALLOC_BALANCE + /* Seed the PRNG used for arena load balancing. */ + SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self())); +#endif + + if (narenas > 1) { +#ifdef MALLOC_BALANCE + unsigned ind; + + ind = PRN(balance, narenas_2pow); + if ((ret = arenas[ind]) == NULL) { + malloc_spin_lock(&arenas_lock); + if ((ret = arenas[ind]) == NULL) + ret = arenas_extend(ind); + malloc_spin_unlock(&arenas_lock); + } +#else + malloc_spin_lock(&arenas_lock); + if ((ret = arenas[next_arena]) == NULL) + ret = arenas_extend(next_arena); + next_arena = (next_arena + 1) % narenas; + malloc_spin_unlock(&arenas_lock); +#endif + } else + ret = arenas[0]; + +#ifdef MOZ_MEMORY_WINDOWS + TlsSetValue(tlsIndex, ret); +#else + arenas_map = ret; +#endif + + return (ret); +} +#endif + +static inline int +arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b) +{ + uintptr_t a_chunk = (uintptr_t)a; + uintptr_t b_chunk = (uintptr_t)b; + + assert(a != NULL); + assert(b != NULL); + + return ((a_chunk > b_chunk) - (a_chunk < b_chunk)); +} + +/* Wrap red-black tree macros in functions. */ +rb_wrap(static, arena_chunk_tree_dirty_, arena_chunk_tree_t, + arena_chunk_t, link_dirty, arena_chunk_comp) + +static inline int +arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b) +{ + uintptr_t a_mapelm = (uintptr_t)a; + uintptr_t b_mapelm = (uintptr_t)b; + + assert(a != NULL); + assert(b != NULL); + + return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm)); +} + +/* Wrap red-black tree macros in functions. */ +rb_wrap(static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, link, + arena_run_comp) + +static inline int +arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b) +{ + int ret; + size_t a_size = a->bits & ~pagesize_mask; + size_t b_size = b->bits & ~pagesize_mask; + + ret = (a_size > b_size) - (a_size < b_size); + if (ret == 0) { + uintptr_t a_mapelm, b_mapelm; + + if ((a->bits & CHUNK_MAP_KEY) == 0) + a_mapelm = (uintptr_t)a; + else { + /* + * Treat keys as though they are lower than anything + * else. + */ + a_mapelm = 0; + } + b_mapelm = (uintptr_t)b; + + ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm); + } + + return (ret); +} + +/* Wrap red-black tree macros in functions. */ +rb_wrap(static, arena_avail_tree_, arena_avail_tree_t, arena_chunk_map_t, link, + arena_avail_comp) + +static inline void * +arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin) +{ + void *ret; + unsigned i, mask, bit, regind; + + assert(run->magic == ARENA_RUN_MAGIC); + assert(run->regs_minelm < bin->regs_mask_nelms); + + /* + * Move the first check outside the loop, so that run->regs_minelm can + * be updated unconditionally, without the possibility of updating it + * multiple times. + */ + i = run->regs_minelm; + mask = run->regs_mask[i]; + if (mask != 0) { + /* Usable allocation found. */ + bit = ffs((int)mask) - 1; + + regind = ((i << (SIZEOF_INT_2POW + 3)) + bit); + assert(regind < bin->nregs); + ret = (void *)(((uintptr_t)run) + bin->reg0_offset + + (bin->reg_size * regind)); + + /* Clear bit. */ + mask ^= (1U << bit); + run->regs_mask[i] = mask; + + return (ret); + } + + for (i++; i < bin->regs_mask_nelms; i++) { + mask = run->regs_mask[i]; + if (mask != 0) { + /* Usable allocation found. */ + bit = ffs((int)mask) - 1; + + regind = ((i << (SIZEOF_INT_2POW + 3)) + bit); + assert(regind < bin->nregs); + ret = (void *)(((uintptr_t)run) + bin->reg0_offset + + (bin->reg_size * regind)); + + /* Clear bit. */ + mask ^= (1U << bit); + run->regs_mask[i] = mask; + + /* + * Make a note that nothing before this element + * contains a free region. + */ + run->regs_minelm = i; /* Low payoff: + (mask == 0); */ + + return (ret); + } + } + /* Not reached. */ + assert(0); + return (NULL); +} + +static inline void +arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size) +{ + /* + * To divide by a number D that is not a power of two we multiply + * by (2^21 / D) and then right shift by 21 positions. + * + * X / D + * + * becomes + * + * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT + */ +#define SIZE_INV_SHIFT 21 +#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1) + static const unsigned size_invs[] = { + SIZE_INV(3), + SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7), + SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11), + SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15), + SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19), + SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23), + SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27), + SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31) +#if (QUANTUM_2POW_MIN < 4) + , + SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35), + SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39), + SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43), + SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47), + SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51), + SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55), + SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59), + SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63) +#endif + }; + unsigned diff, regind, elm, bit; + + assert(run->magic == ARENA_RUN_MAGIC); + assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3 + >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN)); + + /* + * Avoid doing division with a variable divisor if possible. Using + * actual division here can reduce allocator throughput by over 20%! + */ + diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset); + if ((size & (size - 1)) == 0) { + /* + * log2_table allows fast division of a power of two in the + * [1..128] range. + * + * (x / divisor) becomes (x >> log2_table[divisor - 1]). + */ + static const unsigned char log2_table[] = { + 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7 + }; + + if (size <= 128) + regind = (diff >> log2_table[size - 1]); + else if (size <= 32768) + regind = diff >> (8 + log2_table[(size >> 8) - 1]); + else { + /* + * The run size is too large for us to use the lookup + * table. Use real division. + */ + regind = diff / size; + } + } else if (size <= ((sizeof(size_invs) / sizeof(unsigned)) + << QUANTUM_2POW_MIN) + 2) { + regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff; + regind >>= SIZE_INV_SHIFT; + } else { + /* + * size_invs isn't large enough to handle this size class, so + * calculate regind using actual division. This only happens + * if the user increases small_max via the 'S' runtime + * configuration option. + */ + regind = diff / size; + }; + assert(diff == regind * size); + assert(regind < bin->nregs); + + elm = regind >> (SIZEOF_INT_2POW + 3); + if (elm < run->regs_minelm) + run->regs_minelm = elm; + bit = regind - (elm << (SIZEOF_INT_2POW + 3)); + assert((run->regs_mask[elm] & (1U << bit)) == 0); + run->regs_mask[elm] |= (1U << bit); +#undef SIZE_INV +#undef SIZE_INV_SHIFT +} + +static void +arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large, + bool zero) +{ + arena_chunk_t *chunk; + size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i; + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); + old_ndirty = chunk->ndirty; + run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk) + >> pagesize_2pow); + total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >> + pagesize_2pow; + need_pages = (size >> pagesize_2pow); + assert(need_pages > 0); + assert(need_pages <= total_pages); + rem_pages = total_pages - need_pages; + + arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]); + + /* Keep track of trailing unused pages for later use. */ + if (rem_pages > 0) { + chunk->map[run_ind+need_pages].bits = (rem_pages << + pagesize_2pow) | (chunk->map[run_ind+need_pages].bits & + pagesize_mask); + chunk->map[run_ind+total_pages-1].bits = (rem_pages << + pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits & + pagesize_mask); + arena_avail_tree_insert(&arena->runs_avail, + &chunk->map[run_ind+need_pages]); + } + + for (i = 0; i < need_pages; i++) { +#ifdef MALLOC_DECOMMIT + /* + * Commit decommitted pages if necessary. If a decommitted + * page is encountered, commit all needed adjacent decommitted + * pages in one operation, in order to reduce system call + * overhead. + */ + if (chunk->map[run_ind + i].bits & CHUNK_MAP_DECOMMITTED) { + size_t j; + + /* + * Advance i+j to just past the index of the last page + * to commit. Clear CHUNK_MAP_DECOMMITTED along the + * way. + */ + for (j = 0; i + j < need_pages && (chunk->map[run_ind + + i + j].bits & CHUNK_MAP_DECOMMITTED); j++) { + chunk->map[run_ind + i + j].bits ^= + CHUNK_MAP_DECOMMITTED; + } + + pages_commit((void *)((uintptr_t)chunk + ((run_ind + i) + << pagesize_2pow)), (j << pagesize_2pow)); +# ifdef MALLOC_STATS + arena->stats.ncommit++; +# endif + } else /* No need to zero since commit zeros. */ +#endif + + /* Zero if necessary. */ + if (zero) { + if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED) + == 0) { + VALGRIND_MALLOCLIKE_BLOCK((void *)((uintptr_t) + chunk + ((run_ind + i) << pagesize_2pow)), + pagesize, 0, false); + memset((void *)((uintptr_t)chunk + ((run_ind + + i) << pagesize_2pow)), 0, pagesize); + VALGRIND_FREELIKE_BLOCK((void *)((uintptr_t) + chunk + ((run_ind + i) << pagesize_2pow)), + 0); + /* CHUNK_MAP_ZEROED is cleared below. */ + } + } + + /* Update dirty page accounting. */ + if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) { + chunk->ndirty--; + arena->ndirty--; + /* CHUNK_MAP_DIRTY is cleared below. */ + } + + /* Initialize the chunk map. */ + if (large) { + chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE + | CHUNK_MAP_ALLOCATED; + } else { + chunk->map[run_ind + i].bits = (size_t)run + | CHUNK_MAP_ALLOCATED; + } + } + + /* + * Set the run size only in the first element for large runs. This is + * primarily a debugging aid, since the lack of size info for trailing + * pages only matters if the application tries to operate on an + * interior pointer. + */ + if (large) + chunk->map[run_ind].bits |= size; + + if (chunk->ndirty == 0 && old_ndirty > 0) + arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk); +} + +static void +arena_chunk_init(arena_t *arena, arena_chunk_t *chunk) +{ + arena_run_t *run; + size_t i; + + VALGRIND_MALLOCLIKE_BLOCK(chunk, (arena_chunk_header_npages << + pagesize_2pow), 0, false); +#ifdef MALLOC_STATS + arena->stats.mapped += chunksize; +#endif + + chunk->arena = arena; + + /* + * Claim that no pages are in use, since the header is merely overhead. + */ + chunk->ndirty = 0; + + /* Initialize the map to contain one maximal free untouched run. */ + run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages << + pagesize_2pow)); + for (i = 0; i < arena_chunk_header_npages; i++) + chunk->map[i].bits = 0; + chunk->map[i].bits = arena_maxclass +#ifdef MALLOC_DECOMMIT + | CHUNK_MAP_DECOMMITTED +#endif + | CHUNK_MAP_ZEROED; + for (i++; i < chunk_npages-1; i++) { + chunk->map[i].bits = +#ifdef MALLOC_DECOMMIT + CHUNK_MAP_DECOMMITTED | +#endif + CHUNK_MAP_ZEROED; + } + chunk->map[chunk_npages-1].bits = arena_maxclass +#ifdef MALLOC_DECOMMIT + | CHUNK_MAP_DECOMMITTED +#endif + | CHUNK_MAP_ZEROED; + +#ifdef MALLOC_DECOMMIT + /* + * Start out decommitted, in order to force a closer correspondence + * between dirty pages and committed untouched pages. + */ + pages_decommit(run, arena_maxclass); +# ifdef MALLOC_STATS + arena->stats.ndecommit++; + arena->stats.decommitted += (chunk_npages - arena_chunk_header_npages); +# endif +#endif + + /* Insert the run into the runs_avail tree. */ + arena_avail_tree_insert(&arena->runs_avail, + &chunk->map[arena_chunk_header_npages]); +} + +static void +arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk) +{ + + if (arena->spare != NULL) { + if (arena->spare->ndirty > 0) { + arena_chunk_tree_dirty_remove( + &chunk->arena->chunks_dirty, arena->spare); + arena->ndirty -= arena->spare->ndirty; + } + VALGRIND_FREELIKE_BLOCK(arena->spare, 0); + chunk_dealloc((void *)arena->spare, chunksize); +#ifdef MALLOC_STATS + arena->stats.mapped -= chunksize; +#endif + } + + /* + * Remove run from runs_avail, regardless of whether this chunk + * will be cached, so that the arena does not use it. Dirty page + * flushing only uses the chunks_dirty tree, so leaving this chunk in + * the chunks_* trees is sufficient for that purpose. + */ + arena_avail_tree_remove(&arena->runs_avail, + &chunk->map[arena_chunk_header_npages]); + + arena->spare = chunk; +} + +static arena_run_t * +arena_run_alloc(arena_t *arena, arena_bin_t *bin, size_t size, bool large, + bool zero) +{ + arena_chunk_t *chunk; + arena_run_t *run; + arena_chunk_map_t *mapelm, key; + + assert(size <= arena_maxclass); + assert((size & pagesize_mask) == 0); + + chunk = NULL; + while (true) { + /* Search the arena's chunks for the lowest best fit. */ + key.bits = size | CHUNK_MAP_KEY; + mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key); + if (mapelm != NULL) { + arena_chunk_t *run_chunk = (arena_chunk_t*)CHUNK_ADDR2BASE(mapelm); + size_t pageind = ((uintptr_t)mapelm - + (uintptr_t)run_chunk->map) / + sizeof(arena_chunk_map_t); + + if (chunk != NULL) + chunk_dealloc(chunk, chunksize); + run = (arena_run_t *)((uintptr_t)run_chunk + (pageind + << pagesize_2pow)); + arena_run_split(arena, run, size, large, zero); + return (run); + } + + if (arena->spare != NULL) { + /* Use the spare. */ + chunk = arena->spare; + arena->spare = NULL; + run = (arena_run_t *)((uintptr_t)chunk + + (arena_chunk_header_npages << pagesize_2pow)); + /* Insert the run into the runs_avail tree. */ + arena_avail_tree_insert(&arena->runs_avail, + &chunk->map[arena_chunk_header_npages]); + arena_run_split(arena, run, size, large, zero); + return (run); + } + + /* + * No usable runs. Create a new chunk from which to allocate + * the run. + */ + if (chunk == NULL) { + uint64_t chunk_seq; + + /* + * Record the chunk allocation sequence number in order + * to detect races. + */ + arena->chunk_seq++; + chunk_seq = arena->chunk_seq; + + /* + * Drop the arena lock while allocating a chunk, since + * reserve notifications may cause recursive + * allocation. Dropping the lock here opens an + * allocataion race, but we recover. + */ + malloc_mutex_unlock(&arena->lock); + chunk = (arena_chunk_t *)chunk_alloc(chunksize, true, + true); + malloc_mutex_lock(&arena->lock); + + /* + * Check whether a race allowed a usable run to appear. + */ + if (bin != NULL && (run = bin->runcur) != NULL && + run->nfree > 0) { + if (chunk != NULL) + chunk_dealloc(chunk, chunksize); + return (run); + } + + /* + * If this thread raced with another such that multiple + * chunks were allocated, make sure that there is still + * inadequate space before using this chunk. + */ + if (chunk_seq != arena->chunk_seq) + continue; + + /* + * Check for an error *after* checking for a race, + * since a race could also cause a transient OOM + * condition. + */ + if (chunk == NULL) + return (NULL); + } + + arena_chunk_init(arena, chunk); + run = (arena_run_t *)((uintptr_t)chunk + + (arena_chunk_header_npages << pagesize_2pow)); + /* Update page map. */ + arena_run_split(arena, run, size, large, zero); + return (run); + } +} + +static void +arena_purge(arena_t *arena) +{ + arena_chunk_t *chunk; + size_t i, npages; +#ifdef MALLOC_DEBUG + size_t ndirty = 0; + rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty, + chunk) { + ndirty += chunk->ndirty; + } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk) + assert(ndirty == arena->ndirty); +#endif + assert(arena->ndirty > opt_dirty_max); + +#ifdef MALLOC_STATS + arena->stats.npurge++; +#endif + + /* + * Iterate downward through chunks until enough dirty memory has been + * purged. Terminate as soon as possible in order to minimize the + * number of system calls, even if a chunk has only been partially + * purged. + */ + while (arena->ndirty > (opt_dirty_max >> 1)) { + chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty); + assert(chunk != NULL); + + for (i = chunk_npages - 1; chunk->ndirty > 0; i--) { + assert(i >= arena_chunk_header_npages); + + if (chunk->map[i].bits & CHUNK_MAP_DIRTY) { +#ifdef MALLOC_DECOMMIT + assert((chunk->map[i].bits & + CHUNK_MAP_DECOMMITTED) == 0); +#endif + chunk->map[i].bits ^= +#ifdef MALLOC_DECOMMIT + CHUNK_MAP_DECOMMITTED | +#endif + CHUNK_MAP_DIRTY; + /* Find adjacent dirty run(s). */ + for (npages = 1; i > arena_chunk_header_npages + && (chunk->map[i - 1].bits & + CHUNK_MAP_DIRTY); npages++) { + i--; +#ifdef MALLOC_DECOMMIT + assert((chunk->map[i].bits & + CHUNK_MAP_DECOMMITTED) == 0); +#endif + chunk->map[i].bits ^= +#ifdef MALLOC_DECOMMIT + CHUNK_MAP_DECOMMITTED | +#endif + CHUNK_MAP_DIRTY; + } + chunk->ndirty -= npages; + arena->ndirty -= npages; + +#ifdef MALLOC_DECOMMIT + pages_decommit((void *)((uintptr_t) + chunk + (i << pagesize_2pow)), + (npages << pagesize_2pow)); +# ifdef MALLOC_STATS + arena->stats.ndecommit++; + arena->stats.decommitted += npages; +# endif +#else + madvise((void *)((uintptr_t)chunk + (i << + pagesize_2pow)), (npages << pagesize_2pow), + MADV_FREE); +#endif +#ifdef MALLOC_STATS + arena->stats.nmadvise++; + arena->stats.purged += npages; +#endif + if (arena->ndirty <= (opt_dirty_max >> 1)) + break; + } + } + + if (chunk->ndirty == 0) { + arena_chunk_tree_dirty_remove(&arena->chunks_dirty, + chunk); + } + } +} + +static void +arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty) +{ + arena_chunk_t *chunk; + size_t size, run_ind, run_pages; + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); + run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk) + >> pagesize_2pow); + assert(run_ind >= arena_chunk_header_npages); + assert(run_ind < chunk_npages); + if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0) + size = chunk->map[run_ind].bits & ~pagesize_mask; + else + size = run->bin->run_size; + run_pages = (size >> pagesize_2pow); + + /* Mark pages as unallocated in the chunk map. */ + if (dirty) { + size_t i; + + for (i = 0; i < run_pages; i++) { + assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) + == 0); + chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY; + } + + if (chunk->ndirty == 0) { + arena_chunk_tree_dirty_insert(&arena->chunks_dirty, + chunk); + } + chunk->ndirty += run_pages; + arena->ndirty += run_pages; + } else { + size_t i; + + for (i = 0; i < run_pages; i++) { + chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE | + CHUNK_MAP_ALLOCATED); + } + } + chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & + pagesize_mask); + chunk->map[run_ind+run_pages-1].bits = size | + (chunk->map[run_ind+run_pages-1].bits & pagesize_mask); + + /* Try to coalesce forward. */ + if (run_ind + run_pages < chunk_npages && + (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) { + size_t nrun_size = chunk->map[run_ind+run_pages].bits & + ~pagesize_mask; + + /* + * Remove successor from runs_avail; the coalesced run is + * inserted later. + */ + arena_avail_tree_remove(&arena->runs_avail, + &chunk->map[run_ind+run_pages]); + + size += nrun_size; + run_pages = size >> pagesize_2pow; + + assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask) + == nrun_size); + chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & + pagesize_mask); + chunk->map[run_ind+run_pages-1].bits = size | + (chunk->map[run_ind+run_pages-1].bits & pagesize_mask); + } + + /* Try to coalesce backward. */ + if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits & + CHUNK_MAP_ALLOCATED) == 0) { + size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask; + + run_ind -= prun_size >> pagesize_2pow; + + /* + * Remove predecessor from runs_avail; the coalesced run is + * inserted later. + */ + arena_avail_tree_remove(&arena->runs_avail, + &chunk->map[run_ind]); + + size += prun_size; + run_pages = size >> pagesize_2pow; + + assert((chunk->map[run_ind].bits & ~pagesize_mask) == + prun_size); + chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & + pagesize_mask); + chunk->map[run_ind+run_pages-1].bits = size | + (chunk->map[run_ind+run_pages-1].bits & pagesize_mask); + } + + /* Insert into runs_avail, now that coalescing is complete. */ + arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]); + + /* Deallocate chunk if it is now completely unused. */ + if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask | + CHUNK_MAP_ALLOCATED)) == arena_maxclass) + arena_chunk_dealloc(arena, chunk); + + /* Enforce opt_dirty_max. */ + if (arena->ndirty > opt_dirty_max) + arena_purge(arena); +} + +static void +arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, + size_t oldsize, size_t newsize) +{ + size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow; + size_t head_npages = (oldsize - newsize) >> pagesize_2pow; + + assert(oldsize > newsize); + + /* + * Update the chunk map so that arena_run_dalloc() can treat the + * leading run as separately allocated. + */ + chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE | + CHUNK_MAP_ALLOCATED; + chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE | + CHUNK_MAP_ALLOCATED; + + arena_run_dalloc(arena, run, false); +} + +static void +arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, + size_t oldsize, size_t newsize, bool dirty) +{ + size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow; + size_t npages = newsize >> pagesize_2pow; + + assert(oldsize > newsize); + + /* + * Update the chunk map so that arena_run_dalloc() can treat the + * trailing run as separately allocated. + */ + chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE | + CHUNK_MAP_ALLOCATED; + chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE + | CHUNK_MAP_ALLOCATED; + + arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize), + dirty); +} + +static arena_run_t * +arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin) +{ + arena_chunk_map_t *mapelm; + arena_run_t *run; + unsigned i, remainder; + + /* Look for a usable run. */ + mapelm = arena_run_tree_first(&bin->runs); + if (mapelm != NULL) { + /* run is guaranteed to have available space. */ + arena_run_tree_remove(&bin->runs, mapelm); + run = (arena_run_t *)(mapelm->bits & ~pagesize_mask); +#ifdef MALLOC_STATS + bin->stats.reruns++; +#endif + return (run); + } + /* No existing runs have any space available. */ + + /* Allocate a new run. */ + run = arena_run_alloc(arena, bin, bin->run_size, false, false); + if (run == NULL) + return (NULL); + /* + * Don't initialize if a race in arena_run_alloc() allowed an existing + * run to become usable. + */ + if (run == bin->runcur) + return (run); + + VALGRIND_MALLOCLIKE_BLOCK(run, sizeof(arena_run_t) + (sizeof(unsigned) * + (bin->regs_mask_nelms - 1)), 0, false); + + /* Initialize run internals. */ + run->bin = bin; + + for (i = 0; i < bin->regs_mask_nelms - 1; i++) + run->regs_mask[i] = UINT_MAX; + remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1); + if (remainder == 0) + run->regs_mask[i] = UINT_MAX; + else { + /* The last element has spare bits that need to be unset. */ + run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3)) + - remainder)); + } + + run->regs_minelm = 0; + + run->nfree = bin->nregs; +#ifdef MALLOC_DEBUG + run->magic = ARENA_RUN_MAGIC; +#endif + +#ifdef MALLOC_STATS + bin->stats.nruns++; + bin->stats.curruns++; + if (bin->stats.curruns > bin->stats.highruns) + bin->stats.highruns = bin->stats.curruns; +#endif + return (run); +} + +/* bin->runcur must have space available before this function is called. */ +static inline void * +arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run) +{ + void *ret; + + assert(run->magic == ARENA_RUN_MAGIC); + assert(run->nfree > 0); + + ret = arena_run_reg_alloc(run, bin); + assert(ret != NULL); + run->nfree--; + + return (ret); +} + +/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */ +static void * +arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin) +{ + + bin->runcur = arena_bin_nonfull_run_get(arena, bin); + if (bin->runcur == NULL) + return (NULL); + assert(bin->runcur->magic == ARENA_RUN_MAGIC); + assert(bin->runcur->nfree > 0); + + return (arena_bin_malloc_easy(arena, bin, bin->runcur)); +} + +/* + * Calculate bin->run_size such that it meets the following constraints: + * + * *) bin->run_size >= min_run_size + * *) bin->run_size <= arena_maxclass + * *) bin->run_size <= RUN_MAX_SMALL + * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed). + * + * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are + * also calculated here, since these settings are all interdependent. + */ +static size_t +arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size) +{ + size_t try_run_size, good_run_size; + unsigned good_nregs, good_mask_nelms, good_reg0_offset; + unsigned try_nregs, try_mask_nelms, try_reg0_offset; + + assert(min_run_size >= pagesize); + assert(min_run_size <= arena_maxclass); + assert(min_run_size <= RUN_MAX_SMALL); + + /* + * Calculate known-valid settings before entering the run_size + * expansion loop, so that the first part of the loop always copies + * valid settings. + * + * The do..while loop iteratively reduces the number of regions until + * the run header and the regions no longer overlap. A closed formula + * would be quite messy, since there is an interdependency between the + * header's mask length and the number of regions. + */ + try_run_size = min_run_size; + try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size) + + 1; /* Counter-act try_nregs-- in loop. */ + do { + try_nregs--; + try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) + + ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0); + try_reg0_offset = try_run_size - (try_nregs * bin->reg_size); + } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)) + > try_reg0_offset); + + /* run_size expansion loop. */ + do { + /* + * Copy valid settings before trying more aggressive settings. + */ + good_run_size = try_run_size; + good_nregs = try_nregs; + good_mask_nelms = try_mask_nelms; + good_reg0_offset = try_reg0_offset; + + /* Try more aggressive settings. */ + try_run_size += pagesize; + try_nregs = ((try_run_size - sizeof(arena_run_t)) / + bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */ + do { + try_nregs--; + try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) + + ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? + 1 : 0); + try_reg0_offset = try_run_size - (try_nregs * + bin->reg_size); + } while (sizeof(arena_run_t) + (sizeof(unsigned) * + (try_mask_nelms - 1)) > try_reg0_offset); + } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL + && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX + && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size); + + assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1)) + <= good_reg0_offset); + assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs); + + /* Copy final settings. */ + bin->run_size = good_run_size; + bin->nregs = good_nregs; + bin->regs_mask_nelms = good_mask_nelms; + bin->reg0_offset = good_reg0_offset; + + return (good_run_size); +} + +#ifdef MALLOC_BALANCE +static inline void +arena_lock_balance(arena_t *arena) +{ + unsigned contention; + + contention = malloc_spin_lock(&arena->lock); + if (narenas > 1) { + /* + * Calculate the exponentially averaged contention for this + * arena. Due to integer math always rounding down, this value + * decays somewhat faster then normal. + */ + arena->contention = (((uint64_t)arena->contention + * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1)) + + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW; + if (arena->contention >= opt_balance_threshold) + arena_lock_balance_hard(arena); + } +} + +static void +arena_lock_balance_hard(arena_t *arena) +{ + uint32_t ind; + + arena->contention = 0; +#ifdef MALLOC_STATS + arena->stats.nbalance++; +#endif + ind = PRN(balance, narenas_2pow); + if (arenas[ind] != NULL) { +#ifdef MOZ_MEMORY_WINDOWS + TlsSetValue(tlsIndex, arenas[ind]); +#else + arenas_map = arenas[ind]; +#endif + } else { + malloc_spin_lock(&arenas_lock); + if (arenas[ind] != NULL) { +#ifdef MOZ_MEMORY_WINDOWS + TlsSetValue(tlsIndex, arenas[ind]); +#else + arenas_map = arenas[ind]; +#endif + } else { +#ifdef MOZ_MEMORY_WINDOWS + TlsSetValue(tlsIndex, arenas_extend(ind)); +#else + arenas_map = arenas_extend(ind); +#endif + } + malloc_spin_unlock(&arenas_lock); + } +} +#endif + +static inline void * +arena_malloc_small(arena_t *arena, size_t size, bool zero) +{ + void *ret; + arena_bin_t *bin; + arena_run_t *run; + + if (size < small_min) { + /* Tiny. */ + size = pow2_ceil(size); + bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW + + 1)))]; +#if (!defined(NDEBUG) || defined(MALLOC_STATS)) + /* + * Bin calculation is always correct, but we may need + * to fix size for the purposes of assertions and/or + * stats accuracy. + */ + if (size < (1U << TINY_MIN_2POW)) + size = (1U << TINY_MIN_2POW); +#endif + } else if (size <= small_max) { + /* Quantum-spaced. */ + size = QUANTUM_CEILING(size); + bin = &arena->bins[ntbins + (size >> opt_quantum_2pow) + - 1]; + } else { + /* Sub-page. */ + size = pow2_ceil(size); + bin = &arena->bins[ntbins + nqbins + + (ffs((int)(size >> opt_small_max_2pow)) - 2)]; + } + assert(size == bin->reg_size); + +#ifdef MALLOC_BALANCE + arena_lock_balance(arena); +#else + malloc_spin_lock(&arena->lock); +#endif + if ((run = bin->runcur) != NULL && run->nfree > 0) + ret = arena_bin_malloc_easy(arena, bin, run); + else + ret = arena_bin_malloc_hard(arena, bin); + + if (ret == NULL) { + malloc_spin_unlock(&arena->lock); + return (NULL); + } + +#ifdef MALLOC_STATS + bin->stats.nrequests++; + arena->stats.nmalloc_small++; + arena->stats.allocated_small += size; +#endif + malloc_spin_unlock(&arena->lock); + + VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero); + if (zero == false) { +#ifdef MALLOC_FILL + if (opt_junk) + memset(ret, 0xa5, size); + else if (opt_zero) + memset(ret, 0, size); +#endif + } else + memset(ret, 0, size); + + return (ret); +} + +static void * +arena_malloc_large(arena_t *arena, size_t size, bool zero) +{ + void *ret; + + /* Large allocation. */ + size = PAGE_CEILING(size); +#ifdef MALLOC_BALANCE + arena_lock_balance(arena); +#else + malloc_spin_lock(&arena->lock); +#endif + ret = (void *)arena_run_alloc(arena, NULL, size, true, zero); + if (ret == NULL) { + malloc_spin_unlock(&arena->lock); + return (NULL); + } +#ifdef MALLOC_STATS + arena->stats.nmalloc_large++; + arena->stats.allocated_large += size; +#endif + malloc_spin_unlock(&arena->lock); + + VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero); + if (zero == false) { +#ifdef MALLOC_FILL + if (opt_junk) + memset(ret, 0xa5, size); + else if (opt_zero) + memset(ret, 0, size); +#endif + } + + return (ret); +} + +static inline void * +arena_malloc(arena_t *arena, size_t size, bool zero) +{ + + assert(arena != NULL); + assert(arena->magic == ARENA_MAGIC); + assert(size != 0); + assert(QUANTUM_CEILING(size) <= arena_maxclass); + + if (size <= bin_maxclass) { + return (arena_malloc_small(arena, size, zero)); + } else + return (arena_malloc_large(arena, size, zero)); +} + +static inline void * +imalloc(size_t size) +{ + + assert(size != 0); + + if (size <= arena_maxclass) + return (arena_malloc(choose_arena(), size, false)); + else + return (huge_malloc(size, false)); +} + +static inline void * +icalloc(size_t size) +{ + + if (size <= arena_maxclass) + return (arena_malloc(choose_arena(), size, true)); + else + return (huge_malloc(size, true)); +} + +/* Only handles large allocations that require more than page alignment. */ +static void * +arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size) +{ + void *ret; + size_t offset; + arena_chunk_t *chunk; + + assert((size & pagesize_mask) == 0); + assert((alignment & pagesize_mask) == 0); + +#ifdef MALLOC_BALANCE + arena_lock_balance(arena); +#else + malloc_spin_lock(&arena->lock); +#endif + ret = (void *)arena_run_alloc(arena, NULL, alloc_size, true, false); + if (ret == NULL) { + malloc_spin_unlock(&arena->lock); + return (NULL); + } + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret); + + offset = (uintptr_t)ret & (alignment - 1); + assert((offset & pagesize_mask) == 0); + assert(offset < alloc_size); + if (offset == 0) + arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, alloc_size, size, false); + else { + size_t leadsize, trailsize; + + leadsize = alignment - offset; + if (leadsize > 0) { + arena_run_trim_head(arena, chunk, (arena_run_t*)ret, alloc_size, + alloc_size - leadsize); + ret = (void *)((uintptr_t)ret + leadsize); + } + + trailsize = alloc_size - leadsize - size; + if (trailsize != 0) { + /* Trim trailing space. */ + assert(trailsize < alloc_size); + arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, size + trailsize, + size, false); + } + } + +#ifdef MALLOC_STATS + arena->stats.nmalloc_large++; + arena->stats.allocated_large += size; +#endif + malloc_spin_unlock(&arena->lock); + + VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false); +#ifdef MALLOC_FILL + if (opt_junk) + memset(ret, 0xa5, size); + else if (opt_zero) + memset(ret, 0, size); +#endif + return (ret); +} + +static inline void * +ipalloc(size_t alignment, size_t size) +{ + void *ret; + size_t ceil_size; + + /* + * Round size up to the nearest multiple of alignment. + * + * This done, we can take advantage of the fact that for each small + * size class, every object is aligned at the smallest power of two + * that is non-zero in the base two representation of the size. For + * example: + * + * Size | Base 2 | Minimum alignment + * -----+----------+------------------ + * 96 | 1100000 | 32 + * 144 | 10100000 | 32 + * 192 | 11000000 | 64 + * + * Depending on runtime settings, it is possible that arena_malloc() + * will further round up to a power of two, but that never causes + * correctness issues. + */ + ceil_size = (size + (alignment - 1)) & (-alignment); + /* + * (ceil_size < size) protects against the combination of maximal + * alignment and size greater than maximal alignment. + */ + if (ceil_size < size) { + /* size_t overflow. */ + return (NULL); + } + + if (ceil_size <= pagesize || (alignment <= pagesize + && ceil_size <= arena_maxclass)) + ret = arena_malloc(choose_arena(), ceil_size, false); + else { + size_t run_size; + + /* + * We can't achieve sub-page alignment, so round up alignment + * permanently; it makes later calculations simpler. + */ + alignment = PAGE_CEILING(alignment); + ceil_size = PAGE_CEILING(size); + /* + * (ceil_size < size) protects against very large sizes within + * pagesize of SIZE_T_MAX. + * + * (ceil_size + alignment < ceil_size) protects against the + * combination of maximal alignment and ceil_size large enough + * to cause overflow. This is similar to the first overflow + * check above, but it needs to be repeated due to the new + * ceil_size value, which may now be *equal* to maximal + * alignment, whereas before we only detected overflow if the + * original size was *greater* than maximal alignment. + */ + if (ceil_size < size || ceil_size + alignment < ceil_size) { + /* size_t overflow. */ + return (NULL); + } + + /* + * Calculate the size of the over-size run that arena_palloc() + * would need to allocate in order to guarantee the alignment. + */ + if (ceil_size >= alignment) + run_size = ceil_size + alignment - pagesize; + else { + /* + * It is possible that (alignment << 1) will cause + * overflow, but it doesn't matter because we also + * subtract pagesize, which in the case of overflow + * leaves us with a very large run_size. That causes + * the first conditional below to fail, which means + * that the bogus run_size value never gets used for + * anything important. + */ + run_size = (alignment << 1) - pagesize; + } + + if (run_size <= arena_maxclass) { + ret = arena_palloc(choose_arena(), alignment, ceil_size, + run_size); + } else if (alignment <= chunksize) + ret = huge_malloc(ceil_size, false); + else + ret = huge_palloc(alignment, ceil_size); + } + + assert(((uintptr_t)ret & (alignment - 1)) == 0); + return (ret); +} + +/* Return the size of the allocation pointed to by ptr. */ +static size_t +arena_salloc(const void *ptr) +{ + size_t ret; + arena_chunk_t *chunk; + size_t pageind, mapbits; + + assert(ptr != NULL); + assert(CHUNK_ADDR2BASE(ptr) != ptr); + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); + pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow); + mapbits = chunk->map[pageind].bits; + assert((mapbits & CHUNK_MAP_ALLOCATED) != 0); + if ((mapbits & CHUNK_MAP_LARGE) == 0) { + arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask); + assert(run->magic == ARENA_RUN_MAGIC); + ret = run->bin->reg_size; + } else { + ret = mapbits & ~pagesize_mask; + assert(ret != 0); + } + + return (ret); +} + +#if (defined(MALLOC_VALIDATE) || defined(MOZ_MEMORY_DARWIN)) +/* + * Validate ptr before assuming that it points to an allocation. Currently, + * the following validation is performed: + * + * + Check that ptr is not NULL. + * + * + Check that ptr lies within a mapped chunk. + */ +static inline size_t +isalloc_validate(const void *ptr) +{ + arena_chunk_t *chunk; + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); + if (chunk == NULL) + return (0); + + if (malloc_rtree_get(chunk_rtree, (uintptr_t)chunk) == NULL) + return (0); + + if (chunk != ptr) { + assert(chunk->arena->magic == ARENA_MAGIC); + return (arena_salloc(ptr)); + } else { + size_t ret; + extent_node_t *node; + extent_node_t key; + + /* Chunk. */ + key.addr = (void *)chunk; + malloc_mutex_lock(&huge_mtx); + node = extent_tree_ad_search(&huge, &key); + if (node != NULL) + ret = node->size; + else + ret = 0; + malloc_mutex_unlock(&huge_mtx); + return (ret); + } +} +#endif + +static inline size_t +isalloc(const void *ptr) +{ + size_t ret; + arena_chunk_t *chunk; + + assert(ptr != NULL); + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); + if (chunk != ptr) { + /* Region. */ + assert(chunk->arena->magic == ARENA_MAGIC); + + ret = arena_salloc(ptr); + } else { + extent_node_t *node, key; + + /* Chunk (huge allocation). */ + + malloc_mutex_lock(&huge_mtx); + + /* Extract from tree of huge allocations. */ + key.addr = __DECONST(void *, ptr); + node = extent_tree_ad_search(&huge, &key); + assert(node != NULL); + + ret = node->size; + + malloc_mutex_unlock(&huge_mtx); + } + + return (ret); +} + +static inline void +arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr, + arena_chunk_map_t *mapelm) +{ + arena_run_t *run; + arena_bin_t *bin; + size_t size; + + run = (arena_run_t *)(mapelm->bits & ~pagesize_mask); + assert(run->magic == ARENA_RUN_MAGIC); + bin = run->bin; + size = bin->reg_size; + +#ifdef MALLOC_FILL + if (opt_junk) + memset(ptr, 0x5a, size); +#endif + + arena_run_reg_dalloc(run, bin, ptr, size); + run->nfree++; + + if (run->nfree == bin->nregs) { + /* Deallocate run. */ + if (run == bin->runcur) + bin->runcur = NULL; + else if (bin->nregs != 1) { + size_t run_pageind = (((uintptr_t)run - + (uintptr_t)chunk)) >> pagesize_2pow; + arena_chunk_map_t *run_mapelm = + &chunk->map[run_pageind]; + /* + * This block's conditional is necessary because if the + * run only contains one region, then it never gets + * inserted into the non-full runs tree. + */ + assert(arena_run_tree_search(&bin->runs, run_mapelm) == + run_mapelm); + arena_run_tree_remove(&bin->runs, run_mapelm); + } +#ifdef MALLOC_DEBUG + run->magic = 0; +#endif + VALGRIND_FREELIKE_BLOCK(run, 0); + arena_run_dalloc(arena, run, true); +#ifdef MALLOC_STATS + bin->stats.curruns--; +#endif + } else if (run->nfree == 1 && run != bin->runcur) { + /* + * Make sure that bin->runcur always refers to the lowest + * non-full run, if one exists. + */ + if (bin->runcur == NULL) + bin->runcur = run; + else if ((uintptr_t)run < (uintptr_t)bin->runcur) { + /* Switch runcur. */ + if (bin->runcur->nfree > 0) { + arena_chunk_t *runcur_chunk = + (arena_chunk_t*)CHUNK_ADDR2BASE(bin->runcur); + size_t runcur_pageind = + (((uintptr_t)bin->runcur - + (uintptr_t)runcur_chunk)) >> pagesize_2pow; + arena_chunk_map_t *runcur_mapelm = + &runcur_chunk->map[runcur_pageind]; + + /* Insert runcur. */ + assert(arena_run_tree_search(&bin->runs, + runcur_mapelm) == NULL); + arena_run_tree_insert(&bin->runs, + runcur_mapelm); + } + bin->runcur = run; + } else { + size_t run_pageind = (((uintptr_t)run - + (uintptr_t)chunk)) >> pagesize_2pow; + arena_chunk_map_t *run_mapelm = + &chunk->map[run_pageind]; + + assert(arena_run_tree_search(&bin->runs, run_mapelm) == + NULL); + arena_run_tree_insert(&bin->runs, run_mapelm); + } + } +#ifdef MALLOC_STATS + arena->stats.allocated_small -= size; + arena->stats.ndalloc_small++; +#endif +} + +static void +arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr) +{ + /* Large allocation. */ + malloc_spin_lock(&arena->lock); + +#ifdef MALLOC_FILL +#ifndef MALLOC_STATS + if (opt_junk) +#endif +#endif + { + size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> + pagesize_2pow; + size_t size = chunk->map[pageind].bits & ~pagesize_mask; + +#ifdef MALLOC_FILL +#ifdef MALLOC_STATS + if (opt_junk) +#endif + memset(ptr, 0x5a, size); +#endif +#ifdef MALLOC_STATS + arena->stats.allocated_large -= size; +#endif + } +#ifdef MALLOC_STATS + arena->stats.ndalloc_large++; +#endif + + arena_run_dalloc(arena, (arena_run_t *)ptr, true); + malloc_spin_unlock(&arena->lock); +} + +static inline void +arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr) +{ + size_t pageind; + arena_chunk_map_t *mapelm; + + assert(arena != NULL); + assert(arena->magic == ARENA_MAGIC); + assert(chunk->arena == arena); + assert(ptr != NULL); + assert(CHUNK_ADDR2BASE(ptr) != ptr); + + pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow); + mapelm = &chunk->map[pageind]; + assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0); + if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) { + /* Small allocation. */ + malloc_spin_lock(&arena->lock); + arena_dalloc_small(arena, chunk, ptr, mapelm); + malloc_spin_unlock(&arena->lock); + } else + arena_dalloc_large(arena, chunk, ptr); + VALGRIND_FREELIKE_BLOCK(ptr, 0); +} + +static inline void +idalloc(void *ptr) +{ + arena_chunk_t *chunk; + + assert(ptr != NULL); + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); + if (chunk != ptr) + arena_dalloc(chunk->arena, chunk, ptr); + else + huge_dalloc(ptr); +} + +static void +arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr, + size_t size, size_t oldsize) +{ + + assert(size < oldsize); + + /* + * Shrink the run, and make trailing pages available for other + * allocations. + */ +#ifdef MALLOC_BALANCE + arena_lock_balance(arena); +#else + malloc_spin_lock(&arena->lock); +#endif + arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size, + true); +#ifdef MALLOC_STATS + arena->stats.allocated_large -= oldsize - size; +#endif + malloc_spin_unlock(&arena->lock); +} + +static bool +arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr, + size_t size, size_t oldsize) +{ + size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow; + size_t npages = oldsize >> pagesize_2pow; + + assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask)); + + /* Try to extend the run. */ + assert(size > oldsize); +#ifdef MALLOC_BALANCE + arena_lock_balance(arena); +#else + malloc_spin_lock(&arena->lock); +#endif + if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits + & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits & + ~pagesize_mask) >= size - oldsize) { + /* + * The next run is available and sufficiently large. Split the + * following run, then merge the first part with the existing + * allocation. + */ + arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk + + ((pageind+npages) << pagesize_2pow)), size - oldsize, true, + false); + + chunk->map[pageind].bits = size | CHUNK_MAP_LARGE | + CHUNK_MAP_ALLOCATED; + chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE | + CHUNK_MAP_ALLOCATED; + +#ifdef MALLOC_STATS + arena->stats.allocated_large += size - oldsize; +#endif + malloc_spin_unlock(&arena->lock); + return (false); + } + malloc_spin_unlock(&arena->lock); + + return (true); +} + +/* + * Try to resize a large allocation, in order to avoid copying. This will + * always fail if growing an object, and the following run is already in use. + */ +static bool +arena_ralloc_large(void *ptr, size_t size, size_t oldsize) +{ + size_t psize; + + psize = PAGE_CEILING(size); + if (psize == oldsize) { + /* Same size class. */ +#ifdef MALLOC_FILL + if (opt_junk && size < oldsize) { + memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - + size); + } +#endif + return (false); + } else { + arena_chunk_t *chunk; + arena_t *arena; + + chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); + arena = chunk->arena; + assert(arena->magic == ARENA_MAGIC); + + if (psize < oldsize) { +#ifdef MALLOC_FILL + /* Fill before shrinking in order avoid a race. */ + if (opt_junk) { + memset((void *)((uintptr_t)ptr + size), 0x5a, + oldsize - size); + } +#endif + arena_ralloc_large_shrink(arena, chunk, ptr, psize, + oldsize); + return (false); + } else { + bool ret = arena_ralloc_large_grow(arena, chunk, ptr, + psize, oldsize); +#ifdef MALLOC_FILL + if (ret == false && opt_zero) { + memset((void *)((uintptr_t)ptr + oldsize), 0, + size - oldsize); + } +#endif + return (ret); + } + } +} + +static void * +arena_ralloc(void *ptr, size_t size, size_t oldsize) +{ + void *ret; + size_t copysize; + + /* Try to avoid moving the allocation. */ + if (size < small_min) { + if (oldsize < small_min && + ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1))) + == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1)))) + goto IN_PLACE; /* Same size class. */ + } else if (size <= small_max) { + if (oldsize >= small_min && oldsize <= small_max && + (QUANTUM_CEILING(size) >> opt_quantum_2pow) + == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow)) + goto IN_PLACE; /* Same size class. */ + } else if (size <= bin_maxclass) { + if (oldsize > small_max && oldsize <= bin_maxclass && + pow2_ceil(size) == pow2_ceil(oldsize)) + goto IN_PLACE; /* Same size class. */ + } else if (oldsize > bin_maxclass && oldsize <= arena_maxclass) { + assert(size > bin_maxclass); + if (arena_ralloc_large(ptr, size, oldsize) == false) + return (ptr); + } + + /* + * If we get here, then size and oldsize are different enough that we + * need to move the object. In that case, fall back to allocating new + * space and copying. + */ + ret = arena_malloc(choose_arena(), size, false); + if (ret == NULL) + return (NULL); + + /* Junk/zero-filling were already done by arena_malloc(). */ + copysize = (size < oldsize) ? size : oldsize; +#ifdef VM_COPY_MIN + if (copysize >= VM_COPY_MIN) + pages_copy(ret, ptr, copysize); + else +#endif + memcpy(ret, ptr, copysize); + idalloc(ptr); + return (ret); +IN_PLACE: +#ifdef MALLOC_FILL + if (opt_junk && size < oldsize) + memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); + else if (opt_zero && size > oldsize) + memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); +#endif + return (ptr); +} + +static inline void * +iralloc(void *ptr, size_t size) +{ + size_t oldsize; + + assert(ptr != NULL); + assert(size != 0); + + oldsize = isalloc(ptr); + +#ifndef MALLOC_VALGRIND + if (size <= arena_maxclass) + return (arena_ralloc(ptr, size, oldsize)); + else + return (huge_ralloc(ptr, size, oldsize)); +#else + /* + * Valgrind does not provide a public interface for modifying an + * existing allocation, so use malloc/memcpy/free instead. + */ + { + void *ret = imalloc(size); + if (ret != NULL) { + if (oldsize < size) + memcpy(ret, ptr, oldsize); + else + memcpy(ret, ptr, size); + idalloc(ptr); + } + return (ret); + } +#endif +} + +static bool +arena_new(arena_t *arena) +{ + unsigned i; + arena_bin_t *bin; + size_t pow2_size, prev_run_size; + + if (malloc_spin_init(&arena->lock)) + return (true); + +#ifdef MALLOC_STATS + memset(&arena->stats, 0, sizeof(arena_stats_t)); +#endif + + arena->chunk_seq = 0; + + /* Initialize chunks. */ + arena_chunk_tree_dirty_new(&arena->chunks_dirty); + arena->spare = NULL; + + arena->ndirty = 0; + + arena_avail_tree_new(&arena->runs_avail); + +#ifdef MALLOC_BALANCE + arena->contention = 0; +#endif + + /* Initialize bins. */ + prev_run_size = pagesize; + + /* (2^n)-spaced tiny bins. */ + for (i = 0; i < ntbins; i++) { + bin = &arena->bins[i]; + bin->runcur = NULL; + arena_run_tree_new(&bin->runs); + + bin->reg_size = (1U << (TINY_MIN_2POW + i)); + + prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); + +#ifdef MALLOC_STATS + memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); +#endif + } + + /* Quantum-spaced bins. */ + for (; i < ntbins + nqbins; i++) { + bin = &arena->bins[i]; + bin->runcur = NULL; + arena_run_tree_new(&bin->runs); + + bin->reg_size = quantum * (i - ntbins + 1); + + pow2_size = pow2_ceil(quantum * (i - ntbins + 1)); + prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); + +#ifdef MALLOC_STATS + memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); +#endif + } + + /* (2^n)-spaced sub-page bins. */ + for (; i < ntbins + nqbins + nsbins; i++) { + bin = &arena->bins[i]; + bin->runcur = NULL; + arena_run_tree_new(&bin->runs); + + bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1)); + + prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); + +#ifdef MALLOC_STATS + memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); +#endif + } + +#ifdef MALLOC_DEBUG + arena->magic = ARENA_MAGIC; +#endif + + return (false); +} + +/* Create a new arena and insert it into the arenas array at index ind. */ +static arena_t * +arenas_extend(unsigned ind) +{ + arena_t *ret; + + /* Allocate enough space for trailing bins. */ + ret = (arena_t *)base_alloc(sizeof(arena_t) + + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1))); + if (ret != NULL && arena_new(ret) == false) { + arenas[ind] = ret; + return (ret); + } + /* Only reached if there is an OOM error. */ + + /* + * OOM here is quite inconvenient to propagate, since dealing with it + * would require a check for failure in the fast path. Instead, punt + * by using arenas[0]. In practice, this is an extremely unlikely + * failure. + */ + _malloc_message(_getprogname(), + ": (malloc) Error initializing arena\n", "", ""); + if (opt_abort) + abort(); + + return (arenas[0]); +} + +/* + * End arena. + */ +/******************************************************************************/ +/* + * Begin general internal functions. + */ + +static void * +huge_malloc(size_t size, bool zero) +{ + void *ret; + size_t csize; +#ifdef MALLOC_DECOMMIT + size_t psize; +#endif + extent_node_t *node; + + /* Allocate one or more contiguous chunks for this request. */ + + csize = CHUNK_CEILING(size); + if (csize == 0) { + /* size is large enough to cause size_t wrap-around. */ + return (NULL); + } + + /* Allocate an extent node with which to track the chunk. */ + node = base_node_alloc(); + if (node == NULL) + return (NULL); + + ret = chunk_alloc(csize, zero, true); + if (ret == NULL) { + base_node_dealloc(node); + return (NULL); + } + + /* Insert node into huge. */ + node->addr = ret; +#ifdef MALLOC_DECOMMIT + psize = PAGE_CEILING(size); + node->size = psize; +#else + node->size = csize; +#endif + + malloc_mutex_lock(&huge_mtx); + extent_tree_ad_insert(&huge, node); +#ifdef MALLOC_STATS + huge_nmalloc++; +# ifdef MALLOC_DECOMMIT + huge_allocated += psize; +# else + huge_allocated += csize; +# endif +#endif + malloc_mutex_unlock(&huge_mtx); + +#ifdef MALLOC_DECOMMIT + if (csize - psize > 0) + pages_decommit((void *)((uintptr_t)ret + psize), csize - psize); +#endif + +#ifdef MALLOC_DECOMMIT + VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, zero); +#else + VALGRIND_MALLOCLIKE_BLOCK(ret, csize, 0, zero); +#endif + +#ifdef MALLOC_FILL + if (zero == false) { + if (opt_junk) +# ifdef MALLOC_DECOMMIT + memset(ret, 0xa5, psize); +# else + memset(ret, 0xa5, csize); +# endif + else if (opt_zero) +# ifdef MALLOC_DECOMMIT + memset(ret, 0, psize); +# else + memset(ret, 0, csize); +# endif + } +#endif + + return (ret); +} + +/* Only handles large allocations that require more than chunk alignment. */ +static void * +huge_palloc(size_t alignment, size_t size) +{ + void *ret; + size_t alloc_size, chunk_size, offset; +#ifdef MALLOC_DECOMMIT + size_t psize; +#endif + extent_node_t *node; + int pfd; + + /* + * This allocation requires alignment that is even larger than chunk + * alignment. This means that huge_malloc() isn't good enough. + * + * Allocate almost twice as many chunks as are demanded by the size or + * alignment, in order to assure the alignment can be achieved, then + * unmap leading and trailing chunks. + */ + assert(alignment >= chunksize); + + chunk_size = CHUNK_CEILING(size); + + if (size >= alignment) + alloc_size = chunk_size + alignment - chunksize; + else + alloc_size = (alignment << 1) - chunksize; + + /* Allocate an extent node with which to track the chunk. */ + node = base_node_alloc(); + if (node == NULL) + return (NULL); + + /* + * Windows requires that there be a 1:1 mapping between VM + * allocation/deallocation operations. Therefore, take care here to + * acquire the final result via one mapping operation. + * + * The MALLOC_PAGEFILE code also benefits from this mapping algorithm, + * since it reduces the number of page files. + */ +#ifdef MALLOC_PAGEFILE + if (opt_pagefile) { + pfd = pagefile_init(size); + if (pfd == -1) + return (NULL); + } else +#endif + pfd = -1; +#ifdef JEMALLOC_USES_MAP_ALIGN + ret = pages_map_align(chunk_size, pfd, alignment); +#else + do { + void *over; + + over = chunk_alloc(alloc_size, false, false); + if (over == NULL) { + base_node_dealloc(node); + ret = NULL; + goto RETURN; + } + + offset = (uintptr_t)over & (alignment - 1); + assert((offset & chunksize_mask) == 0); + assert(offset < alloc_size); + ret = (void *)((uintptr_t)over + offset); + chunk_dealloc(over, alloc_size); + ret = pages_map(ret, chunk_size, pfd); + /* + * Failure here indicates a race with another thread, so try + * again. + */ + } while (ret == NULL); +#endif + /* Insert node into huge. */ + node->addr = ret; +#ifdef MALLOC_DECOMMIT + psize = PAGE_CEILING(size); + node->size = psize; +#else + node->size = chunk_size; +#endif + + malloc_mutex_lock(&huge_mtx); + extent_tree_ad_insert(&huge, node); +#ifdef MALLOC_STATS + huge_nmalloc++; +# ifdef MALLOC_DECOMMIT + huge_allocated += psize; +# else + huge_allocated += chunk_size; +# endif +#endif + malloc_mutex_unlock(&huge_mtx); + +#ifdef MALLOC_DECOMMIT + if (chunk_size - psize > 0) { + pages_decommit((void *)((uintptr_t)ret + psize), + chunk_size - psize); + } +#endif + +#ifdef MALLOC_DECOMMIT + VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, false); +#else + VALGRIND_MALLOCLIKE_BLOCK(ret, chunk_size, 0, false); +#endif + +#ifdef MALLOC_FILL + if (opt_junk) +# ifdef MALLOC_DECOMMIT + memset(ret, 0xa5, psize); +# else + memset(ret, 0xa5, chunk_size); +# endif + else if (opt_zero) +# ifdef MALLOC_DECOMMIT + memset(ret, 0, psize); +# else + memset(ret, 0, chunk_size); +# endif +#endif + +RETURN: +#ifdef MALLOC_PAGEFILE + if (pfd != -1) + pagefile_close(pfd); +#endif + return (ret); +} + +static void * +huge_ralloc(void *ptr, size_t size, size_t oldsize) +{ + void *ret; + size_t copysize; + + /* Avoid moving the allocation if the size class would not change. */ + + if (oldsize > arena_maxclass && + CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) { +#ifdef MALLOC_DECOMMIT + size_t psize = PAGE_CEILING(size); +#endif +#ifdef MALLOC_FILL + if (opt_junk && size < oldsize) { + memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize + - size); + } +#endif +#ifdef MALLOC_DECOMMIT + if (psize < oldsize) { + extent_node_t *node, key; + + pages_decommit((void *)((uintptr_t)ptr + psize), + oldsize - psize); + + /* Update recorded size. */ + malloc_mutex_lock(&huge_mtx); + key.addr = __DECONST(void *, ptr); + node = extent_tree_ad_search(&huge, &key); + assert(node != NULL); + assert(node->size == oldsize); +# ifdef MALLOC_STATS + huge_allocated -= oldsize - psize; +# endif + node->size = psize; + malloc_mutex_unlock(&huge_mtx); + } else if (psize > oldsize) { + extent_node_t *node, key; + + pages_commit((void *)((uintptr_t)ptr + oldsize), + psize - oldsize); + + /* Update recorded size. */ + malloc_mutex_lock(&huge_mtx); + key.addr = __DECONST(void *, ptr); + node = extent_tree_ad_search(&huge, &key); + assert(node != NULL); + assert(node->size == oldsize); +# ifdef MALLOC_STATS + huge_allocated += psize - oldsize; +# endif + node->size = psize; + malloc_mutex_unlock(&huge_mtx); + } +#endif +#ifdef MALLOC_FILL + if (opt_zero && size > oldsize) { + memset((void *)((uintptr_t)ptr + oldsize), 0, size + - oldsize); + } +#endif + return (ptr); + } + + /* + * If we get here, then size and oldsize are different enough that we + * need to use a different size class. In that case, fall back to + * allocating new space and copying. + */ + ret = huge_malloc(size, false); + if (ret == NULL) + return (NULL); + + copysize = (size < oldsize) ? size : oldsize; +#ifdef VM_COPY_MIN + if (copysize >= VM_COPY_MIN) + pages_copy(ret, ptr, copysize); + else +#endif + memcpy(ret, ptr, copysize); + idalloc(ptr); + return (ret); +} + +static void +huge_dalloc(void *ptr) +{ + extent_node_t *node, key; + + malloc_mutex_lock(&huge_mtx); + + /* Extract from tree of huge allocations. */ + key.addr = ptr; + node = extent_tree_ad_search(&huge, &key); + assert(node != NULL); + assert(node->addr == ptr); + extent_tree_ad_remove(&huge, node); + +#ifdef MALLOC_STATS + huge_ndalloc++; + huge_allocated -= node->size; +#endif + + malloc_mutex_unlock(&huge_mtx); + + /* Unmap chunk. */ +#ifdef MALLOC_FILL + if (opt_junk) + memset(node->addr, 0x5a, node->size); +#endif +#ifdef MALLOC_DECOMMIT + chunk_dealloc(node->addr, CHUNK_CEILING(node->size)); +#else + chunk_dealloc(node->addr, node->size); +#endif + VALGRIND_FREELIKE_BLOCK(node->addr, 0); + + base_node_dealloc(node); +} + +#ifdef MOZ_MEMORY_BSD +static inline unsigned +malloc_ncpus(void) +{ + unsigned ret; + int mib[2]; + size_t len; + + mib[0] = CTL_HW; + mib[1] = HW_NCPU; + len = sizeof(ret); + if (sysctl(mib, 2, &ret, &len, (void *) 0, 0) == -1) { + /* Error. */ + return (1); + } + + return (ret); +} +#elif (defined(MOZ_MEMORY_LINUX)) +#include <fcntl.h> + +static inline unsigned +malloc_ncpus(void) +{ + unsigned ret; + int fd, nread, column; + char buf[1024]; + static const char matchstr[] = "processor\t:"; + int i; + + /* + * sysconf(3) would be the preferred method for determining the number + * of CPUs, but it uses malloc internally, which causes untennable + * recursion during malloc initialization. + */ + fd = open("/proc/cpuinfo", O_RDONLY); + if (fd == -1) + return (1); /* Error. */ + /* + * Count the number of occurrences of matchstr at the beginnings of + * lines. This treats hyperthreaded CPUs as multiple processors. + */ + column = 0; + ret = 0; + while (true) { + nread = read(fd, &buf, sizeof(buf)); + if (nread <= 0) + break; /* EOF or error. */ + for (i = 0;i < nread;i++) { + char c = buf[i]; + if (c == '\n') + column = 0; + else if (column != -1) { + if (c == matchstr[column]) { + column++; + if (column == sizeof(matchstr) - 1) { + column = -1; + ret++; + } + } else + column = -1; + } + } + } + + if (ret == 0) + ret = 1; /* Something went wrong in the parser. */ + close(fd); + + return (ret); +} +#elif (defined(MOZ_MEMORY_DARWIN)) +#include <mach/mach_init.h> +#include <mach/mach_host.h> + +static inline unsigned +malloc_ncpus(void) +{ + kern_return_t error; + natural_t n; + processor_info_array_t pinfo; + mach_msg_type_number_t pinfocnt; + + error = host_processor_info(mach_host_self(), PROCESSOR_BASIC_INFO, + &n, &pinfo, &pinfocnt); + if (error != KERN_SUCCESS) + return (1); /* Error. */ + else + return (n); +} +#elif (defined(MOZ_MEMORY_SOLARIS)) + +static inline unsigned +malloc_ncpus(void) +{ + return sysconf(_SC_NPROCESSORS_ONLN); +} +#else +static inline unsigned +malloc_ncpus(void) +{ + + /* + * We lack a way to determine the number of CPUs on this platform, so + * assume 1 CPU. + */ + return (1); +} +#endif + +static void +malloc_print_stats(void) +{ + + if (opt_print_stats) { + char s[UMAX2S_BUFSIZE]; + _malloc_message("___ Begin malloc statistics ___\n", "", "", + ""); + _malloc_message("Assertions ", +#ifdef NDEBUG + "disabled", +#else + "enabled", +#endif + "\n", ""); + _malloc_message("Boolean MALLOC_OPTIONS: ", + opt_abort ? "A" : "a", "", ""); +#ifdef MALLOC_FILL + _malloc_message(opt_junk ? "J" : "j", "", "", ""); +#endif +#ifdef MALLOC_PAGEFILE + _malloc_message(opt_pagefile ? "o" : "O", "", "", ""); +#endif + _malloc_message("P", "", "", ""); +#ifdef MALLOC_UTRACE + _malloc_message(opt_utrace ? "U" : "u", "", "", ""); +#endif +#ifdef MALLOC_SYSV + _malloc_message(opt_sysv ? "V" : "v", "", "", ""); +#endif +#ifdef MALLOC_XMALLOC + _malloc_message(opt_xmalloc ? "X" : "x", "", "", ""); +#endif +#ifdef MALLOC_FILL + _malloc_message(opt_zero ? "Z" : "z", "", "", ""); +#endif + _malloc_message("\n", "", "", ""); + + _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", ""); + _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", ""); +#ifdef MALLOC_BALANCE + _malloc_message("Arena balance threshold: ", + umax2s(opt_balance_threshold, s), "\n", ""); +#endif + _malloc_message("Pointer size: ", umax2s(sizeof(void *), s), + "\n", ""); + _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", ""); + _malloc_message("Max small size: ", umax2s(small_max, s), "\n", + ""); + _malloc_message("Max dirty pages per arena: ", + umax2s(opt_dirty_max, s), "\n", ""); + + _malloc_message("Chunk size: ", umax2s(chunksize, s), "", ""); + _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", ""); + +#ifdef MALLOC_STATS + { + size_t allocated, mapped; +#ifdef MALLOC_BALANCE + uint64_t nbalance = 0; +#endif + unsigned i; + arena_t *arena; + + /* Calculate and print allocated/mapped stats. */ + + /* arenas. */ + for (i = 0, allocated = 0; i < narenas; i++) { + if (arenas[i] != NULL) { + malloc_spin_lock(&arenas[i]->lock); + allocated += + arenas[i]->stats.allocated_small; + allocated += + arenas[i]->stats.allocated_large; +#ifdef MALLOC_BALANCE + nbalance += arenas[i]->stats.nbalance; +#endif + malloc_spin_unlock(&arenas[i]->lock); + } + } + + /* huge/base. */ + malloc_mutex_lock(&huge_mtx); + allocated += huge_allocated; + mapped = stats_chunks.curchunks * chunksize; + malloc_mutex_unlock(&huge_mtx); + + malloc_mutex_lock(&base_mtx); + mapped += base_mapped; + malloc_mutex_unlock(&base_mtx); + +#ifdef MOZ_MEMORY_WINDOWS + malloc_printf("Allocated: %lu, mapped: %lu\n", + allocated, mapped); +#else + malloc_printf("Allocated: %zu, mapped: %zu\n", + allocated, mapped); +#endif + + malloc_mutex_lock(&reserve_mtx); + malloc_printf("Reserve: min " + "cur max\n"); +#ifdef MOZ_MEMORY_WINDOWS + malloc_printf(" %12lu %12lu %12lu\n", + CHUNK_CEILING(reserve_min) >> opt_chunk_2pow, + reserve_cur >> opt_chunk_2pow, + reserve_max >> opt_chunk_2pow); +#else + malloc_printf(" %12zu %12zu %12zu\n", + CHUNK_CEILING(reserve_min) >> opt_chunk_2pow, + reserve_cur >> opt_chunk_2pow, + reserve_max >> opt_chunk_2pow); +#endif + malloc_mutex_unlock(&reserve_mtx); + +#ifdef MALLOC_BALANCE + malloc_printf("Arena balance reassignments: %llu\n", + nbalance); +#endif + + /* Print chunk stats. */ + { + chunk_stats_t chunks_stats; + + malloc_mutex_lock(&huge_mtx); + chunks_stats = stats_chunks; + malloc_mutex_unlock(&huge_mtx); + + malloc_printf("chunks: nchunks " + "highchunks curchunks\n"); + malloc_printf(" %13llu%13lu%13lu\n", + chunks_stats.nchunks, + chunks_stats.highchunks, + chunks_stats.curchunks); + } + + /* Print chunk stats. */ + malloc_printf( + "huge: nmalloc ndalloc allocated\n"); +#ifdef MOZ_MEMORY_WINDOWS + malloc_printf(" %12llu %12llu %12lu\n", + huge_nmalloc, huge_ndalloc, huge_allocated); +#else + malloc_printf(" %12llu %12llu %12zu\n", + huge_nmalloc, huge_ndalloc, huge_allocated); +#endif + /* Print stats for each arena. */ + for (i = 0; i < narenas; i++) { + arena = arenas[i]; + if (arena != NULL) { + malloc_printf( + "\narenas[%u]:\n", i); + malloc_spin_lock(&arena->lock); + stats_print(arena); + malloc_spin_unlock(&arena->lock); + } + } + } +#endif /* #ifdef MALLOC_STATS */ + _malloc_message("--- End malloc statistics ---\n", "", "", ""); + } +} + +/* + * FreeBSD's pthreads implementation calls malloc(3), so the malloc + * implementation has to take pains to avoid infinite recursion during + * initialization. + */ +#if (defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_DARWIN)) && !defined(MOZ_MEMORY_WINCE) +#define malloc_init() false +#else +static inline bool +malloc_init(void) +{ + + if (malloc_initialized == false) + return (malloc_init_hard()); + + return (false); +} +#endif + +#if !defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_WINCE) +static +#endif +bool +je_malloc_init_hard(void) +{ + unsigned i; + char buf[PATH_MAX + 1]; + const char *opts; + long result; +#ifndef MOZ_MEMORY_WINDOWS + int linklen; +#endif + +#ifndef MOZ_MEMORY_WINDOWS + malloc_mutex_lock(&init_lock); +#endif + + if (malloc_initialized) { + /* + * Another thread initialized the allocator before this one + * acquired init_lock. + */ +#ifndef MOZ_MEMORY_WINDOWS + malloc_mutex_unlock(&init_lock); +#endif + return (false); + } + +#ifdef MOZ_MEMORY_WINDOWS + /* get a thread local storage index */ + tlsIndex = TlsAlloc(); +#endif + + /* Get page size and number of CPUs */ +#ifdef MOZ_MEMORY_WINDOWS + { + SYSTEM_INFO info; + + GetSystemInfo(&info); + result = info.dwPageSize; + + pagesize = (unsigned) result; + + ncpus = info.dwNumberOfProcessors; + } +#else + ncpus = malloc_ncpus(); + + result = sysconf(_SC_PAGESIZE); + assert(result != -1); + + pagesize = (unsigned) result; +#endif + + /* + * We assume that pagesize is a power of 2 when calculating + * pagesize_mask and pagesize_2pow. + */ + assert(((result - 1) & result) == 0); + pagesize_mask = result - 1; + pagesize_2pow = ffs((int)result) - 1; + +#ifdef MALLOC_PAGEFILE + /* + * Determine where to create page files. It is insufficient to + * unconditionally use P_tmpdir (typically "/tmp"), since for some + * operating systems /tmp is a separate filesystem that is rather small. + * Therefore prefer, in order, the following locations: + * + * 1) MALLOC_TMPDIR + * 2) TMPDIR + * 3) P_tmpdir + */ + { + char *s; + size_t slen; + static const char suffix[] = "/jemalloc.XXXXXX"; + + if ((s = getenv("MALLOC_TMPDIR")) == NULL && (s = + getenv("TMPDIR")) == NULL) + s = P_tmpdir; + slen = strlen(s); + if (slen + sizeof(suffix) > sizeof(pagefile_templ)) { + _malloc_message(_getprogname(), + ": (malloc) Page file path too long\n", + "", ""); + abort(); + } + memcpy(pagefile_templ, s, slen); + memcpy(&pagefile_templ[slen], suffix, sizeof(suffix)); + } +#endif + + for (i = 0; i < 3; i++) { + unsigned j; + + /* Get runtime configuration. */ + switch (i) { + case 0: +#ifndef MOZ_MEMORY_WINDOWS + if ((linklen = readlink("/etc/malloc.conf", buf, + sizeof(buf) - 1)) != -1) { + /* + * Use the contents of the "/etc/malloc.conf" + * symbolic link's name. + */ + buf[linklen] = '\0'; + opts = buf; + } else +#endif + { + /* No configuration specified. */ + buf[0] = '\0'; + opts = buf; + } + break; + case 1: + if (issetugid() == 0 && (opts = + getenv("MALLOC_OPTIONS")) != NULL) { + /* + * Do nothing; opts is already initialized to + * the value of the MALLOC_OPTIONS environment + * variable. + */ + } else { + /* No configuration specified. */ + buf[0] = '\0'; + opts = buf; + } + break; + case 2: + if (_malloc_options != NULL) { + /* + * Use options that were compiled into the + * program. + */ + opts = _malloc_options; + } else { + /* No configuration specified. */ + buf[0] = '\0'; + opts = buf; + } + break; + default: + /* NOTREACHED */ + buf[0] = '\0'; + opts = buf; + assert(false); + } + + for (j = 0; opts[j] != '\0'; j++) { + unsigned k, nreps; + bool nseen; + + /* Parse repetition count, if any. */ + for (nreps = 0, nseen = false;; j++, nseen = true) { + switch (opts[j]) { + case '0': case '1': case '2': case '3': + case '4': case '5': case '6': case '7': + case '8': case '9': + nreps *= 10; + nreps += opts[j] - '0'; + break; + default: + goto MALLOC_OUT; + } + } +MALLOC_OUT: + if (nseen == false) + nreps = 1; + + for (k = 0; k < nreps; k++) { + switch (opts[j]) { + case 'a': + opt_abort = false; + break; + case 'A': + opt_abort = true; + break; + case 'b': +#ifdef MALLOC_BALANCE + opt_balance_threshold >>= 1; +#endif + break; + case 'B': +#ifdef MALLOC_BALANCE + if (opt_balance_threshold == 0) + opt_balance_threshold = 1; + else if ((opt_balance_threshold << 1) + > opt_balance_threshold) + opt_balance_threshold <<= 1; +#endif + break; + case 'f': + opt_dirty_max >>= 1; + break; + case 'F': + if (opt_dirty_max == 0) + opt_dirty_max = 1; + else if ((opt_dirty_max << 1) != 0) + opt_dirty_max <<= 1; + break; + case 'g': + opt_reserve_range_lshift--; + break; + case 'G': + opt_reserve_range_lshift++; + break; +#ifdef MALLOC_FILL + case 'j': + opt_junk = false; + break; + case 'J': + opt_junk = true; + break; +#endif + case 'k': + /* + * Chunks always require at least one + * header page, so chunks can never be + * smaller than two pages. + */ + if (opt_chunk_2pow > pagesize_2pow + 1) + opt_chunk_2pow--; + break; + case 'K': + if (opt_chunk_2pow + 1 < + (sizeof(size_t) << 3)) + opt_chunk_2pow++; + break; + case 'n': + opt_narenas_lshift--; + break; + case 'N': + opt_narenas_lshift++; + break; +#ifdef MALLOC_PAGEFILE + case 'o': + /* Do not over-commit. */ + opt_pagefile = true; + break; + case 'O': + /* Allow over-commit. */ + opt_pagefile = false; + break; +#endif + case 'p': + opt_print_stats = false; + break; + case 'P': + opt_print_stats = true; + break; + case 'q': + if (opt_quantum_2pow > QUANTUM_2POW_MIN) + opt_quantum_2pow--; + break; + case 'Q': + if (opt_quantum_2pow < pagesize_2pow - + 1) + opt_quantum_2pow++; + break; + case 'r': + opt_reserve_min_lshift--; + break; + case 'R': + opt_reserve_min_lshift++; + break; + case 's': + if (opt_small_max_2pow > + QUANTUM_2POW_MIN) + opt_small_max_2pow--; + break; + case 'S': + if (opt_small_max_2pow < pagesize_2pow + - 1) + opt_small_max_2pow++; + break; +#ifdef MALLOC_UTRACE + case 'u': + opt_utrace = false; + break; + case 'U': + opt_utrace = true; + break; +#endif +#ifdef MALLOC_SYSV + case 'v': + opt_sysv = false; + break; + case 'V': + opt_sysv = true; + break; +#endif +#ifdef MALLOC_XMALLOC + case 'x': + opt_xmalloc = false; + break; + case 'X': + opt_xmalloc = true; + break; +#endif +#ifdef MALLOC_FILL + case 'z': + opt_zero = false; + break; + case 'Z': + opt_zero = true; + break; +#endif + default: { + char cbuf[2]; + + cbuf[0] = opts[j]; + cbuf[1] = '\0'; + _malloc_message(_getprogname(), + ": (malloc) Unsupported character " + "in malloc options: '", cbuf, + "'\n"); + } + } + } + } + } + + /* Take care to call atexit() only once. */ + if (opt_print_stats) { +#ifndef MOZ_MEMORY_WINDOWS + /* Print statistics at exit. */ + atexit(malloc_print_stats); +#endif + } + +#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN)) + /* Prevent potential deadlock on malloc locks after fork. */ + pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork); +#endif + + /* Set variables according to the value of opt_small_max_2pow. */ + if (opt_small_max_2pow < opt_quantum_2pow) + opt_small_max_2pow = opt_quantum_2pow; + small_max = (1U << opt_small_max_2pow); + + /* Set bin-related variables. */ + bin_maxclass = (pagesize >> 1); + assert(opt_quantum_2pow >= TINY_MIN_2POW); + ntbins = opt_quantum_2pow - TINY_MIN_2POW; + assert(ntbins <= opt_quantum_2pow); + nqbins = (small_max >> opt_quantum_2pow); + nsbins = pagesize_2pow - opt_small_max_2pow - 1; + + /* Set variables according to the value of opt_quantum_2pow. */ + quantum = (1U << opt_quantum_2pow); + quantum_mask = quantum - 1; + if (ntbins > 0) + small_min = (quantum >> 1) + 1; + else + small_min = 1; + assert(small_min <= quantum); + + /* Set variables according to the value of opt_chunk_2pow. */ + chunksize = (1LU << opt_chunk_2pow); + chunksize_mask = chunksize - 1; + chunk_npages = (chunksize >> pagesize_2pow); + { + size_t header_size; + + /* + * Compute the header size such that it is large + * enough to contain the page map and enough nodes for the + * worst case: one node per non-header page plus one extra for + * situations where we briefly have one more node allocated + * than we will need. + */ + header_size = sizeof(arena_chunk_t) + + (sizeof(arena_chunk_map_t) * (chunk_npages - 1)); + arena_chunk_header_npages = (header_size >> pagesize_2pow) + + ((header_size & pagesize_mask) != 0); + } + arena_maxclass = chunksize - (arena_chunk_header_npages << + pagesize_2pow); + +#ifdef JEMALLOC_USES_MAP_ALIGN + /* + * When using MAP_ALIGN, the alignment parameter must be a power of two + * multiple of the system pagesize, or mmap will fail. + */ + assert((chunksize % pagesize) == 0); + assert((1 << (ffs(chunksize / pagesize) - 1)) == (chunksize/pagesize)); +#endif + + UTRACE(0, 0, 0); + +#ifdef MALLOC_STATS + memset(&stats_chunks, 0, sizeof(chunk_stats_t)); +#endif + + /* Various sanity checks that regard configuration. */ + assert(quantum >= sizeof(void *)); + assert(quantum <= pagesize); + assert(chunksize >= pagesize); + assert(quantum * 4 <= chunksize); + + /* Initialize chunks data. */ + malloc_mutex_init(&huge_mtx); + extent_tree_ad_new(&huge); +#ifdef MALLOC_STATS + huge_nmalloc = 0; + huge_ndalloc = 0; + huge_allocated = 0; +#endif + + /* Initialize base allocation data structures. */ +#ifdef MALLOC_STATS + base_mapped = 0; +#endif + base_nodes = NULL; + base_reserve_regs = NULL; + malloc_mutex_init(&base_mtx); + +#ifdef MOZ_MEMORY_NARENAS_DEFAULT_ONE + narenas = 1; +#else + if (ncpus > 1) { + /* + * For SMP systems, create four times as many arenas as there + * are CPUs by default. + */ + opt_narenas_lshift += 2; + } + + /* Determine how many arenas to use. */ + narenas = ncpus; +#endif + if (opt_narenas_lshift > 0) { + if ((narenas << opt_narenas_lshift) > narenas) + narenas <<= opt_narenas_lshift; + /* + * Make sure not to exceed the limits of what base_alloc() can + * handle. + */ + if (narenas * sizeof(arena_t *) > chunksize) + narenas = chunksize / sizeof(arena_t *); + } else if (opt_narenas_lshift < 0) { + if ((narenas >> -opt_narenas_lshift) < narenas) + narenas >>= -opt_narenas_lshift; + /* Make sure there is at least one arena. */ + if (narenas == 0) + narenas = 1; + } +#ifdef MALLOC_BALANCE + assert(narenas != 0); + for (narenas_2pow = 0; + (narenas >> (narenas_2pow + 1)) != 0; + narenas_2pow++); +#endif + +#ifdef NO_TLS + if (narenas > 1) { + static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19, + 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, + 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, + 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, + 223, 227, 229, 233, 239, 241, 251, 257, 263}; + unsigned nprimes, parenas; + + /* + * Pick a prime number of hash arenas that is more than narenas + * so that direct hashing of pthread_self() pointers tends to + * spread allocations evenly among the arenas. + */ + assert((narenas & 1) == 0); /* narenas must be even. */ + nprimes = (sizeof(primes) >> SIZEOF_INT_2POW); + parenas = primes[nprimes - 1]; /* In case not enough primes. */ + for (i = 1; i < nprimes; i++) { + if (primes[i] > narenas) { + parenas = primes[i]; + break; + } + } + narenas = parenas; + } +#endif + +#ifndef NO_TLS +# ifndef MALLOC_BALANCE + next_arena = 0; +# endif +#endif + + /* Allocate and initialize arenas. */ + arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas); + if (arenas == NULL) { +#ifndef MOZ_MEMORY_WINDOWS + malloc_mutex_unlock(&init_lock); +#endif + return (true); + } + /* + * Zero the array. In practice, this should always be pre-zeroed, + * since it was just mmap()ed, but let's be sure. + */ + memset(arenas, 0, sizeof(arena_t *) * narenas); + + /* + * Initialize one arena here. The rest are lazily created in + * choose_arena_hard(). + */ + arenas_extend(0); + if (arenas[0] == NULL) { +#ifndef MOZ_MEMORY_WINDOWS + malloc_mutex_unlock(&init_lock); +#endif + return (true); + } +#ifndef NO_TLS + /* + * Assign the initial arena to the initial thread, in order to avoid + * spurious creation of an extra arena if the application switches to + * threaded mode. + */ +#ifdef MOZ_MEMORY_WINDOWS + TlsSetValue(tlsIndex, arenas[0]); +#else + arenas_map = arenas[0]; +#endif +#endif + + /* + * Seed here for the initial thread, since choose_arena_hard() is only + * called for other threads. The seed value doesn't really matter. + */ +#ifdef MALLOC_BALANCE + SPRN(balance, 42); +#endif + + malloc_spin_init(&arenas_lock); + +#ifdef MALLOC_VALIDATE + chunk_rtree = malloc_rtree_new((SIZEOF_PTR << 3) - opt_chunk_2pow); + if (chunk_rtree == NULL) + return (true); +#endif + + /* + * Configure and initialize the memory reserve. This needs to happen + * late during initialization, since chunks are allocated. + */ + malloc_mutex_init(&reserve_mtx); + reserve_min = 0; + reserve_cur = 0; + reserve_max = 0; + if (RESERVE_RANGE_2POW_DEFAULT + opt_reserve_range_lshift >= 0) { + reserve_max += chunksize << (RESERVE_RANGE_2POW_DEFAULT + + opt_reserve_range_lshift); + } + ql_new(&reserve_regs); + reserve_seq = 0; + extent_tree_szad_new(&reserve_chunks_szad); + extent_tree_ad_new(&reserve_chunks_ad); + if (RESERVE_MIN_2POW_DEFAULT + opt_reserve_min_lshift >= 0) { + reserve_min_set(chunksize << (RESERVE_MIN_2POW_DEFAULT + + opt_reserve_min_lshift)); + } + + malloc_initialized = true; +#ifndef MOZ_MEMORY_WINDOWS + malloc_mutex_unlock(&init_lock); +#endif + return (false); +} + +/* XXX Why not just expose malloc_print_stats()? */ +#ifdef MOZ_MEMORY_WINDOWS +void +malloc_shutdown() +{ + + malloc_print_stats(); +} +#endif + +/* + * End general internal functions. + */ +/******************************************************************************/ +/* + * Begin malloc(3)-compatible functions. + */ + +/* + * Inline the standard malloc functions if they are being subsumed by Darwin's + * zone infrastructure. + */ +#ifdef MOZ_MEMORY_DARWIN +# define ZONE_INLINE inline +#else +# define ZONE_INLINE +#endif + +/* Mangle standard interfaces on Darwin and Windows CE, + in order to avoid linking problems. */ +#ifdef MOZ_MEMORY_DARWIN +#define DONT_OVERRIDE_LIBC +#endif + +#if defined(DONT_OVERRIDE_LIBC) +#define malloc(a) je_malloc(a) +#define valloc(a) je_valloc(a) +#define calloc(a, b) je_calloc(a, b) +#define realloc(a, b) je_realloc(a, b) +#define free(a) je_free(a) +#define _msize(p) je_msize(p) +#define _recalloc(p, n, s) je_recalloc(p, n, s) +#endif + +ZONE_INLINE +void * +malloc(size_t size) +{ + void *ret; + + if (malloc_init()) { + ret = NULL; + goto RETURN; + } + + if (size == 0) { +#ifdef MALLOC_SYSV + if (opt_sysv == false) +#endif + size = 1; +#ifdef MALLOC_SYSV + else { + ret = NULL; + goto RETURN; + } +#endif + } + + ret = imalloc(size); + +RETURN: + if (ret == NULL) { +#ifdef MALLOC_XMALLOC + if (opt_xmalloc) { + _malloc_message(_getprogname(), + ": (malloc) Error in malloc(): out of memory\n", "", + ""); + abort(); + } +#endif + errno = ENOMEM; + } + + UTRACE(0, size, ret); + return (ret); +} + +#ifdef MOZ_MEMORY_SOLARIS +# ifdef __SUNPRO_C +void * +memalign(size_t alignment, size_t size); +#pragma no_inline(memalign) +# elif (defined(__GNU_C__)) +__attribute__((noinline)) +# endif +#else +inline +#endif +void * +memalign(size_t alignment, size_t size) +{ + void *ret; + + assert(((alignment - 1) & alignment) == 0 && alignment >= + sizeof(void *)); + + if (malloc_init()) { + ret = NULL; + goto RETURN; + } + + ret = ipalloc(alignment, size); + +RETURN: +#ifdef MALLOC_XMALLOC + if (opt_xmalloc && ret == NULL) { + _malloc_message(_getprogname(), + ": (malloc) Error in memalign(): out of memory\n", "", ""); + abort(); + } +#endif + UTRACE(0, size, ret); + return (ret); +} + +ZONE_INLINE +int +posix_memalign(void **memptr, size_t alignment, size_t size) +{ + void *result; + + /* Make sure that alignment is a large enough power of 2. */ + if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) { +#ifdef MALLOC_XMALLOC + if (opt_xmalloc) { + _malloc_message(_getprogname(), + ": (malloc) Error in posix_memalign(): " + "invalid alignment\n", "", ""); + abort(); + } +#endif + return (EINVAL); + } + +#ifdef MOZ_MEMORY_DARWIN + result = moz_memalign(alignment, size); +#else + result = memalign(alignment, size); +#endif + if (result == NULL) + return (ENOMEM); + + *memptr = result; + return (0); +} + +ZONE_INLINE +void * +valloc(size_t size) +{ +#ifdef MOZ_MEMORY_DARWIN + return (moz_memalign(pagesize, size)); +#else + return (memalign(pagesize, size)); +#endif +} + +ZONE_INLINE +void * +calloc(size_t num, size_t size) +{ + void *ret; + size_t num_size; + + if (malloc_init()) { + num_size = 0; + ret = NULL; + goto RETURN; + } + + num_size = num * size; + if (num_size == 0) { +#ifdef MALLOC_SYSV + if ((opt_sysv == false) && ((num == 0) || (size == 0))) +#endif + num_size = 1; +#ifdef MALLOC_SYSV + else { + ret = NULL; + goto RETURN; + } +#endif + /* + * Try to avoid division here. We know that it isn't possible to + * overflow during multiplication if neither operand uses any of the + * most significant half of the bits in a size_t. + */ + } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) + && (num_size / size != num)) { + /* size_t overflow. */ + ret = NULL; + goto RETURN; + } + + ret = icalloc(num_size); + +RETURN: + if (ret == NULL) { +#ifdef MALLOC_XMALLOC + if (opt_xmalloc) { + _malloc_message(_getprogname(), + ": (malloc) Error in calloc(): out of memory\n", "", + ""); + abort(); + } +#endif + errno = ENOMEM; + } + + UTRACE(0, num_size, ret); + return (ret); +} + +ZONE_INLINE +void * +realloc(void *ptr, size_t size) +{ + void *ret; + + if (size == 0) { +#ifdef MALLOC_SYSV + if (opt_sysv == false) +#endif + size = 1; +#ifdef MALLOC_SYSV + else { + if (ptr != NULL) + idalloc(ptr); + ret = NULL; + goto RETURN; + } +#endif + } + + if (ptr != NULL) { + assert(malloc_initialized); + + ret = iralloc(ptr, size); + + if (ret == NULL) { +#ifdef MALLOC_XMALLOC + if (opt_xmalloc) { + _malloc_message(_getprogname(), + ": (malloc) Error in realloc(): out of " + "memory\n", "", ""); + abort(); + } +#endif + errno = ENOMEM; + } + } else { + if (malloc_init()) + ret = NULL; + else + ret = imalloc(size); + + if (ret == NULL) { +#ifdef MALLOC_XMALLOC + if (opt_xmalloc) { + _malloc_message(_getprogname(), + ": (malloc) Error in realloc(): out of " + "memory\n", "", ""); + abort(); + } +#endif + errno = ENOMEM; + } + } + +#ifdef MALLOC_SYSV +RETURN: +#endif + UTRACE(ptr, size, ret); + return (ret); +} + +ZONE_INLINE +void +free(void *ptr) +{ + + UTRACE(ptr, 0, 0); + if (ptr != NULL) { + assert(malloc_initialized); + + idalloc(ptr); + } +} + +/* + * End malloc(3)-compatible functions. + */ +/******************************************************************************/ +/* + * Begin non-standard functions. + */ + +size_t +malloc_usable_size(const void *ptr) +{ + +#ifdef MALLOC_VALIDATE + return (isalloc_validate(ptr)); +#else + assert(ptr != NULL); + + return (isalloc(ptr)); +#endif +} + +void +jemalloc_stats(jemalloc_stats_t *stats) +{ + size_t i; + + assert(stats != NULL); + + /* + * Gather runtime settings. + */ + stats->opt_abort = opt_abort; + stats->opt_junk = +#ifdef MALLOC_FILL + opt_junk ? true : +#endif + false; + stats->opt_utrace = +#ifdef MALLOC_UTRACE + opt_utrace ? true : +#endif + false; + stats->opt_sysv = +#ifdef MALLOC_SYSV + opt_sysv ? true : +#endif + false; + stats->opt_xmalloc = +#ifdef MALLOC_XMALLOC + opt_xmalloc ? true : +#endif + false; + stats->opt_zero = +#ifdef MALLOC_FILL + opt_zero ? true : +#endif + false; + stats->narenas = narenas; + stats->balance_threshold = +#ifdef MALLOC_BALANCE + opt_balance_threshold +#else + SIZE_T_MAX +#endif + ; + stats->quantum = quantum; + stats->small_max = small_max; + stats->large_max = arena_maxclass; + stats->chunksize = chunksize; + stats->dirty_max = opt_dirty_max; + + malloc_mutex_lock(&reserve_mtx); + stats->reserve_min = reserve_min; + stats->reserve_max = reserve_max; + stats->reserve_cur = reserve_cur; + malloc_mutex_unlock(&reserve_mtx); + + /* + * Gather current memory usage statistics. + */ + stats->mapped = 0; + stats->committed = 0; + stats->allocated = 0; + stats->dirty = 0; + + /* Get huge mapped/allocated. */ + malloc_mutex_lock(&huge_mtx); + stats->mapped += stats_chunks.curchunks * chunksize; +#ifdef MALLOC_DECOMMIT + stats->committed += huge_allocated; +#endif + stats->allocated += huge_allocated; + malloc_mutex_unlock(&huge_mtx); + + /* Get base mapped. */ + malloc_mutex_lock(&base_mtx); + stats->mapped += base_mapped; +#ifdef MALLOC_DECOMMIT + stats->committed += base_mapped; +#endif + malloc_mutex_unlock(&base_mtx); + + /* Iterate over arenas and their chunks. */ + for (i = 0; i < narenas; i++) { + arena_t *arena = arenas[i]; + if (arena != NULL) { + arena_chunk_t *chunk; + + malloc_spin_lock(&arena->lock); + stats->allocated += arena->stats.allocated_small; + stats->allocated += arena->stats.allocated_large; +#ifdef MALLOC_DECOMMIT + rb_foreach_begin(arena_chunk_t, link_dirty, + &arena->chunks_dirty, chunk) { + size_t j; + + for (j = 0; j < chunk_npages; j++) { + if ((chunk->map[j].bits & + CHUNK_MAP_DECOMMITTED) == 0) + stats->committed += pagesize; + } + } rb_foreach_end(arena_chunk_t, link_dirty, + &arena->chunks_dirty, chunk) +#endif + stats->dirty += (arena->ndirty << pagesize_2pow); + malloc_spin_unlock(&arena->lock); + } + } + +#ifndef MALLOC_DECOMMIT + stats->committed = stats->mapped; +#endif +} + +void * +xmalloc(size_t size) +{ + void *ret; + + if (malloc_init()) + reserve_fail(size, "xmalloc"); + + if (size == 0) { +#ifdef MALLOC_SYSV + if (opt_sysv == false) +#endif + size = 1; +#ifdef MALLOC_SYSV + else { + _malloc_message(_getprogname(), + ": (malloc) Error in xmalloc(): ", + "invalid size 0", "\n"); + abort(); + } +#endif + } + + ret = imalloc(size); + if (ret == NULL) { + uint64_t seq = 0; + + do { + seq = reserve_crit(size, "xmalloc", seq); + ret = imalloc(size); + } while (ret == NULL); + } + + UTRACE(0, size, ret); + return (ret); +} + +void * +xcalloc(size_t num, size_t size) +{ + void *ret; + size_t num_size; + + num_size = num * size; + if (malloc_init()) + reserve_fail(num_size, "xcalloc"); + + if (num_size == 0) { +#ifdef MALLOC_SYSV + if ((opt_sysv == false) && ((num == 0) || (size == 0))) +#endif + num_size = 1; +#ifdef MALLOC_SYSV + else { + _malloc_message(_getprogname(), + ": (malloc) Error in xcalloc(): ", + "invalid size 0", "\n"); + abort(); + } +#endif + /* + * Try to avoid division here. We know that it isn't possible to + * overflow during multiplication if neither operand uses any of the + * most significant half of the bits in a size_t. + */ + } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) + && (num_size / size != num)) { + /* size_t overflow. */ + _malloc_message(_getprogname(), + ": (malloc) Error in xcalloc(): ", + "size overflow", "\n"); + abort(); + } + + ret = icalloc(num_size); + if (ret == NULL) { + uint64_t seq = 0; + + do { + seq = reserve_crit(num_size, "xcalloc", seq); + ret = icalloc(num_size); + } while (ret == NULL); + } + + UTRACE(0, num_size, ret); + return (ret); +} + +void * +xrealloc(void *ptr, size_t size) +{ + void *ret; + + if (size == 0) { +#ifdef MALLOC_SYSV + if (opt_sysv == false) +#endif + size = 1; +#ifdef MALLOC_SYSV + else { + if (ptr != NULL) + idalloc(ptr); + _malloc_message(_getprogname(), + ": (malloc) Error in xrealloc(): ", + "invalid size 0", "\n"); + abort(); + } +#endif + } + + if (ptr != NULL) { + assert(malloc_initialized); + + ret = iralloc(ptr, size); + if (ret == NULL) { + uint64_t seq = 0; + + do { + seq = reserve_crit(size, "xrealloc", seq); + ret = iralloc(ptr, size); + } while (ret == NULL); + } + } else { + if (malloc_init()) + reserve_fail(size, "xrealloc"); + + ret = imalloc(size); + if (ret == NULL) { + uint64_t seq = 0; + + do { + seq = reserve_crit(size, "xrealloc", seq); + ret = imalloc(size); + } while (ret == NULL); + } + } + + UTRACE(ptr, size, ret); + return (ret); +} + +void * +xmemalign(size_t alignment, size_t size) +{ + void *ret; + + assert(((alignment - 1) & alignment) == 0 && alignment >= + sizeof(void *)); + + if (malloc_init()) + reserve_fail(size, "xmemalign"); + + ret = ipalloc(alignment, size); + if (ret == NULL) { + uint64_t seq = 0; + + do { + seq = reserve_crit(size, "xmemalign", seq); + ret = ipalloc(alignment, size); + } while (ret == NULL); + } + + UTRACE(0, size, ret); + return (ret); +} + +static void +reserve_shrink(void) +{ + extent_node_t *node; + + assert(reserve_cur > reserve_max); +#ifdef MALLOC_DEBUG + { + extent_node_t *node; + size_t reserve_size; + + reserve_size = 0; + rb_foreach_begin(extent_node_t, link_szad, &reserve_chunks_szad, + node) { + reserve_size += node->size; + } rb_foreach_end(extent_node_t, link_szad, &reserve_chunks_szad, + node) + assert(reserve_size == reserve_cur); + + reserve_size = 0; + rb_foreach_begin(extent_node_t, link_ad, &reserve_chunks_ad, + node) { + reserve_size += node->size; + } rb_foreach_end(extent_node_t, link_ad, &reserve_chunks_ad, + node) + assert(reserve_size == reserve_cur); + } +#endif + + /* Discard chunks until the the reserve is below the size limit. */ + rb_foreach_reverse_begin(extent_node_t, link_ad, &reserve_chunks_ad, + node) { +#ifndef MALLOC_DECOMMIT + if (node->size <= reserve_cur - reserve_max) { +#endif + extent_node_t *tnode = extent_tree_ad_prev( + &reserve_chunks_ad, node); + +#ifdef MALLOC_DECOMMIT + assert(node->size <= reserve_cur - reserve_max); +#endif + + /* Discard the entire [multi-]chunk. */ + extent_tree_szad_remove(&reserve_chunks_szad, node); + extent_tree_ad_remove(&reserve_chunks_ad, node); + reserve_cur -= node->size; + pages_unmap(node->addr, node->size); +#ifdef MALLOC_STATS + stats_chunks.curchunks -= (node->size / chunksize); +#endif + base_node_dealloc(node); + if (reserve_cur == reserve_max) + break; + + rb_foreach_reverse_prev(extent_node_t, link_ad, + extent_ad_comp, &reserve_chunks_ad, tnode); +#ifndef MALLOC_DECOMMIT + } else { + /* Discard the end of the multi-chunk. */ + extent_tree_szad_remove(&reserve_chunks_szad, node); + node->size -= reserve_cur - reserve_max; + extent_tree_szad_insert(&reserve_chunks_szad, node); + pages_unmap((void *)((uintptr_t)node->addr + + node->size), reserve_cur - reserve_max); +#ifdef MALLOC_STATS + stats_chunks.curchunks -= ((reserve_cur - reserve_max) / + chunksize); +#endif + reserve_cur = reserve_max; + break; + } +#endif + assert(reserve_cur > reserve_max); + } rb_foreach_reverse_end(extent_node_t, link_ad, &reserve_chunks_ad, + node) +} + +/* Send a condition notification. */ +static uint64_t +reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq) +{ + reserve_reg_t *reg; + + /* seq is used to keep track of distinct condition-causing events. */ + if (seq == 0) { + /* Allocate new sequence number. */ + reserve_seq++; + seq = reserve_seq; + } + + /* + * Advance to the next callback registration and send a notification, + * unless one has already been sent for this condition-causing event. + */ + reg = ql_first(&reserve_regs); + if (reg == NULL) + return (0); + ql_first(&reserve_regs) = ql_next(&reserve_regs, reg, link); + if (reg->seq == seq) + return (0); + reg->seq = seq; + malloc_mutex_unlock(&reserve_mtx); + reg->cb(reg->ctx, cnd, size); + malloc_mutex_lock(&reserve_mtx); + + return (seq); +} + +/* Allocation failure due to OOM. Try to free some memory via callbacks. */ +static uint64_t +reserve_crit(size_t size, const char *fname, uint64_t seq) +{ + + /* + * Send one condition notification. Iteration is handled by the + * caller of this function. + */ + malloc_mutex_lock(&reserve_mtx); + seq = reserve_notify(RESERVE_CND_CRIT, size, seq); + malloc_mutex_unlock(&reserve_mtx); + + /* If no notification could be sent, then no further recourse exists. */ + if (seq == 0) + reserve_fail(size, fname); + + return (seq); +} + +/* Permanent allocation failure due to OOM. */ +static void +reserve_fail(size_t size, const char *fname) +{ + uint64_t seq = 0; + + /* Send fail notifications. */ + malloc_mutex_lock(&reserve_mtx); + do { + seq = reserve_notify(RESERVE_CND_FAIL, size, seq); + } while (seq != 0); + malloc_mutex_unlock(&reserve_mtx); + + /* Terminate the application. */ + _malloc_message(_getprogname(), + ": (malloc) Error in ", fname, "(): out of memory\n"); + abort(); +} + +bool +reserve_cb_register(reserve_cb_t *cb, void *ctx) +{ + reserve_reg_t *reg = base_reserve_reg_alloc(); + if (reg == NULL) + return (true); + + ql_elm_new(reg, link); + reg->cb = cb; + reg->ctx = ctx; + reg->seq = 0; + + malloc_mutex_lock(&reserve_mtx); + ql_head_insert(&reserve_regs, reg, link); + malloc_mutex_unlock(&reserve_mtx); + + return (false); +} + +bool +reserve_cb_unregister(reserve_cb_t *cb, void *ctx) +{ + reserve_reg_t *reg = NULL; + + malloc_mutex_lock(&reserve_mtx); + ql_foreach(reg, &reserve_regs, link) { + if (reg->cb == cb && reg->ctx == ctx) { + ql_remove(&reserve_regs, reg, link); + break; + } + } + malloc_mutex_unlock(&reserve_mtx); + + if (reg != NULL) + base_reserve_reg_dealloc(reg); + return (false); + return (true); +} + +size_t +reserve_cur_get(void) +{ + size_t ret; + + malloc_mutex_lock(&reserve_mtx); + ret = reserve_cur; + malloc_mutex_unlock(&reserve_mtx); + + return (ret); +} + +size_t +reserve_min_get(void) +{ + size_t ret; + + malloc_mutex_lock(&reserve_mtx); + ret = reserve_min; + malloc_mutex_unlock(&reserve_mtx); + + return (ret); +} + +bool +reserve_min_set(size_t min) +{ + + min = CHUNK_CEILING(min); + + malloc_mutex_lock(&reserve_mtx); + /* Keep |reserve_max - reserve_min| the same. */ + if (min < reserve_min) { + reserve_max -= reserve_min - min; + reserve_min = min; + } else { + /* Protect against wrap-around. */ + if (reserve_max + min - reserve_min < reserve_max) { + reserve_min = SIZE_T_MAX - (reserve_max - reserve_min) + - chunksize + 1; + reserve_max = SIZE_T_MAX - chunksize + 1; + } else { + reserve_max += min - reserve_min; + reserve_min = min; + } + } + + /* Resize the reserve if necessary. */ + if (reserve_cur < reserve_min) { + size_t size = reserve_min - reserve_cur; + + /* Force the reserve to grow by allocating/deallocating. */ + malloc_mutex_unlock(&reserve_mtx); +#ifdef MALLOC_DECOMMIT + { + void **chunks; + size_t i, n; + + n = size >> opt_chunk_2pow; + chunks = (void**)imalloc(n * sizeof(void *)); + if (chunks == NULL) + return (true); + for (i = 0; i < n; i++) { + chunks[i] = huge_malloc(chunksize, false); + if (chunks[i] == NULL) { + size_t j; + + for (j = 0; j < i; j++) { + huge_dalloc(chunks[j]); + } + idalloc(chunks); + return (true); + } + } + for (i = 0; i < n; i++) + huge_dalloc(chunks[i]); + idalloc(chunks); + } +#else + { + void *x = huge_malloc(size, false); + if (x == NULL) { + return (true); + } + huge_dalloc(x); + } +#endif + } else if (reserve_cur > reserve_max) { + reserve_shrink(); + malloc_mutex_unlock(&reserve_mtx); + } else + malloc_mutex_unlock(&reserve_mtx); + + return (false); +} + +#ifdef MOZ_MEMORY_WINDOWS +void* +_recalloc(void *ptr, size_t count, size_t size) +{ + size_t oldsize = (ptr != NULL) ? isalloc(ptr) : 0; + size_t newsize = count * size; + + /* + * In order for all trailing bytes to be zeroed, the caller needs to + * use calloc(), followed by recalloc(). However, the current calloc() + * implementation only zeros the bytes requested, so if recalloc() is + * to work 100% correctly, calloc() will need to change to zero + * trailing bytes. + */ + + ptr = realloc(ptr, newsize); + if (ptr != NULL && oldsize < newsize) { + memset((void *)((uintptr_t)ptr + oldsize), 0, newsize - + oldsize); + } + + return ptr; +} + +/* + * This impl of _expand doesn't ever actually expand or shrink blocks: it + * simply replies that you may continue using a shrunk block. + */ +void* +_expand(void *ptr, size_t newsize) +{ + if (isalloc(ptr) >= newsize) + return ptr; + + return NULL; +} + +size_t +_msize(const void *ptr) +{ + return malloc_usable_size(ptr); +} +#endif + +/* + * End non-standard functions. + */ +/******************************************************************************/ +/* + * Begin library-private functions, used by threading libraries for protection + * of malloc during fork(). These functions are only called if the program is + * running in threaded mode, so there is no need to check whether the program + * is threaded here. + */ + +void +_malloc_prefork(void) +{ + unsigned i; + + /* Acquire all mutexes in a safe order. */ + + malloc_spin_lock(&arenas_lock); + for (i = 0; i < narenas; i++) { + if (arenas[i] != NULL) + malloc_spin_lock(&arenas[i]->lock); + } + malloc_spin_unlock(&arenas_lock); + + malloc_mutex_lock(&base_mtx); + + malloc_mutex_lock(&huge_mtx); +} + +void +_malloc_postfork(void) +{ + unsigned i; + + /* Release all mutexes, now that fork() has completed. */ + + malloc_mutex_unlock(&huge_mtx); + + malloc_mutex_unlock(&base_mtx); + + malloc_spin_lock(&arenas_lock); + for (i = 0; i < narenas; i++) { + if (arenas[i] != NULL) + malloc_spin_unlock(&arenas[i]->lock); + } + malloc_spin_unlock(&arenas_lock); +} + +/* + * End library-private functions. + */ +/******************************************************************************/ + +#ifdef HAVE_LIBDL +# include <dlfcn.h> +#endif + +#ifdef MOZ_MEMORY_DARWIN +static malloc_zone_t zone; +static struct malloc_introspection_t zone_introspect; + +static size_t +zone_size(malloc_zone_t *zone, void *ptr) +{ + + /* + * There appear to be places within Darwin (such as setenv(3)) that + * cause calls to this function with pointers that *no* zone owns. If + * we knew that all pointers were owned by *some* zone, we could split + * our zone into two parts, and use one as the default allocator and + * the other as the default deallocator/reallocator. Since that will + * not work in practice, we must check all pointers to assure that they + * reside within a mapped chunk before determining size. + */ + return (isalloc_validate(ptr)); +} + +static void * +zone_malloc(malloc_zone_t *zone, size_t size) +{ + + return (malloc(size)); +} + +static void * +zone_calloc(malloc_zone_t *zone, size_t num, size_t size) +{ + + return (calloc(num, size)); +} + +static void * +zone_valloc(malloc_zone_t *zone, size_t size) +{ + void *ret = NULL; /* Assignment avoids useless compiler warning. */ + + posix_memalign(&ret, pagesize, size); + + return (ret); +} + +static void +zone_free(malloc_zone_t *zone, void *ptr) +{ + + free(ptr); +} + +static void * +zone_realloc(malloc_zone_t *zone, void *ptr, size_t size) +{ + + return (realloc(ptr, size)); +} + +static void * +zone_destroy(malloc_zone_t *zone) +{ + + /* This function should never be called. */ + assert(false); + return (NULL); +} + +static size_t +zone_good_size(malloc_zone_t *zone, size_t size) +{ + size_t ret; + void *p; + + /* + * Actually create an object of the appropriate size, then find out + * how large it could have been without moving up to the next size + * class. + */ + p = malloc(size); + if (p != NULL) { + ret = isalloc(p); + free(p); + } else + ret = size; + + return (ret); +} + +static void +zone_force_lock(malloc_zone_t *zone) +{ + + _malloc_prefork(); +} + +static void +zone_force_unlock(malloc_zone_t *zone) +{ + + _malloc_postfork(); +} + +static malloc_zone_t * +create_zone(void) +{ + + assert(malloc_initialized); + + zone.size = (void *)zone_size; + zone.malloc = (void *)zone_malloc; + zone.calloc = (void *)zone_calloc; + zone.valloc = (void *)zone_valloc; + zone.free = (void *)zone_free; + zone.realloc = (void *)zone_realloc; + zone.destroy = (void *)zone_destroy; + zone.zone_name = "jemalloc_zone"; + zone.batch_malloc = NULL; + zone.batch_free = NULL; + zone.introspect = &zone_introspect; + + zone_introspect.enumerator = NULL; + zone_introspect.good_size = (void *)zone_good_size; + zone_introspect.check = NULL; + zone_introspect.print = NULL; + zone_introspect.log = NULL; + zone_introspect.force_lock = (void *)zone_force_lock; + zone_introspect.force_unlock = (void *)zone_force_unlock; + zone_introspect.statistics = NULL; + + return (&zone); +} + +__attribute__((constructor)) +void +jemalloc_darwin_init(void) +{ + extern unsigned malloc_num_zones; + extern malloc_zone_t **malloc_zones; + + if (malloc_init_hard()) + abort(); + + /* + * The following code is *not* thread-safe, so it's critical that + * initialization be manually triggered. + */ + + /* Register the custom zones. */ + malloc_zone_register(create_zone()); + assert(malloc_zones[malloc_num_zones - 1] == &zone); + + /* + * Shift malloc_zones around so that zone is first, which makes it the + * default zone. + */ + assert(malloc_num_zones > 1); + memmove(&malloc_zones[1], &malloc_zones[0], + sizeof(malloc_zone_t *) * (malloc_num_zones - 1)); + malloc_zones[0] = &zone; +} + +#elif defined(__GLIBC__) && !defined(__UCLIBC__) +/* + * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible + * to inconsistently reference libc's malloc(3)-compatible functions + * (bug 493541). + * + * These definitions interpose hooks in glibc. The functions are actually + * passed an extra argument for the caller return address, which will be + * ignored. + */ +void (*__free_hook)(void *ptr) = free; +void *(*__malloc_hook)(size_t size) = malloc; +void *(*__realloc_hook)(void *ptr, size_t size) = realloc; +void *(*__memalign_hook)(size_t alignment, size_t size) = memalign; + +#elif defined(RTLD_DEEPBIND) +/* + * XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their + * implementations permit similar inconsistencies? Should STV_SINGLETON + * visibility be used for interposition where available? + */ +# error "Interposing malloc is unsafe on this system without libc malloc hooks." +#endif + diff --git a/third_party/jemalloc/chromium/jemalloc.h b/third_party/jemalloc/chromium/jemalloc.h index 46dc768..8154656 100644 --- a/third_party/jemalloc/chromium/jemalloc.h +++ b/third_party/jemalloc/chromium/jemalloc.h @@ -1,222 +1,222 @@ -/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */
-/* vim:set softtabstop=8 shiftwidth=8: */
-/*-
- * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice(s), this list of conditions and the following disclaimer as
- * the first lines of this file unmodified other than the possible
- * addition of one or more copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice(s), this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- */
-
-#ifndef _JEMALLOC_H_
-#define _JEMALLOC_H_
-
-/* grab size_t */
-#ifdef _MSC_VER
-#include <crtdefs.h>
-#else
-#include <stddef.h>
-#endif
-
-#ifdef __cplusplus
-extern "C" {
-#endif
-
-typedef unsigned char jemalloc_bool;
-
-extern const char *_malloc_options;
-
-/*
- * jemalloc_stats() is not a stable interface. When using jemalloc_stats_t, be
- * sure that the compiled results of jemalloc.c are in sync with this header
- * file.
- */
-typedef struct {
- /*
- * Run-time configuration settings.
- */
- jemalloc_bool opt_abort; /* abort(3) on error? */
- jemalloc_bool opt_junk; /* Fill allocated/free memory with 0xa5/0x5a? */
- jemalloc_bool opt_utrace; /* Trace all allocation events? */
- jemalloc_bool opt_sysv; /* SysV semantics? */
- jemalloc_bool opt_xmalloc; /* abort(3) on OOM? */
- jemalloc_bool opt_zero; /* Fill allocated memory with 0x0? */
- size_t narenas; /* Number of arenas. */
- size_t balance_threshold; /* Arena contention rebalance threshold. */
- size_t quantum; /* Allocation quantum. */
- size_t small_max; /* Max quantum-spaced allocation size. */
- size_t large_max; /* Max sub-chunksize allocation size. */
- size_t chunksize; /* Size of each virtual memory mapping. */
- size_t dirty_max; /* Max dirty pages per arena. */
- size_t reserve_min; /* reserve_low callback threshold. */
- size_t reserve_max; /* Maximum reserve size before unmapping. */
-
- /*
- * Current memory usage statistics.
- */
- size_t mapped; /* Bytes mapped (not necessarily committed). */
- size_t committed; /* Bytes committed (readable/writable). */
- size_t allocated; /* Bytes allocted (in use by application). */
- size_t dirty; /* Bytes dirty (committed unused pages). */
- size_t reserve_cur; /* Current memory reserve. */
-} jemalloc_stats_t;
-
-#ifndef MOZ_MEMORY_DARWIN
-void *malloc(size_t size);
-void *valloc(size_t size);
-void *calloc(size_t num, size_t size);
-void *realloc(void *ptr, size_t size);
-void free(void *ptr);
-#endif
-
-int posix_memalign(void **memptr, size_t alignment, size_t size);
-void *memalign(size_t alignment, size_t size);
-size_t malloc_usable_size(const void *ptr);
-void jemalloc_stats(jemalloc_stats_t *stats);
-
-/* The x*() functions never return NULL. */
-void *xmalloc(size_t size);
-void *xcalloc(size_t num, size_t size);
-void *xrealloc(void *ptr, size_t size);
-void *xmemalign(size_t alignment, size_t size);
-
-/*
- * The allocator maintains a memory reserve that is used to satisfy allocation
- * requests when no additional memory can be acquired from the operating
- * system. Under normal operating conditions, the reserve size is at least
- * reserve_min bytes. If the reserve is depleted or insufficient to satisfy an
- * allocation request, then condition notifications are sent to one or more of
- * the registered callback functions:
- *
- * RESERVE_CND_LOW: The reserve had to be used to satisfy an allocation
- * request, which dropped the reserve size below the
- * minimum. The callee should try to free memory in order
- * to restore the reserve.
- *
- * RESERVE_CND_CRIT: The reserve was not large enough to satisfy a pending
- * allocation request. Some callee must free adequate
- * memory in order to prevent application failure (unless
- * the condition spontaneously desists due to concurrent
- * deallocation).
- *
- * RESERVE_CND_FAIL: An allocation request could not be satisfied, despite all
- * attempts. The allocator is about to terminate the
- * application.
- *
- * The order in which the callback functions are called is only loosely
- * specified: in the absence of interposing callback
- * registrations/unregistrations, enabled callbacks will be called in an
- * arbitrary round-robin order.
- *
- * Condition notifications are sent to callbacks only while conditions exist.
- * For example, just before the allocator sends a RESERVE_CND_LOW condition
- * notification to a callback, the reserve is in fact depleted. However, due
- * to allocator concurrency, the reserve may have been restored by the time the
- * callback function executes. Furthermore, if the reserve is restored at some
- * point during the delivery of condition notifications to callbacks, no
- * further deliveries will occur, since the condition no longer exists.
- *
- * Callback functions can freely call back into the allocator (i.e. the
- * allocator releases all internal resources before calling each callback
- * function), though allocation is discouraged, since recursive callbacks are
- * likely to result, which places extra burden on the application to avoid
- * deadlock.
- *
- * Callback functions must be thread-safe, since it is possible that multiple
- * threads will call into the same callback function concurrently.
- */
-
-/* Memory reserve condition types. */
-typedef enum {
- RESERVE_CND_LOW,
- RESERVE_CND_CRIT,
- RESERVE_CND_FAIL
-} reserve_cnd_t;
-
-/*
- * Reserve condition notification callback function type definition.
- *
- * Inputs:
- * ctx: Opaque application data, as passed to reserve_cb_register().
- * cnd: Condition type being delivered.
- * size: Allocation request size for the allocation that caused the condition.
- */
-typedef void reserve_cb_t(void *ctx, reserve_cnd_t cnd, size_t size);
-
-/*
- * Register a callback function.
- *
- * Inputs:
- * cb: Callback function pointer.
- * ctx: Opaque application data, passed to cb().
- *
- * Output:
- * ret: If true, failure due to OOM; success otherwise.
- */
-jemalloc_bool reserve_cb_register(reserve_cb_t *cb, void *ctx);
-
-/*
- * Unregister a callback function.
- *
- * Inputs:
- * cb: Callback function pointer.
- * ctx: Opaque application data, same as that passed to reserve_cb_register().
- *
- * Output:
- * ret: False upon success, true if the {cb,ctx} registration could not be
- * found.
- */
-jemalloc_bool reserve_cb_unregister(reserve_cb_t *cb, void *ctx);
-
-/*
- * Get the current reserve size.
- *
- * ret: Current reserve size.
- */
-size_t reserve_cur_get(void);
-
-/*
- * Get the minimum acceptable reserve size. If the reserve drops below this
- * value, the RESERVE_CND_LOW condition notification is sent to the callbacks.
- *
- * ret: Minimum acceptable reserve size.
- */
-size_t reserve_min_get(void);
-
-/*
- * Set the minimum acceptable reserve size.
- *
- * min: Reserve threshold. This value may be internally rounded up.
- * ret: False if the reserve was successfully resized; true otherwise. Note
- * that failure to resize the reserve also results in a RESERVE_CND_LOW
- * condition.
- */
-jemalloc_bool reserve_min_set(size_t min);
-
-#ifdef __cplusplus
-} /* extern "C" */
-#endif
-
-#endif /* _JEMALLOC_H_ */
-
+/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */ +/* vim:set softtabstop=8 shiftwidth=8: */ +/*- + * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice(s), this list of conditions and the following disclaimer as + * the first lines of this file unmodified other than the possible + * addition of one or more copyright notices. + * 2. Redistributions in binary form must reproduce the above copyright + * notice(s), this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE + * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#ifndef _JEMALLOC_H_ +#define _JEMALLOC_H_ + +/* grab size_t */ +#ifdef _MSC_VER +#include <crtdefs.h> +#else +#include <stddef.h> +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +typedef unsigned char jemalloc_bool; + +extern const char *_malloc_options; + +/* + * jemalloc_stats() is not a stable interface. When using jemalloc_stats_t, be + * sure that the compiled results of jemalloc.c are in sync with this header + * file. + */ +typedef struct { + /* + * Run-time configuration settings. + */ + jemalloc_bool opt_abort; /* abort(3) on error? */ + jemalloc_bool opt_junk; /* Fill allocated/free memory with 0xa5/0x5a? */ + jemalloc_bool opt_utrace; /* Trace all allocation events? */ + jemalloc_bool opt_sysv; /* SysV semantics? */ + jemalloc_bool opt_xmalloc; /* abort(3) on OOM? */ + jemalloc_bool opt_zero; /* Fill allocated memory with 0x0? */ + size_t narenas; /* Number of arenas. */ + size_t balance_threshold; /* Arena contention rebalance threshold. */ + size_t quantum; /* Allocation quantum. */ + size_t small_max; /* Max quantum-spaced allocation size. */ + size_t large_max; /* Max sub-chunksize allocation size. */ + size_t chunksize; /* Size of each virtual memory mapping. */ + size_t dirty_max; /* Max dirty pages per arena. */ + size_t reserve_min; /* reserve_low callback threshold. */ + size_t reserve_max; /* Maximum reserve size before unmapping. */ + + /* + * Current memory usage statistics. + */ + size_t mapped; /* Bytes mapped (not necessarily committed). */ + size_t committed; /* Bytes committed (readable/writable). */ + size_t allocated; /* Bytes allocted (in use by application). */ + size_t dirty; /* Bytes dirty (committed unused pages). */ + size_t reserve_cur; /* Current memory reserve. */ +} jemalloc_stats_t; + +#ifndef MOZ_MEMORY_DARWIN +void *malloc(size_t size); +void *valloc(size_t size); +void *calloc(size_t num, size_t size); +void *realloc(void *ptr, size_t size); +void free(void *ptr); +#endif + +int posix_memalign(void **memptr, size_t alignment, size_t size); +void *memalign(size_t alignment, size_t size); +size_t malloc_usable_size(const void *ptr); +void jemalloc_stats(jemalloc_stats_t *stats); + +/* The x*() functions never return NULL. */ +void *xmalloc(size_t size); +void *xcalloc(size_t num, size_t size); +void *xrealloc(void *ptr, size_t size); +void *xmemalign(size_t alignment, size_t size); + +/* + * The allocator maintains a memory reserve that is used to satisfy allocation + * requests when no additional memory can be acquired from the operating + * system. Under normal operating conditions, the reserve size is at least + * reserve_min bytes. If the reserve is depleted or insufficient to satisfy an + * allocation request, then condition notifications are sent to one or more of + * the registered callback functions: + * + * RESERVE_CND_LOW: The reserve had to be used to satisfy an allocation + * request, which dropped the reserve size below the + * minimum. The callee should try to free memory in order + * to restore the reserve. + * + * RESERVE_CND_CRIT: The reserve was not large enough to satisfy a pending + * allocation request. Some callee must free adequate + * memory in order to prevent application failure (unless + * the condition spontaneously desists due to concurrent + * deallocation). + * + * RESERVE_CND_FAIL: An allocation request could not be satisfied, despite all + * attempts. The allocator is about to terminate the + * application. + * + * The order in which the callback functions are called is only loosely + * specified: in the absence of interposing callback + * registrations/unregistrations, enabled callbacks will be called in an + * arbitrary round-robin order. + * + * Condition notifications are sent to callbacks only while conditions exist. + * For example, just before the allocator sends a RESERVE_CND_LOW condition + * notification to a callback, the reserve is in fact depleted. However, due + * to allocator concurrency, the reserve may have been restored by the time the + * callback function executes. Furthermore, if the reserve is restored at some + * point during the delivery of condition notifications to callbacks, no + * further deliveries will occur, since the condition no longer exists. + * + * Callback functions can freely call back into the allocator (i.e. the + * allocator releases all internal resources before calling each callback + * function), though allocation is discouraged, since recursive callbacks are + * likely to result, which places extra burden on the application to avoid + * deadlock. + * + * Callback functions must be thread-safe, since it is possible that multiple + * threads will call into the same callback function concurrently. + */ + +/* Memory reserve condition types. */ +typedef enum { + RESERVE_CND_LOW, + RESERVE_CND_CRIT, + RESERVE_CND_FAIL +} reserve_cnd_t; + +/* + * Reserve condition notification callback function type definition. + * + * Inputs: + * ctx: Opaque application data, as passed to reserve_cb_register(). + * cnd: Condition type being delivered. + * size: Allocation request size for the allocation that caused the condition. + */ +typedef void reserve_cb_t(void *ctx, reserve_cnd_t cnd, size_t size); + +/* + * Register a callback function. + * + * Inputs: + * cb: Callback function pointer. + * ctx: Opaque application data, passed to cb(). + * + * Output: + * ret: If true, failure due to OOM; success otherwise. + */ +jemalloc_bool reserve_cb_register(reserve_cb_t *cb, void *ctx); + +/* + * Unregister a callback function. + * + * Inputs: + * cb: Callback function pointer. + * ctx: Opaque application data, same as that passed to reserve_cb_register(). + * + * Output: + * ret: False upon success, true if the {cb,ctx} registration could not be + * found. + */ +jemalloc_bool reserve_cb_unregister(reserve_cb_t *cb, void *ctx); + +/* + * Get the current reserve size. + * + * ret: Current reserve size. + */ +size_t reserve_cur_get(void); + +/* + * Get the minimum acceptable reserve size. If the reserve drops below this + * value, the RESERVE_CND_LOW condition notification is sent to the callbacks. + * + * ret: Minimum acceptable reserve size. + */ +size_t reserve_min_get(void); + +/* + * Set the minimum acceptable reserve size. + * + * min: Reserve threshold. This value may be internally rounded up. + * ret: False if the reserve was successfully resized; true otherwise. Note + * that failure to resize the reserve also results in a RESERVE_CND_LOW + * condition. + */ +jemalloc_bool reserve_min_set(size_t min); + +#ifdef __cplusplus +} /* extern "C" */ +#endif + +#endif /* _JEMALLOC_H_ */ + diff --git a/third_party/jemalloc/chromium/ql.h b/third_party/jemalloc/chromium/ql.h index 593438c..f50a64c 100644 --- a/third_party/jemalloc/chromium/ql.h +++ b/third_party/jemalloc/chromium/ql.h @@ -1,115 +1,115 @@ -/******************************************************************************
- *
- * Copyright (C) 2002 Jason Evans <jasone@canonware.com>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice(s), this list of conditions and the following disclaimer
- * unmodified other than the allowable addition of one or more
- * copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice(s), this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************/
-
-/*
- * List definitions.
- */
-#define ql_head(a_type) \
-struct { \
- a_type *qlh_first; \
-}
-
-#define ql_head_initializer(a_head) {NULL}
-
-#define ql_elm(a_type) qr(a_type)
-
-/* List functions. */
-#define ql_new(a_head) do { \
- (a_head)->qlh_first = NULL; \
-} while (0)
-
-#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field)
-
-#define ql_first(a_head) ((a_head)->qlh_first)
-
-#define ql_last(a_head, a_field) \
- ((ql_first(a_head) != NULL) \
- ? qr_prev(ql_first(a_head), a_field) : NULL)
-
-#define ql_next(a_head, a_elm, a_field) \
- ((ql_last(a_head, a_field) != (a_elm)) \
- ? qr_next((a_elm), a_field) : NULL)
-
-#define ql_prev(a_head, a_elm, a_field) \
- ((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \
- : NULL)
-
-#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \
- qr_before_insert((a_qlelm), (a_elm), a_field); \
- if (ql_first(a_head) == (a_qlelm)) { \
- ql_first(a_head) = (a_elm); \
- } \
-} while (0)
-
-#define ql_after_insert(a_qlelm, a_elm, a_field) \
- qr_after_insert((a_qlelm), (a_elm), a_field)
-
-#define ql_head_insert(a_head, a_elm, a_field) do { \
- if (ql_first(a_head) != NULL) { \
- qr_before_insert(ql_first(a_head), (a_elm), a_field); \
- } \
- ql_first(a_head) = (a_elm); \
-} while (0)
-
-#define ql_tail_insert(a_head, a_elm, a_field) do { \
- if (ql_first(a_head) != NULL) { \
- qr_before_insert(ql_first(a_head), (a_elm), a_field); \
- } \
- ql_first(a_head) = qr_next((a_elm), a_field); \
-} while (0)
-
-#define ql_remove(a_head, a_elm, a_field) do { \
- if (ql_first(a_head) == (a_elm)) { \
- ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
- } \
- if (ql_first(a_head) != (a_elm)) { \
- qr_remove((a_elm), a_field); \
- } else { \
- ql_first(a_head) = NULL; \
- } \
-} while (0)
-
-#define ql_head_remove(a_head, a_type, a_field) do { \
- a_type *t = ql_first(a_head); \
- ql_remove((a_head), t, a_field); \
-} while (0)
-
-#define ql_tail_remove(a_head, a_type, a_field) do { \
- a_type *t = ql_last(a_head, a_field); \
- ql_remove((a_head), t, a_field); \
-} while (0)
-
-#define ql_foreach(a_var, a_head, a_field) \
- qr_foreach((a_var), ql_first(a_head), a_field)
-
-#define ql_reverse_foreach(a_var, a_head, a_field) \
- qr_reverse_foreach((a_var), ql_first(a_head), a_field)
-
+/****************************************************************************** + * + * Copyright (C) 2002 Jason Evans <jasone@canonware.com>. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice(s), this list of conditions and the following disclaimer + * unmodified other than the allowable addition of one or more + * copyright notices. + * 2. Redistributions in binary form must reproduce the above copyright + * notice(s), this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE + * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ******************************************************************************/ + +/* + * List definitions. + */ +#define ql_head(a_type) \ +struct { \ + a_type *qlh_first; \ +} + +#define ql_head_initializer(a_head) {NULL} + +#define ql_elm(a_type) qr(a_type) + +/* List functions. */ +#define ql_new(a_head) do { \ + (a_head)->qlh_first = NULL; \ +} while (0) + +#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field) + +#define ql_first(a_head) ((a_head)->qlh_first) + +#define ql_last(a_head, a_field) \ + ((ql_first(a_head) != NULL) \ + ? qr_prev(ql_first(a_head), a_field) : NULL) + +#define ql_next(a_head, a_elm, a_field) \ + ((ql_last(a_head, a_field) != (a_elm)) \ + ? qr_next((a_elm), a_field) : NULL) + +#define ql_prev(a_head, a_elm, a_field) \ + ((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \ + : NULL) + +#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \ + qr_before_insert((a_qlelm), (a_elm), a_field); \ + if (ql_first(a_head) == (a_qlelm)) { \ + ql_first(a_head) = (a_elm); \ + } \ +} while (0) + +#define ql_after_insert(a_qlelm, a_elm, a_field) \ + qr_after_insert((a_qlelm), (a_elm), a_field) + +#define ql_head_insert(a_head, a_elm, a_field) do { \ + if (ql_first(a_head) != NULL) { \ + qr_before_insert(ql_first(a_head), (a_elm), a_field); \ + } \ + ql_first(a_head) = (a_elm); \ +} while (0) + +#define ql_tail_insert(a_head, a_elm, a_field) do { \ + if (ql_first(a_head) != NULL) { \ + qr_before_insert(ql_first(a_head), (a_elm), a_field); \ + } \ + ql_first(a_head) = qr_next((a_elm), a_field); \ +} while (0) + +#define ql_remove(a_head, a_elm, a_field) do { \ + if (ql_first(a_head) == (a_elm)) { \ + ql_first(a_head) = qr_next(ql_first(a_head), a_field); \ + } \ + if (ql_first(a_head) != (a_elm)) { \ + qr_remove((a_elm), a_field); \ + } else { \ + ql_first(a_head) = NULL; \ + } \ +} while (0) + +#define ql_head_remove(a_head, a_type, a_field) do { \ + a_type *t = ql_first(a_head); \ + ql_remove((a_head), t, a_field); \ +} while (0) + +#define ql_tail_remove(a_head, a_type, a_field) do { \ + a_type *t = ql_last(a_head, a_field); \ + ql_remove((a_head), t, a_field); \ +} while (0) + +#define ql_foreach(a_var, a_head, a_field) \ + qr_foreach((a_var), ql_first(a_head), a_field) + +#define ql_reverse_foreach(a_var, a_head, a_field) \ + qr_reverse_foreach((a_var), ql_first(a_head), a_field) + diff --git a/third_party/jemalloc/chromium/qr.h b/third_party/jemalloc/chromium/qr.h index 5f2bc0a..fb780f7 100644 --- a/third_party/jemalloc/chromium/qr.h +++ b/third_party/jemalloc/chromium/qr.h @@ -1,99 +1,99 @@ -/******************************************************************************
- *
- * Copyright (C) 2002 Jason Evans <jasone@canonware.com>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice(s), this list of conditions and the following disclaimer
- * unmodified other than the allowable addition of one or more
- * copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice(s), this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************/
-
-/* Ring definitions. */
-#define qr(a_type) \
-struct { \
- a_type *qre_next; \
- a_type *qre_prev; \
-}
-
-/* Ring functions. */
-#define qr_new(a_qr, a_field) do { \
- (a_qr)->a_field.qre_next = (a_qr); \
- (a_qr)->a_field.qre_prev = (a_qr); \
-} while (0)
-
-#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
-
-#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
-
-#define qr_before_insert(a_qrelm, a_qr, a_field) do { \
- (a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \
- (a_qr)->a_field.qre_next = (a_qrelm); \
- (a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \
- (a_qrelm)->a_field.qre_prev = (a_qr); \
-} while (0)
-
-#define qr_after_insert(a_qrelm, a_qr, a_field) \
- do \
- { \
- (a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \
- (a_qr)->a_field.qre_prev = (a_qrelm); \
- (a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \
- (a_qrelm)->a_field.qre_next = (a_qr); \
- } while (0)
-
-#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
- void *t; \
- (a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
- (a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
- t = (a_qr_a)->a_field.qre_prev; \
- (a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
- (a_qr_b)->a_field.qre_prev = t; \
-} while (0)
-
-/* qr_meld() and qr_split() are functionally equivalent, so there's no need to
- * have two copies of the code. */
-#define qr_split(a_qr_a, a_qr_b, a_field) \
- qr_meld((a_qr_a), (a_qr_b), a_field)
-
-#define qr_remove(a_qr, a_field) do { \
- (a_qr)->a_field.qre_prev->a_field.qre_next \
- = (a_qr)->a_field.qre_next; \
- (a_qr)->a_field.qre_next->a_field.qre_prev \
- = (a_qr)->a_field.qre_prev; \
- (a_qr)->a_field.qre_next = (a_qr); \
- (a_qr)->a_field.qre_prev = (a_qr); \
-} while (0)
-
-#define qr_foreach(var, a_qr, a_field) \
- for ((var) = (a_qr); \
- (var) != NULL; \
- (var) = (((var)->a_field.qre_next != (a_qr)) \
- ? (var)->a_field.qre_next : NULL))
-
-#define qr_reverse_foreach(var, a_qr, a_field) \
- for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
- (var) != NULL; \
- (var) = (((var) != (a_qr)) \
- ? (var)->a_field.qre_prev : NULL))
-
+/****************************************************************************** + * + * Copyright (C) 2002 Jason Evans <jasone@canonware.com>. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice(s), this list of conditions and the following disclaimer + * unmodified other than the allowable addition of one or more + * copyright notices. + * 2. Redistributions in binary form must reproduce the above copyright + * notice(s), this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE + * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ******************************************************************************/ + +/* Ring definitions. */ +#define qr(a_type) \ +struct { \ + a_type *qre_next; \ + a_type *qre_prev; \ +} + +/* Ring functions. */ +#define qr_new(a_qr, a_field) do { \ + (a_qr)->a_field.qre_next = (a_qr); \ + (a_qr)->a_field.qre_prev = (a_qr); \ +} while (0) + +#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next) + +#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev) + +#define qr_before_insert(a_qrelm, a_qr, a_field) do { \ + (a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \ + (a_qr)->a_field.qre_next = (a_qrelm); \ + (a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \ + (a_qrelm)->a_field.qre_prev = (a_qr); \ +} while (0) + +#define qr_after_insert(a_qrelm, a_qr, a_field) \ + do \ + { \ + (a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \ + (a_qr)->a_field.qre_prev = (a_qrelm); \ + (a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \ + (a_qrelm)->a_field.qre_next = (a_qr); \ + } while (0) + +#define qr_meld(a_qr_a, a_qr_b, a_field) do { \ + void *t; \ + (a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \ + (a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \ + t = (a_qr_a)->a_field.qre_prev; \ + (a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \ + (a_qr_b)->a_field.qre_prev = t; \ +} while (0) + +/* qr_meld() and qr_split() are functionally equivalent, so there's no need to + * have two copies of the code. */ +#define qr_split(a_qr_a, a_qr_b, a_field) \ + qr_meld((a_qr_a), (a_qr_b), a_field) + +#define qr_remove(a_qr, a_field) do { \ + (a_qr)->a_field.qre_prev->a_field.qre_next \ + = (a_qr)->a_field.qre_next; \ + (a_qr)->a_field.qre_next->a_field.qre_prev \ + = (a_qr)->a_field.qre_prev; \ + (a_qr)->a_field.qre_next = (a_qr); \ + (a_qr)->a_field.qre_prev = (a_qr); \ +} while (0) + +#define qr_foreach(var, a_qr, a_field) \ + for ((var) = (a_qr); \ + (var) != NULL; \ + (var) = (((var)->a_field.qre_next != (a_qr)) \ + ? (var)->a_field.qre_next : NULL)) + +#define qr_reverse_foreach(var, a_qr, a_field) \ + for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \ + (var) != NULL; \ + (var) = (((var) != (a_qr)) \ + ? (var)->a_field.qre_prev : NULL)) + diff --git a/third_party/jemalloc/chromium/rb.h b/third_party/jemalloc/chromium/rb.h index 05fb4fe..09e7ede 100644 --- a/third_party/jemalloc/chromium/rb.h +++ b/third_party/jemalloc/chromium/rb.h @@ -1,983 +1,983 @@ -/******************************************************************************
- *
- * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- * notice(s), this list of conditions and the following disclaimer
- * unmodified other than the allowable addition of one or more
- * copyright notices.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice(s), this list of conditions and the following disclaimer in
- * the documentation and/or other materials provided with the
- * distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
- * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
- * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
- * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
- * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
- * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
- * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
- * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************
- *
- * cpp macro implementation of left-leaning red-black trees.
- *
- * Usage:
- *
- * (Optional.)
- * #define SIZEOF_PTR ...
- * #define SIZEOF_PTR_2POW ...
- * #define RB_NO_C99_VARARRAYS
- *
- * (Optional, see assert(3).)
- * #define NDEBUG
- *
- * (Required.)
- * #include <assert.h>
- * #include <rb.h>
- * ...
- *
- * All operations are done non-recursively. Parent pointers are not used, and
- * color bits are stored in the least significant bit of right-child pointers,
- * thus making node linkage as compact as is possible for red-black trees.
- *
- * Some macros use a comparison function pointer, which is expected to have the
- * following prototype:
- *
- * int (a_cmp *)(a_type *a_node, a_type *a_other);
- * ^^^^^^
- * or a_key
- *
- * Interpretation of comparision function return values:
- *
- * -1 : a_node < a_other
- * 0 : a_node == a_other
- * 1 : a_node > a_other
- *
- * In all cases, the a_node or a_key macro argument is the first argument to the
- * comparison function, which makes it possible to write comparison functions
- * that treat the first argument specially.
- *
- ******************************************************************************/
-
-#ifndef RB_H_
-#define RB_H_
-
-#if 0
-#include <sys/cdefs.h>
-__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
-#endif
-
-/* Node structure. */
-#define rb_node(a_type) \
-struct { \
- a_type *rbn_left; \
- a_type *rbn_right_red; \
-}
-
-/* Root structure. */
-#define rb_tree(a_type) \
-struct { \
- a_type *rbt_root; \
- a_type rbt_nil; \
-}
-
-/* Left accessors. */
-#define rbp_left_get(a_type, a_field, a_node) \
- ((a_node)->a_field.rbn_left)
-#define rbp_left_set(a_type, a_field, a_node, a_left) do { \
- (a_node)->a_field.rbn_left = a_left; \
-} while (0)
-
-/* Right accessors. */
-#define rbp_right_get(a_type, a_field, a_node) \
- ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
- & ((ssize_t)-2)))
-#define rbp_right_set(a_type, a_field, a_node, a_right) do { \
- (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
- | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
-} while (0)
-
-/* Color accessors. */
-#define rbp_red_get(a_type, a_field, a_node) \
- ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
- & ((size_t)1)))
-#define rbp_color_set(a_type, a_field, a_node, a_red) do { \
- (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
- (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
- | ((ssize_t)a_red)); \
-} while (0)
-#define rbp_red_set(a_type, a_field, a_node) do { \
- (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
- (a_node)->a_field.rbn_right_red) | ((size_t)1)); \
-} while (0)
-#define rbp_black_set(a_type, a_field, a_node) do { \
- (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
- (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
-} while (0)
-
-/* Node initializer. */
-#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \
- rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
- rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
- rbp_red_set(a_type, a_field, (a_node)); \
-} while (0)
-
-/* Tree initializer. */
-#define rb_new(a_type, a_field, a_tree) do { \
- (a_tree)->rbt_root = &(a_tree)->rbt_nil; \
- rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \
- rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \
-} while (0)
-
-/* Tree operations. */
-#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \
- a_type *rbp_bh_t; \
- for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \
- rbp_bh_t != &(a_tree)->rbt_nil; \
- rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \
- if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \
- (r_height)++; \
- } \
- } \
-} while (0)
-
-#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \
- for ((r_node) = (a_root); \
- rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
- (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \
- } \
-} while (0)
-
-#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \
- for ((r_node) = (a_root); \
- rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
- (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \
- } \
-} while (0)
-
-#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
- if (rbp_right_get(a_type, a_field, (a_node)) \
- != &(a_tree)->rbt_nil) { \
- rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \
- a_field, (a_node)), (r_node)); \
- } else { \
- a_type *rbp_n_t = (a_tree)->rbt_root; \
- assert(rbp_n_t != &(a_tree)->rbt_nil); \
- (r_node) = &(a_tree)->rbt_nil; \
- while (true) { \
- int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \
- if (rbp_n_cmp < 0) { \
- (r_node) = rbp_n_t; \
- rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \
- } else if (rbp_n_cmp > 0) { \
- rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \
- } else { \
- break; \
- } \
- assert(rbp_n_t != &(a_tree)->rbt_nil); \
- } \
- } \
-} while (0)
-
-#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
- if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
- rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \
- a_field, (a_node)), (r_node)); \
- } else { \
- a_type *rbp_p_t = (a_tree)->rbt_root; \
- assert(rbp_p_t != &(a_tree)->rbt_nil); \
- (r_node) = &(a_tree)->rbt_nil; \
- while (true) { \
- int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \
- if (rbp_p_cmp < 0) { \
- rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \
- } else if (rbp_p_cmp > 0) { \
- (r_node) = rbp_p_t; \
- rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \
- } else { \
- break; \
- } \
- assert(rbp_p_t != &(a_tree)->rbt_nil); \
- } \
- } \
-} while (0)
-
-#define rb_first(a_type, a_field, a_tree, r_node) do { \
- rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-#define rb_last(a_type, a_field, a_tree, r_node) do { \
- rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
- rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
- rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
- int rbp_se_cmp; \
- (r_node) = (a_tree)->rbt_root; \
- while ((r_node) != &(a_tree)->rbt_nil \
- && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \
- if (rbp_se_cmp < 0) { \
- (r_node) = rbp_left_get(a_type, a_field, (r_node)); \
- } else { \
- (r_node) = rbp_right_get(a_type, a_field, (r_node)); \
- } \
- } \
- if ((r_node) == &(a_tree)->rbt_nil) { \
- (r_node) = NULL; \
- } \
-} while (0)
-
-/*
- * Find a match if it exists. Otherwise, find the next greater node, if one
- * exists.
- */
-#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
- a_type *rbp_ns_t = (a_tree)->rbt_root; \
- (r_node) = NULL; \
- while (rbp_ns_t != &(a_tree)->rbt_nil) { \
- int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \
- if (rbp_ns_cmp < 0) { \
- (r_node) = rbp_ns_t; \
- rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \
- } else if (rbp_ns_cmp > 0) { \
- rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \
- } else { \
- (r_node) = rbp_ns_t; \
- break; \
- } \
- } \
-} while (0)
-
-/*
- * Find a match if it exists. Otherwise, find the previous lesser node, if one
- * exists.
- */
-#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
- a_type *rbp_ps_t = (a_tree)->rbt_root; \
- (r_node) = NULL; \
- while (rbp_ps_t != &(a_tree)->rbt_nil) { \
- int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \
- if (rbp_ps_cmp < 0) { \
- rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \
- } else if (rbp_ps_cmp > 0) { \
- (r_node) = rbp_ps_t; \
- rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \
- } else { \
- (r_node) = rbp_ps_t; \
- break; \
- } \
- } \
-} while (0)
-
-#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \
- (r_node) = rbp_right_get(a_type, a_field, (a_node)); \
- rbp_right_set(a_type, a_field, (a_node), \
- rbp_left_get(a_type, a_field, (r_node))); \
- rbp_left_set(a_type, a_field, (r_node), (a_node)); \
-} while (0)
-
-#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \
- (r_node) = rbp_left_get(a_type, a_field, (a_node)); \
- rbp_left_set(a_type, a_field, (a_node), \
- rbp_right_get(a_type, a_field, (r_node))); \
- rbp_right_set(a_type, a_field, (r_node), (a_node)); \
-} while (0)
-
-#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \
- bool rbp_ll_red; \
- rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
- rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \
- rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \
- rbp_red_set(a_type, a_field, (a_node)); \
-} while (0)
-
-#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \
- bool rbp_lr_red; \
- rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
- rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \
- rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \
- rbp_red_set(a_type, a_field, (a_node)); \
-} while (0)
-
-#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \
- a_type *rbp_mrl_t, *rbp_mrl_u; \
- rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \
- rbp_red_set(a_type, a_field, rbp_mrl_t); \
- rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
- rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \
- if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \
- rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \
- rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \
- rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
- rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
- if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \
- rbp_black_set(a_type, a_field, rbp_mrl_t); \
- rbp_red_set(a_type, a_field, (a_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \
- rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \
- } else { \
- rbp_black_set(a_type, a_field, (a_node)); \
- } \
- } else { \
- rbp_red_set(a_type, a_field, (a_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
- } \
-} while (0)
-
-#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \
- a_type *rbp_mrr_t; \
- rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \
- if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
- a_type *rbp_mrr_u, *rbp_mrr_v; \
- rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \
- rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \
- if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \
- rbp_color_set(a_type, a_field, rbp_mrr_u, \
- rbp_red_get(a_type, a_field, (a_node))); \
- rbp_black_set(a_type, a_field, rbp_mrr_v); \
- rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \
- rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \
- rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
- rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
- } else { \
- rbp_color_set(a_type, a_field, rbp_mrr_t, \
- rbp_red_get(a_type, a_field, (a_node))); \
- rbp_red_set(a_type, a_field, rbp_mrr_u); \
- rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
- rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
- } \
- rbp_red_set(a_type, a_field, (a_node)); \
- } else { \
- rbp_red_set(a_type, a_field, rbp_mrr_t); \
- rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \
- if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
- rbp_black_set(a_type, a_field, rbp_mrr_t); \
- rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
- rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
- rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
- } else { \
- rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
- } \
- } \
-} while (0)
-
-#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \
- a_type rbp_i_s; \
- a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \
- int rbp_i_cmp = 0; \
- rbp_i_g = &(a_tree)->rbt_nil; \
- rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \
- rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \
- rbp_black_set(a_type, a_field, &rbp_i_s); \
- rbp_i_p = &rbp_i_s; \
- rbp_i_c = (a_tree)->rbt_root; \
- /* Iteratively search down the tree for the insertion point, */\
- /* splitting 4-nodes as they are encountered. At the end of each */\
- /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\
- /* the tree, assuming a sufficiently deep tree. */\
- while (rbp_i_c != &(a_tree)->rbt_nil) { \
- rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \
- rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
- if (rbp_red_get(a_type, a_field, rbp_i_t) \
- && rbp_red_get(a_type, a_field, rbp_i_u)) { \
- /* rbp_i_c is the top of a logical 4-node, so split it. */\
- /* This iteration does not move down the tree, due to the */\
- /* disruptiveness of node splitting. */\
- /* */\
- /* Rotate right. */\
- rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \
- /* Pass red links up one level. */\
- rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
- rbp_black_set(a_type, a_field, rbp_i_u); \
- if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \
- rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \
- rbp_i_c = rbp_i_t; \
- } else { \
- /* rbp_i_c was the right child of rbp_i_p, so rotate */\
- /* left in order to maintain the left-leaning */\
- /* invariant. */\
- assert(rbp_right_get(a_type, a_field, rbp_i_p) \
- == rbp_i_c); \
- rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \
- rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \
- if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
- rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \
- } else { \
- assert(rbp_right_get(a_type, a_field, rbp_i_g) \
- == rbp_i_p); \
- rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \
- } \
- rbp_i_p = rbp_i_u; \
- rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \
- if (rbp_i_cmp < 0) { \
- rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \
- } else { \
- assert(rbp_i_cmp > 0); \
- rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \
- } \
- continue; \
- } \
- } \
- rbp_i_g = rbp_i_p; \
- rbp_i_p = rbp_i_c; \
- rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \
- if (rbp_i_cmp < 0) { \
- rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \
- } else { \
- assert(rbp_i_cmp > 0); \
- rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \
- } \
- } \
- /* rbp_i_p now refers to the node under which to insert. */\
- rbp_node_new(a_type, a_field, a_tree, (a_node)); \
- if (rbp_i_cmp > 0) { \
- rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \
- rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \
- if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \
- rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \
- } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
- rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \
- } \
- } else { \
- rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \
- } \
- /* Update the root and make sure that it is black. */\
- (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \
- rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \
-} while (0)
-
-#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \
- a_type rbp_r_s; \
- a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \
- int rbp_r_cmp; \
- rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \
- rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \
- rbp_black_set(a_type, a_field, &rbp_r_s); \
- rbp_r_p = &rbp_r_s; \
- rbp_r_c = (a_tree)->rbt_root; \
- rbp_r_xp = &(a_tree)->rbt_nil; \
- /* Iterate down the tree, but always transform 2-nodes to 3- or */\
- /* 4-nodes in order to maintain the invariant that the current */\
- /* node is not a 2-node. This allows simple deletion once a leaf */\
- /* is reached. Handle the root specially though, since there may */\
- /* be no way to convert it from a 2-node to a 3-node. */\
- rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
- if (rbp_r_cmp < 0) { \
- rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
- rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
- if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
- && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
- /* Apply standard transform to prepare for left move. */\
- rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \
- rbp_black_set(a_type, a_field, rbp_r_t); \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
- rbp_r_c = rbp_r_t; \
- } else { \
- /* Move left. */\
- rbp_r_p = rbp_r_c; \
- rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
- } \
- } else { \
- if (rbp_r_cmp == 0) { \
- assert((a_node) == rbp_r_c); \
- if (rbp_right_get(a_type, a_field, rbp_r_c) \
- == &(a_tree)->rbt_nil) { \
- /* Delete root node (which is also a leaf node). */\
- if (rbp_left_get(a_type, a_field, rbp_r_c) \
- != &(a_tree)->rbt_nil) { \
- rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \
- rbp_right_set(a_type, a_field, rbp_r_t, \
- &(a_tree)->rbt_nil); \
- } else { \
- rbp_r_t = &(a_tree)->rbt_nil; \
- } \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
- } else { \
- /* This is the node we want to delete, but we will */\
- /* instead swap it with its successor and delete the */\
- /* successor. Record enough information to do the */\
- /* swap later. rbp_r_xp is the a_node's parent. */\
- rbp_r_xp = rbp_r_p; \
- rbp_r_cmp = 1; /* Note that deletion is incomplete. */\
- } \
- } \
- if (rbp_r_cmp == 1) { \
- if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \
- a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \
- == false) { \
- rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
- if (rbp_red_get(a_type, a_field, rbp_r_t)) { \
- /* Standard transform. */\
- rbp_move_red_right(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- } else { \
- /* Root-specific transform. */\
- rbp_red_set(a_type, a_field, rbp_r_c); \
- rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
- if (rbp_red_get(a_type, a_field, rbp_r_u)) { \
- rbp_black_set(a_type, a_field, rbp_r_u); \
- rbp_rotate_right(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- rbp_rotate_left(a_type, a_field, rbp_r_c, \
- rbp_r_u); \
- rbp_right_set(a_type, a_field, rbp_r_t, \
- rbp_r_u); \
- } else { \
- rbp_red_set(a_type, a_field, rbp_r_t); \
- rbp_rotate_left(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- } \
- } \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
- rbp_r_c = rbp_r_t; \
- } else { \
- /* Move right. */\
- rbp_r_p = rbp_r_c; \
- rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
- } \
- } \
- } \
- if (rbp_r_cmp != 0) { \
- while (true) { \
- assert(rbp_r_p != &(a_tree)->rbt_nil); \
- rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
- if (rbp_r_cmp < 0) { \
- rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
- if (rbp_r_t == &(a_tree)->rbt_nil) { \
- /* rbp_r_c now refers to the successor node to */\
- /* relocate, and rbp_r_xp/a_node refer to the */\
- /* context for the relocation. */\
- if (rbp_left_get(a_type, a_field, rbp_r_xp) \
- == (a_node)) { \
- rbp_left_set(a_type, a_field, rbp_r_xp, \
- rbp_r_c); \
- } else { \
- assert(rbp_right_get(a_type, a_field, \
- rbp_r_xp) == (a_node)); \
- rbp_right_set(a_type, a_field, rbp_r_xp, \
- rbp_r_c); \
- } \
- rbp_left_set(a_type, a_field, rbp_r_c, \
- rbp_left_get(a_type, a_field, (a_node))); \
- rbp_right_set(a_type, a_field, rbp_r_c, \
- rbp_right_get(a_type, a_field, (a_node))); \
- rbp_color_set(a_type, a_field, rbp_r_c, \
- rbp_red_get(a_type, a_field, (a_node))); \
- if (rbp_left_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c) { \
- rbp_left_set(a_type, a_field, rbp_r_p, \
- &(a_tree)->rbt_nil); \
- } else { \
- assert(rbp_right_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c); \
- rbp_right_set(a_type, a_field, rbp_r_p, \
- &(a_tree)->rbt_nil); \
- } \
- break; \
- } \
- rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
- if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
- && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
- rbp_move_red_left(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- if (rbp_left_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c) { \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
- } else { \
- rbp_right_set(a_type, a_field, rbp_r_p, \
- rbp_r_t); \
- } \
- rbp_r_c = rbp_r_t; \
- } else { \
- rbp_r_p = rbp_r_c; \
- rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
- } \
- } else { \
- /* Check whether to delete this node (it has to be */\
- /* the correct node and a leaf node). */\
- if (rbp_r_cmp == 0) { \
- assert((a_node) == rbp_r_c); \
- if (rbp_right_get(a_type, a_field, rbp_r_c) \
- == &(a_tree)->rbt_nil) { \
- /* Delete leaf node. */\
- if (rbp_left_get(a_type, a_field, rbp_r_c) \
- != &(a_tree)->rbt_nil) { \
- rbp_lean_right(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- rbp_right_set(a_type, a_field, rbp_r_t, \
- &(a_tree)->rbt_nil); \
- } else { \
- rbp_r_t = &(a_tree)->rbt_nil; \
- } \
- if (rbp_left_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c) { \
- rbp_left_set(a_type, a_field, rbp_r_p, \
- rbp_r_t); \
- } else { \
- rbp_right_set(a_type, a_field, rbp_r_p, \
- rbp_r_t); \
- } \
- break; \
- } else { \
- /* This is the node we want to delete, but we */\
- /* will instead swap it with its successor */\
- /* and delete the successor. Record enough */\
- /* information to do the swap later. */\
- /* rbp_r_xp is a_node's parent. */\
- rbp_r_xp = rbp_r_p; \
- } \
- } \
- rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \
- rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
- if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
- rbp_move_red_right(a_type, a_field, rbp_r_c, \
- rbp_r_t); \
- if (rbp_left_get(a_type, a_field, rbp_r_p) \
- == rbp_r_c) { \
- rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
- } else { \
- rbp_right_set(a_type, a_field, rbp_r_p, \
- rbp_r_t); \
- } \
- rbp_r_c = rbp_r_t; \
- } else { \
- rbp_r_p = rbp_r_c; \
- rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
- } \
- } \
- } \
- } \
- /* Update root. */\
- (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
-} while (0)
-
-/*
- * The rb_wrap() macro provides a convenient way to wrap functions around the
- * cpp macros. The main benefits of wrapping are that 1) repeated macro
- * expansion can cause code bloat, especially for rb_{insert,remove)(), and
- * 2) type, linkage, comparison functions, etc. need not be specified at every
- * call point.
- */
-
-#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \
-a_attr void \
-a_prefix##new(a_tree_type *tree) { \
- rb_new(a_type, a_field, tree); \
-} \
-a_attr a_type * \
-a_prefix##first(a_tree_type *tree) { \
- a_type *ret; \
- rb_first(a_type, a_field, tree, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##last(a_tree_type *tree) { \
- a_type *ret; \
- rb_last(a_type, a_field, tree, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##next(a_tree_type *tree, a_type *node) { \
- a_type *ret; \
- rb_next(a_type, a_field, a_cmp, tree, node, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##prev(a_tree_type *tree, a_type *node) { \
- a_type *ret; \
- rb_prev(a_type, a_field, a_cmp, tree, node, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##search(a_tree_type *tree, a_type *key) { \
- a_type *ret; \
- rb_search(a_type, a_field, a_cmp, tree, key, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##nsearch(a_tree_type *tree, a_type *key) { \
- a_type *ret; \
- rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \
- return (ret); \
-} \
-a_attr a_type * \
-a_prefix##psearch(a_tree_type *tree, a_type *key) { \
- a_type *ret; \
- rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \
- return (ret); \
-} \
-a_attr void \
-a_prefix##insert(a_tree_type *tree, a_type *node) { \
- rb_insert(a_type, a_field, a_cmp, tree, node); \
-} \
-a_attr void \
-a_prefix##remove(a_tree_type *tree, a_type *node) { \
- rb_remove(a_type, a_field, a_cmp, tree, node); \
-}
-
-/*
- * The iterators simulate recursion via an array of pointers that store the
- * current path. This is critical to performance, since a series of calls to
- * rb_{next,prev}() would require time proportional to (n lg n), whereas this
- * implementation only requires time proportional to (n).
- *
- * Since the iterators cache a path down the tree, any tree modification may
- * cause the cached path to become invalid. In order to continue iteration,
- * use something like the following sequence:
- *
- * {
- * a_type *node, *tnode;
- *
- * rb_foreach_begin(a_type, a_field, a_tree, node) {
- * ...
- * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
- * rb_remove(a_type, a_field, a_cmp, a_tree, node);
- * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
- * ...
- * } rb_foreach_end(a_type, a_field, a_tree, node)
- * }
- *
- * Note that this idiom is not advised if every iteration modifies the tree,
- * since in that case there is no algorithmic complexity improvement over a
- * series of rb_{next,prev}() calls, thus making the setup overhead wasted
- * effort.
- */
-
-#ifdef RB_NO_C99_VARARRAYS
- /*
- * Avoid using variable-length arrays, at the cost of using more stack space.
- * Size the path arrays such that they are always large enough, even if a
- * tree consumes all of memory. Since each node must contain a minimum of
- * two pointers, there can never be more nodes than:
- *
- * 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))
- *
- * Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
- * is:
- *
- * (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
- *
- * This works out to a maximum depth of 87 and 180 for 32- and 64-bit
- * systems, respectively (approximatly 348 and 1440 bytes, respectively).
- */
-# define rbp_compute_f_height(a_type, a_field, a_tree)
-# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
-# define rbp_compute_fr_height(a_type, a_field, a_tree)
-# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
-#else
-# define rbp_compute_f_height(a_type, a_field, a_tree) \
- /* Compute the maximum possible tree depth (3X the black height). */\
- unsigned rbp_f_height; \
- rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \
- rbp_f_height *= 3;
-# define rbp_compute_fr_height(a_type, a_field, a_tree) \
- /* Compute the maximum possible tree depth (3X the black height). */\
- unsigned rbp_fr_height; \
- rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \
- rbp_fr_height *= 3;
-#endif
-
-#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \
- rbp_compute_f_height(a_type, a_field, a_tree) \
- { \
- /* Initialize the path to contain the left spine. */\
- a_type *rbp_f_path[rbp_f_height]; \
- a_type *rbp_f_node; \
- bool rbp_f_synced = false; \
- unsigned rbp_f_depth = 0; \
- if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
- rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
- rbp_f_depth++; \
- while ((rbp_f_node = rbp_left_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
- rbp_f_path[rbp_f_depth] = rbp_f_node; \
- rbp_f_depth++; \
- } \
- } \
- /* While the path is non-empty, iterate. */\
- while (rbp_f_depth > 0) { \
- (a_var) = rbp_f_path[rbp_f_depth-1];
-
-/* Only use if modifying the tree during iteration. */
-#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \
- /* Re-initialize the path to contain the path to a_node. */\
- rbp_f_depth = 0; \
- if (a_node != NULL) { \
- if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
- rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
- rbp_f_depth++; \
- rbp_f_node = rbp_f_path[0]; \
- while (true) { \
- int rbp_f_cmp = (a_cmp)((a_node), \
- rbp_f_path[rbp_f_depth-1]); \
- if (rbp_f_cmp < 0) { \
- rbp_f_node = rbp_left_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1]); \
- } else if (rbp_f_cmp > 0) { \
- rbp_f_node = rbp_right_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1]); \
- } else { \
- break; \
- } \
- assert(rbp_f_node != &(a_tree)->rbt_nil); \
- rbp_f_path[rbp_f_depth] = rbp_f_node; \
- rbp_f_depth++; \
- } \
- } \
- } \
- rbp_f_synced = true;
-
-#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
- if (rbp_f_synced) { \
- rbp_f_synced = false; \
- continue; \
- } \
- /* Find the successor. */\
- if ((rbp_f_node = rbp_right_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
- /* The successor is the left-most node in the right */\
- /* subtree. */\
- rbp_f_path[rbp_f_depth] = rbp_f_node; \
- rbp_f_depth++; \
- while ((rbp_f_node = rbp_left_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
- rbp_f_path[rbp_f_depth] = rbp_f_node; \
- rbp_f_depth++; \
- } \
- } else { \
- /* The successor is above the current node. Unwind */\
- /* until a left-leaning edge is removed from the */\
- /* path, or the path is empty. */\
- for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
- if (rbp_left_get(a_type, a_field, \
- rbp_f_path[rbp_f_depth-1]) \
- == rbp_f_path[rbp_f_depth]) { \
- break; \
- } \
- } \
- } \
- } \
- } \
-}
-
-#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \
- rbp_compute_fr_height(a_type, a_field, a_tree) \
- { \
- /* Initialize the path to contain the right spine. */\
- a_type *rbp_fr_path[rbp_fr_height]; \
- a_type *rbp_fr_node; \
- bool rbp_fr_synced = false; \
- unsigned rbp_fr_depth = 0; \
- if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
- rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
- rbp_fr_depth++; \
- while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
- rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
- rbp_fr_depth++; \
- } \
- } \
- /* While the path is non-empty, iterate. */\
- while (rbp_fr_depth > 0) { \
- (a_var) = rbp_fr_path[rbp_fr_depth-1];
-
-/* Only use if modifying the tree during iteration. */
-#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
- /* Re-initialize the path to contain the path to a_node. */\
- rbp_fr_depth = 0; \
- if (a_node != NULL) { \
- if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
- rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
- rbp_fr_depth++; \
- rbp_fr_node = rbp_fr_path[0]; \
- while (true) { \
- int rbp_fr_cmp = (a_cmp)((a_node), \
- rbp_fr_path[rbp_fr_depth-1]); \
- if (rbp_fr_cmp < 0) { \
- rbp_fr_node = rbp_left_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1]); \
- } else if (rbp_fr_cmp > 0) { \
- rbp_fr_node = rbp_right_get(a_type, a_field,\
- rbp_fr_path[rbp_fr_depth-1]); \
- } else { \
- break; \
- } \
- assert(rbp_fr_node != &(a_tree)->rbt_nil); \
- rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
- rbp_fr_depth++; \
- } \
- } \
- } \
- rbp_fr_synced = true;
-
-#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \
- if (rbp_fr_synced) { \
- rbp_fr_synced = false; \
- continue; \
- } \
- if (rbp_fr_depth == 0) { \
- /* rb_foreach_reverse_sync() was called with a NULL */\
- /* a_node. */\
- break; \
- } \
- /* Find the predecessor. */\
- if ((rbp_fr_node = rbp_left_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
- /* The predecessor is the right-most node in the left */\
- /* subtree. */\
- rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
- rbp_fr_depth++; \
- while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
- rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
- rbp_fr_depth++; \
- } \
- } else { \
- /* The predecessor is above the current node. Unwind */\
- /* until a right-leaning edge is removed from the */\
- /* path, or the path is empty. */\
- for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
- if (rbp_right_get(a_type, a_field, \
- rbp_fr_path[rbp_fr_depth-1]) \
- == rbp_fr_path[rbp_fr_depth]) { \
- break; \
- } \
- } \
- } \
- } \
- } \
-}
-
-#endif /* RB_H_ */
-
+/****************************************************************************** + * + * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice(s), this list of conditions and the following disclaimer + * unmodified other than the allowable addition of one or more + * copyright notices. + * 2. Redistributions in binary form must reproduce the above copyright + * notice(s), this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY + * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR + * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, + * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE + * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, + * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + * + ****************************************************************************** + * + * cpp macro implementation of left-leaning red-black trees. + * + * Usage: + * + * (Optional.) + * #define SIZEOF_PTR ... + * #define SIZEOF_PTR_2POW ... + * #define RB_NO_C99_VARARRAYS + * + * (Optional, see assert(3).) + * #define NDEBUG + * + * (Required.) + * #include <assert.h> + * #include <rb.h> + * ... + * + * All operations are done non-recursively. Parent pointers are not used, and + * color bits are stored in the least significant bit of right-child pointers, + * thus making node linkage as compact as is possible for red-black trees. + * + * Some macros use a comparison function pointer, which is expected to have the + * following prototype: + * + * int (a_cmp *)(a_type *a_node, a_type *a_other); + * ^^^^^^ + * or a_key + * + * Interpretation of comparision function return values: + * + * -1 : a_node < a_other + * 0 : a_node == a_other + * 1 : a_node > a_other + * + * In all cases, the a_node or a_key macro argument is the first argument to the + * comparison function, which makes it possible to write comparison functions + * that treat the first argument specially. + * + ******************************************************************************/ + +#ifndef RB_H_ +#define RB_H_ + +#if 0 +#include <sys/cdefs.h> +__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $"); +#endif + +/* Node structure. */ +#define rb_node(a_type) \ +struct { \ + a_type *rbn_left; \ + a_type *rbn_right_red; \ +} + +/* Root structure. */ +#define rb_tree(a_type) \ +struct { \ + a_type *rbt_root; \ + a_type rbt_nil; \ +} + +/* Left accessors. */ +#define rbp_left_get(a_type, a_field, a_node) \ + ((a_node)->a_field.rbn_left) +#define rbp_left_set(a_type, a_field, a_node, a_left) do { \ + (a_node)->a_field.rbn_left = a_left; \ +} while (0) + +/* Right accessors. */ +#define rbp_right_get(a_type, a_field, a_node) \ + ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \ + & ((ssize_t)-2))) +#define rbp_right_set(a_type, a_field, a_node, a_right) do { \ + (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \ + | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \ +} while (0) + +/* Color accessors. */ +#define rbp_red_get(a_type, a_field, a_node) \ + ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \ + & ((size_t)1))) +#define rbp_color_set(a_type, a_field, a_node, a_red) do { \ + (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \ + (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \ + | ((ssize_t)a_red)); \ +} while (0) +#define rbp_red_set(a_type, a_field, a_node) do { \ + (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \ + (a_node)->a_field.rbn_right_red) | ((size_t)1)); \ +} while (0) +#define rbp_black_set(a_type, a_field, a_node) do { \ + (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \ + (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \ +} while (0) + +/* Node initializer. */ +#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \ + rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \ + rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \ + rbp_red_set(a_type, a_field, (a_node)); \ +} while (0) + +/* Tree initializer. */ +#define rb_new(a_type, a_field, a_tree) do { \ + (a_tree)->rbt_root = &(a_tree)->rbt_nil; \ + rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \ + rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \ +} while (0) + +/* Tree operations. */ +#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \ + a_type *rbp_bh_t; \ + for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \ + rbp_bh_t != &(a_tree)->rbt_nil; \ + rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \ + if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \ + (r_height)++; \ + } \ + } \ +} while (0) + +#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \ + for ((r_node) = (a_root); \ + rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \ + (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \ + } \ +} while (0) + +#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \ + for ((r_node) = (a_root); \ + rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \ + (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \ + } \ +} while (0) + +#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ + if (rbp_right_get(a_type, a_field, (a_node)) \ + != &(a_tree)->rbt_nil) { \ + rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \ + a_field, (a_node)), (r_node)); \ + } else { \ + a_type *rbp_n_t = (a_tree)->rbt_root; \ + assert(rbp_n_t != &(a_tree)->rbt_nil); \ + (r_node) = &(a_tree)->rbt_nil; \ + while (true) { \ + int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \ + if (rbp_n_cmp < 0) { \ + (r_node) = rbp_n_t; \ + rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \ + } else if (rbp_n_cmp > 0) { \ + rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \ + } else { \ + break; \ + } \ + assert(rbp_n_t != &(a_tree)->rbt_nil); \ + } \ + } \ +} while (0) + +#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ + if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\ + rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \ + a_field, (a_node)), (r_node)); \ + } else { \ + a_type *rbp_p_t = (a_tree)->rbt_root; \ + assert(rbp_p_t != &(a_tree)->rbt_nil); \ + (r_node) = &(a_tree)->rbt_nil; \ + while (true) { \ + int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \ + if (rbp_p_cmp < 0) { \ + rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \ + } else if (rbp_p_cmp > 0) { \ + (r_node) = rbp_p_t; \ + rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \ + } else { \ + break; \ + } \ + assert(rbp_p_t != &(a_tree)->rbt_nil); \ + } \ + } \ +} while (0) + +#define rb_first(a_type, a_field, a_tree, r_node) do { \ + rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \ + if ((r_node) == &(a_tree)->rbt_nil) { \ + (r_node) = NULL; \ + } \ +} while (0) + +#define rb_last(a_type, a_field, a_tree, r_node) do { \ + rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \ + if ((r_node) == &(a_tree)->rbt_nil) { \ + (r_node) = NULL; \ + } \ +} while (0) + +#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ + rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \ + if ((r_node) == &(a_tree)->rbt_nil) { \ + (r_node) = NULL; \ + } \ +} while (0) + +#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ + rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \ + if ((r_node) == &(a_tree)->rbt_nil) { \ + (r_node) = NULL; \ + } \ +} while (0) + +#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ + int rbp_se_cmp; \ + (r_node) = (a_tree)->rbt_root; \ + while ((r_node) != &(a_tree)->rbt_nil \ + && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \ + if (rbp_se_cmp < 0) { \ + (r_node) = rbp_left_get(a_type, a_field, (r_node)); \ + } else { \ + (r_node) = rbp_right_get(a_type, a_field, (r_node)); \ + } \ + } \ + if ((r_node) == &(a_tree)->rbt_nil) { \ + (r_node) = NULL; \ + } \ +} while (0) + +/* + * Find a match if it exists. Otherwise, find the next greater node, if one + * exists. + */ +#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ + a_type *rbp_ns_t = (a_tree)->rbt_root; \ + (r_node) = NULL; \ + while (rbp_ns_t != &(a_tree)->rbt_nil) { \ + int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \ + if (rbp_ns_cmp < 0) { \ + (r_node) = rbp_ns_t; \ + rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \ + } else if (rbp_ns_cmp > 0) { \ + rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \ + } else { \ + (r_node) = rbp_ns_t; \ + break; \ + } \ + } \ +} while (0) + +/* + * Find a match if it exists. Otherwise, find the previous lesser node, if one + * exists. + */ +#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ + a_type *rbp_ps_t = (a_tree)->rbt_root; \ + (r_node) = NULL; \ + while (rbp_ps_t != &(a_tree)->rbt_nil) { \ + int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \ + if (rbp_ps_cmp < 0) { \ + rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \ + } else if (rbp_ps_cmp > 0) { \ + (r_node) = rbp_ps_t; \ + rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \ + } else { \ + (r_node) = rbp_ps_t; \ + break; \ + } \ + } \ +} while (0) + +#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \ + (r_node) = rbp_right_get(a_type, a_field, (a_node)); \ + rbp_right_set(a_type, a_field, (a_node), \ + rbp_left_get(a_type, a_field, (r_node))); \ + rbp_left_set(a_type, a_field, (r_node), (a_node)); \ +} while (0) + +#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \ + (r_node) = rbp_left_get(a_type, a_field, (a_node)); \ + rbp_left_set(a_type, a_field, (a_node), \ + rbp_right_get(a_type, a_field, (r_node))); \ + rbp_right_set(a_type, a_field, (r_node), (a_node)); \ +} while (0) + +#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \ + bool rbp_ll_red; \ + rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ + rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \ + rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \ + rbp_red_set(a_type, a_field, (a_node)); \ +} while (0) + +#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \ + bool rbp_lr_red; \ + rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ + rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \ + rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \ + rbp_red_set(a_type, a_field, (a_node)); \ +} while (0) + +#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \ + a_type *rbp_mrl_t, *rbp_mrl_u; \ + rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \ + rbp_red_set(a_type, a_field, rbp_mrl_t); \ + rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \ + rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \ + if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \ + rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \ + rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \ + rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ + rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \ + if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \ + rbp_black_set(a_type, a_field, rbp_mrl_t); \ + rbp_red_set(a_type, a_field, (a_node)); \ + rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \ + rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \ + } else { \ + rbp_black_set(a_type, a_field, (a_node)); \ + } \ + } else { \ + rbp_red_set(a_type, a_field, (a_node)); \ + rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ + } \ +} while (0) + +#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \ + a_type *rbp_mrr_t; \ + rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \ + if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \ + a_type *rbp_mrr_u, *rbp_mrr_v; \ + rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \ + rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \ + if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \ + rbp_color_set(a_type, a_field, rbp_mrr_u, \ + rbp_red_get(a_type, a_field, (a_node))); \ + rbp_black_set(a_type, a_field, rbp_mrr_v); \ + rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \ + rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \ + rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ + rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ + rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ + } else { \ + rbp_color_set(a_type, a_field, rbp_mrr_t, \ + rbp_red_get(a_type, a_field, (a_node))); \ + rbp_red_set(a_type, a_field, rbp_mrr_u); \ + rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ + rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ + rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ + } \ + rbp_red_set(a_type, a_field, (a_node)); \ + } else { \ + rbp_red_set(a_type, a_field, rbp_mrr_t); \ + rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \ + if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \ + rbp_black_set(a_type, a_field, rbp_mrr_t); \ + rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ + rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ + rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ + } else { \ + rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ + } \ + } \ +} while (0) + +#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \ + a_type rbp_i_s; \ + a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \ + int rbp_i_cmp = 0; \ + rbp_i_g = &(a_tree)->rbt_nil; \ + rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \ + rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \ + rbp_black_set(a_type, a_field, &rbp_i_s); \ + rbp_i_p = &rbp_i_s; \ + rbp_i_c = (a_tree)->rbt_root; \ + /* Iteratively search down the tree for the insertion point, */\ + /* splitting 4-nodes as they are encountered. At the end of each */\ + /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\ + /* the tree, assuming a sufficiently deep tree. */\ + while (rbp_i_c != &(a_tree)->rbt_nil) { \ + rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \ + rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \ + if (rbp_red_get(a_type, a_field, rbp_i_t) \ + && rbp_red_get(a_type, a_field, rbp_i_u)) { \ + /* rbp_i_c is the top of a logical 4-node, so split it. */\ + /* This iteration does not move down the tree, due to the */\ + /* disruptiveness of node splitting. */\ + /* */\ + /* Rotate right. */\ + rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \ + /* Pass red links up one level. */\ + rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \ + rbp_black_set(a_type, a_field, rbp_i_u); \ + if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \ + rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \ + rbp_i_c = rbp_i_t; \ + } else { \ + /* rbp_i_c was the right child of rbp_i_p, so rotate */\ + /* left in order to maintain the left-leaning */\ + /* invariant. */\ + assert(rbp_right_get(a_type, a_field, rbp_i_p) \ + == rbp_i_c); \ + rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \ + rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \ + if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\ + rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \ + } else { \ + assert(rbp_right_get(a_type, a_field, rbp_i_g) \ + == rbp_i_p); \ + rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \ + } \ + rbp_i_p = rbp_i_u; \ + rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \ + if (rbp_i_cmp < 0) { \ + rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \ + } else { \ + assert(rbp_i_cmp > 0); \ + rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \ + } \ + continue; \ + } \ + } \ + rbp_i_g = rbp_i_p; \ + rbp_i_p = rbp_i_c; \ + rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \ + if (rbp_i_cmp < 0) { \ + rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \ + } else { \ + assert(rbp_i_cmp > 0); \ + rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \ + } \ + } \ + /* rbp_i_p now refers to the node under which to insert. */\ + rbp_node_new(a_type, a_field, a_tree, (a_node)); \ + if (rbp_i_cmp > 0) { \ + rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \ + rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \ + if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \ + rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \ + } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\ + rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \ + } \ + } else { \ + rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \ + } \ + /* Update the root and make sure that it is black. */\ + (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \ + rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \ +} while (0) + +#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \ + a_type rbp_r_s; \ + a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \ + int rbp_r_cmp; \ + rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \ + rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \ + rbp_black_set(a_type, a_field, &rbp_r_s); \ + rbp_r_p = &rbp_r_s; \ + rbp_r_c = (a_tree)->rbt_root; \ + rbp_r_xp = &(a_tree)->rbt_nil; \ + /* Iterate down the tree, but always transform 2-nodes to 3- or */\ + /* 4-nodes in order to maintain the invariant that the current */\ + /* node is not a 2-node. This allows simple deletion once a leaf */\ + /* is reached. Handle the root specially though, since there may */\ + /* be no way to convert it from a 2-node to a 3-node. */\ + rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \ + if (rbp_r_cmp < 0) { \ + rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ + rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ + if (rbp_red_get(a_type, a_field, rbp_r_t) == false \ + && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ + /* Apply standard transform to prepare for left move. */\ + rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \ + rbp_black_set(a_type, a_field, rbp_r_t); \ + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ + rbp_r_c = rbp_r_t; \ + } else { \ + /* Move left. */\ + rbp_r_p = rbp_r_c; \ + rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \ + } \ + } else { \ + if (rbp_r_cmp == 0) { \ + assert((a_node) == rbp_r_c); \ + if (rbp_right_get(a_type, a_field, rbp_r_c) \ + == &(a_tree)->rbt_nil) { \ + /* Delete root node (which is also a leaf node). */\ + if (rbp_left_get(a_type, a_field, rbp_r_c) \ + != &(a_tree)->rbt_nil) { \ + rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \ + rbp_right_set(a_type, a_field, rbp_r_t, \ + &(a_tree)->rbt_nil); \ + } else { \ + rbp_r_t = &(a_tree)->rbt_nil; \ + } \ + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ + } else { \ + /* This is the node we want to delete, but we will */\ + /* instead swap it with its successor and delete the */\ + /* successor. Record enough information to do the */\ + /* swap later. rbp_r_xp is the a_node's parent. */\ + rbp_r_xp = rbp_r_p; \ + rbp_r_cmp = 1; /* Note that deletion is incomplete. */\ + } \ + } \ + if (rbp_r_cmp == 1) { \ + if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \ + a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \ + == false) { \ + rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ + if (rbp_red_get(a_type, a_field, rbp_r_t)) { \ + /* Standard transform. */\ + rbp_move_red_right(a_type, a_field, rbp_r_c, \ + rbp_r_t); \ + } else { \ + /* Root-specific transform. */\ + rbp_red_set(a_type, a_field, rbp_r_c); \ + rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ + if (rbp_red_get(a_type, a_field, rbp_r_u)) { \ + rbp_black_set(a_type, a_field, rbp_r_u); \ + rbp_rotate_right(a_type, a_field, rbp_r_c, \ + rbp_r_t); \ + rbp_rotate_left(a_type, a_field, rbp_r_c, \ + rbp_r_u); \ + rbp_right_set(a_type, a_field, rbp_r_t, \ + rbp_r_u); \ + } else { \ + rbp_red_set(a_type, a_field, rbp_r_t); \ + rbp_rotate_left(a_type, a_field, rbp_r_c, \ + rbp_r_t); \ + } \ + } \ + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ + rbp_r_c = rbp_r_t; \ + } else { \ + /* Move right. */\ + rbp_r_p = rbp_r_c; \ + rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \ + } \ + } \ + } \ + if (rbp_r_cmp != 0) { \ + while (true) { \ + assert(rbp_r_p != &(a_tree)->rbt_nil); \ + rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \ + if (rbp_r_cmp < 0) { \ + rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ + if (rbp_r_t == &(a_tree)->rbt_nil) { \ + /* rbp_r_c now refers to the successor node to */\ + /* relocate, and rbp_r_xp/a_node refer to the */\ + /* context for the relocation. */\ + if (rbp_left_get(a_type, a_field, rbp_r_xp) \ + == (a_node)) { \ + rbp_left_set(a_type, a_field, rbp_r_xp, \ + rbp_r_c); \ + } else { \ + assert(rbp_right_get(a_type, a_field, \ + rbp_r_xp) == (a_node)); \ + rbp_right_set(a_type, a_field, rbp_r_xp, \ + rbp_r_c); \ + } \ + rbp_left_set(a_type, a_field, rbp_r_c, \ + rbp_left_get(a_type, a_field, (a_node))); \ + rbp_right_set(a_type, a_field, rbp_r_c, \ + rbp_right_get(a_type, a_field, (a_node))); \ + rbp_color_set(a_type, a_field, rbp_r_c, \ + rbp_red_get(a_type, a_field, (a_node))); \ + if (rbp_left_get(a_type, a_field, rbp_r_p) \ + == rbp_r_c) { \ + rbp_left_set(a_type, a_field, rbp_r_p, \ + &(a_tree)->rbt_nil); \ + } else { \ + assert(rbp_right_get(a_type, a_field, rbp_r_p) \ + == rbp_r_c); \ + rbp_right_set(a_type, a_field, rbp_r_p, \ + &(a_tree)->rbt_nil); \ + } \ + break; \ + } \ + rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ + if (rbp_red_get(a_type, a_field, rbp_r_t) == false \ + && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ + rbp_move_red_left(a_type, a_field, rbp_r_c, \ + rbp_r_t); \ + if (rbp_left_get(a_type, a_field, rbp_r_p) \ + == rbp_r_c) { \ + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\ + } else { \ + rbp_right_set(a_type, a_field, rbp_r_p, \ + rbp_r_t); \ + } \ + rbp_r_c = rbp_r_t; \ + } else { \ + rbp_r_p = rbp_r_c; \ + rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \ + } \ + } else { \ + /* Check whether to delete this node (it has to be */\ + /* the correct node and a leaf node). */\ + if (rbp_r_cmp == 0) { \ + assert((a_node) == rbp_r_c); \ + if (rbp_right_get(a_type, a_field, rbp_r_c) \ + == &(a_tree)->rbt_nil) { \ + /* Delete leaf node. */\ + if (rbp_left_get(a_type, a_field, rbp_r_c) \ + != &(a_tree)->rbt_nil) { \ + rbp_lean_right(a_type, a_field, rbp_r_c, \ + rbp_r_t); \ + rbp_right_set(a_type, a_field, rbp_r_t, \ + &(a_tree)->rbt_nil); \ + } else { \ + rbp_r_t = &(a_tree)->rbt_nil; \ + } \ + if (rbp_left_get(a_type, a_field, rbp_r_p) \ + == rbp_r_c) { \ + rbp_left_set(a_type, a_field, rbp_r_p, \ + rbp_r_t); \ + } else { \ + rbp_right_set(a_type, a_field, rbp_r_p, \ + rbp_r_t); \ + } \ + break; \ + } else { \ + /* This is the node we want to delete, but we */\ + /* will instead swap it with its successor */\ + /* and delete the successor. Record enough */\ + /* information to do the swap later. */\ + /* rbp_r_xp is a_node's parent. */\ + rbp_r_xp = rbp_r_p; \ + } \ + } \ + rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \ + rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ + if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ + rbp_move_red_right(a_type, a_field, rbp_r_c, \ + rbp_r_t); \ + if (rbp_left_get(a_type, a_field, rbp_r_p) \ + == rbp_r_c) { \ + rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\ + } else { \ + rbp_right_set(a_type, a_field, rbp_r_p, \ + rbp_r_t); \ + } \ + rbp_r_c = rbp_r_t; \ + } else { \ + rbp_r_p = rbp_r_c; \ + rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \ + } \ + } \ + } \ + } \ + /* Update root. */\ + (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \ +} while (0) + +/* + * The rb_wrap() macro provides a convenient way to wrap functions around the + * cpp macros. The main benefits of wrapping are that 1) repeated macro + * expansion can cause code bloat, especially for rb_{insert,remove)(), and + * 2) type, linkage, comparison functions, etc. need not be specified at every + * call point. + */ + +#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \ +a_attr void \ +a_prefix##new(a_tree_type *tree) { \ + rb_new(a_type, a_field, tree); \ +} \ +a_attr a_type * \ +a_prefix##first(a_tree_type *tree) { \ + a_type *ret; \ + rb_first(a_type, a_field, tree, ret); \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##last(a_tree_type *tree) { \ + a_type *ret; \ + rb_last(a_type, a_field, tree, ret); \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##next(a_tree_type *tree, a_type *node) { \ + a_type *ret; \ + rb_next(a_type, a_field, a_cmp, tree, node, ret); \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##prev(a_tree_type *tree, a_type *node) { \ + a_type *ret; \ + rb_prev(a_type, a_field, a_cmp, tree, node, ret); \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##search(a_tree_type *tree, a_type *key) { \ + a_type *ret; \ + rb_search(a_type, a_field, a_cmp, tree, key, ret); \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##nsearch(a_tree_type *tree, a_type *key) { \ + a_type *ret; \ + rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \ + return (ret); \ +} \ +a_attr a_type * \ +a_prefix##psearch(a_tree_type *tree, a_type *key) { \ + a_type *ret; \ + rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \ + return (ret); \ +} \ +a_attr void \ +a_prefix##insert(a_tree_type *tree, a_type *node) { \ + rb_insert(a_type, a_field, a_cmp, tree, node); \ +} \ +a_attr void \ +a_prefix##remove(a_tree_type *tree, a_type *node) { \ + rb_remove(a_type, a_field, a_cmp, tree, node); \ +} + +/* + * The iterators simulate recursion via an array of pointers that store the + * current path. This is critical to performance, since a series of calls to + * rb_{next,prev}() would require time proportional to (n lg n), whereas this + * implementation only requires time proportional to (n). + * + * Since the iterators cache a path down the tree, any tree modification may + * cause the cached path to become invalid. In order to continue iteration, + * use something like the following sequence: + * + * { + * a_type *node, *tnode; + * + * rb_foreach_begin(a_type, a_field, a_tree, node) { + * ... + * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode); + * rb_remove(a_type, a_field, a_cmp, a_tree, node); + * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode); + * ... + * } rb_foreach_end(a_type, a_field, a_tree, node) + * } + * + * Note that this idiom is not advised if every iteration modifies the tree, + * since in that case there is no algorithmic complexity improvement over a + * series of rb_{next,prev}() calls, thus making the setup overhead wasted + * effort. + */ + +#ifdef RB_NO_C99_VARARRAYS + /* + * Avoid using variable-length arrays, at the cost of using more stack space. + * Size the path arrays such that they are always large enough, even if a + * tree consumes all of memory. Since each node must contain a minimum of + * two pointers, there can never be more nodes than: + * + * 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)) + * + * Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth + * is: + * + * (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))) + * + * This works out to a maximum depth of 87 and 180 for 32- and 64-bit + * systems, respectively (approximatly 348 and 1440 bytes, respectively). + */ +# define rbp_compute_f_height(a_type, a_field, a_tree) +# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))) +# define rbp_compute_fr_height(a_type, a_field, a_tree) +# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))) +#else +# define rbp_compute_f_height(a_type, a_field, a_tree) \ + /* Compute the maximum possible tree depth (3X the black height). */\ + unsigned rbp_f_height; \ + rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \ + rbp_f_height *= 3; +# define rbp_compute_fr_height(a_type, a_field, a_tree) \ + /* Compute the maximum possible tree depth (3X the black height). */\ + unsigned rbp_fr_height; \ + rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \ + rbp_fr_height *= 3; +#endif + +#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \ + rbp_compute_f_height(a_type, a_field, a_tree) \ + { \ + /* Initialize the path to contain the left spine. */\ + a_type *rbp_f_path[rbp_f_height]; \ + a_type *rbp_f_node; \ + bool rbp_f_synced = false; \ + unsigned rbp_f_depth = 0; \ + if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ + rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \ + rbp_f_depth++; \ + while ((rbp_f_node = rbp_left_get(a_type, a_field, \ + rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ + rbp_f_path[rbp_f_depth] = rbp_f_node; \ + rbp_f_depth++; \ + } \ + } \ + /* While the path is non-empty, iterate. */\ + while (rbp_f_depth > 0) { \ + (a_var) = rbp_f_path[rbp_f_depth-1]; + +/* Only use if modifying the tree during iteration. */ +#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \ + /* Re-initialize the path to contain the path to a_node. */\ + rbp_f_depth = 0; \ + if (a_node != NULL) { \ + if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ + rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \ + rbp_f_depth++; \ + rbp_f_node = rbp_f_path[0]; \ + while (true) { \ + int rbp_f_cmp = (a_cmp)((a_node), \ + rbp_f_path[rbp_f_depth-1]); \ + if (rbp_f_cmp < 0) { \ + rbp_f_node = rbp_left_get(a_type, a_field, \ + rbp_f_path[rbp_f_depth-1]); \ + } else if (rbp_f_cmp > 0) { \ + rbp_f_node = rbp_right_get(a_type, a_field, \ + rbp_f_path[rbp_f_depth-1]); \ + } else { \ + break; \ + } \ + assert(rbp_f_node != &(a_tree)->rbt_nil); \ + rbp_f_path[rbp_f_depth] = rbp_f_node; \ + rbp_f_depth++; \ + } \ + } \ + } \ + rbp_f_synced = true; + +#define rb_foreach_end(a_type, a_field, a_tree, a_var) \ + if (rbp_f_synced) { \ + rbp_f_synced = false; \ + continue; \ + } \ + /* Find the successor. */\ + if ((rbp_f_node = rbp_right_get(a_type, a_field, \ + rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ + /* The successor is the left-most node in the right */\ + /* subtree. */\ + rbp_f_path[rbp_f_depth] = rbp_f_node; \ + rbp_f_depth++; \ + while ((rbp_f_node = rbp_left_get(a_type, a_field, \ + rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ + rbp_f_path[rbp_f_depth] = rbp_f_node; \ + rbp_f_depth++; \ + } \ + } else { \ + /* The successor is above the current node. Unwind */\ + /* until a left-leaning edge is removed from the */\ + /* path, or the path is empty. */\ + for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \ + if (rbp_left_get(a_type, a_field, \ + rbp_f_path[rbp_f_depth-1]) \ + == rbp_f_path[rbp_f_depth]) { \ + break; \ + } \ + } \ + } \ + } \ + } \ +} + +#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \ + rbp_compute_fr_height(a_type, a_field, a_tree) \ + { \ + /* Initialize the path to contain the right spine. */\ + a_type *rbp_fr_path[rbp_fr_height]; \ + a_type *rbp_fr_node; \ + bool rbp_fr_synced = false; \ + unsigned rbp_fr_depth = 0; \ + if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ + rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \ + rbp_fr_depth++; \ + while ((rbp_fr_node = rbp_right_get(a_type, a_field, \ + rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \ + rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ + rbp_fr_depth++; \ + } \ + } \ + /* While the path is non-empty, iterate. */\ + while (rbp_fr_depth > 0) { \ + (a_var) = rbp_fr_path[rbp_fr_depth-1]; + +/* Only use if modifying the tree during iteration. */ +#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \ + /* Re-initialize the path to contain the path to a_node. */\ + rbp_fr_depth = 0; \ + if (a_node != NULL) { \ + if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ + rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \ + rbp_fr_depth++; \ + rbp_fr_node = rbp_fr_path[0]; \ + while (true) { \ + int rbp_fr_cmp = (a_cmp)((a_node), \ + rbp_fr_path[rbp_fr_depth-1]); \ + if (rbp_fr_cmp < 0) { \ + rbp_fr_node = rbp_left_get(a_type, a_field, \ + rbp_fr_path[rbp_fr_depth-1]); \ + } else if (rbp_fr_cmp > 0) { \ + rbp_fr_node = rbp_right_get(a_type, a_field,\ + rbp_fr_path[rbp_fr_depth-1]); \ + } else { \ + break; \ + } \ + assert(rbp_fr_node != &(a_tree)->rbt_nil); \ + rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ + rbp_fr_depth++; \ + } \ + } \ + } \ + rbp_fr_synced = true; + +#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \ + if (rbp_fr_synced) { \ + rbp_fr_synced = false; \ + continue; \ + } \ + if (rbp_fr_depth == 0) { \ + /* rb_foreach_reverse_sync() was called with a NULL */\ + /* a_node. */\ + break; \ + } \ + /* Find the predecessor. */\ + if ((rbp_fr_node = rbp_left_get(a_type, a_field, \ + rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \ + /* The predecessor is the right-most node in the left */\ + /* subtree. */\ + rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ + rbp_fr_depth++; \ + while ((rbp_fr_node = rbp_right_get(a_type, a_field, \ + rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\ + rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ + rbp_fr_depth++; \ + } \ + } else { \ + /* The predecessor is above the current node. Unwind */\ + /* until a right-leaning edge is removed from the */\ + /* path, or the path is empty. */\ + for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\ + if (rbp_right_get(a_type, a_field, \ + rbp_fr_path[rbp_fr_depth-1]) \ + == rbp_fr_path[rbp_fr_depth]) { \ + break; \ + } \ + } \ + } \ + } \ + } \ +} + +#endif /* RB_H_ */ + |