diff options
author | abarth@chromium.org <abarth@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2010-11-12 19:39:04 +0000 |
---|---|---|
committer | abarth@chromium.org <abarth@chromium.org@0039d316-1c4b-4281-b951-d872f2087c98> | 2010-11-12 19:39:04 +0000 |
commit | 800065dcdca61a5012b3e01059fab456d612e101 (patch) | |
tree | aa0f8b9fe5d3f35a8859e40e2bc61e0da57b6aff /third_party/qcms/transform.c | |
parent | f168f21bc6839eeb68f5ce6ebacb94f132f98ac7 (diff) | |
download | chromium_src-800065dcdca61a5012b3e01059fab456d612e101.zip chromium_src-800065dcdca61a5012b3e01059fab456d612e101.tar.gz chromium_src-800065dcdca61a5012b3e01059fab456d612e101.tar.bz2 |
Add qcms library for applying ICC color profile transforms to images. This
library is currently unused.
http://codereview.chromium.org/4855001/
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@65970 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'third_party/qcms/transform.c')
-rw-r--r-- | third_party/qcms/transform.c | 1372 |
1 files changed, 1372 insertions, 0 deletions
diff --git a/third_party/qcms/transform.c b/third_party/qcms/transform.c new file mode 100644 index 0000000..0e7da10 --- /dev/null +++ b/third_party/qcms/transform.c @@ -0,0 +1,1372 @@ +// qcms +// Copyright (C) 2009 Mozilla Corporation +// Copyright (C) 1998-2007 Marti Maria +// +// Permission is hereby granted, free of charge, to any person obtaining +// a copy of this software and associated documentation files (the "Software"), +// to deal in the Software without restriction, including without limitation +// the rights to use, copy, modify, merge, publish, distribute, sublicense, +// and/or sell copies of the Software, and to permit persons to whom the Software +// is furnished to do so, subject to the following conditions: +// +// The above copyright notice and this permission notice shall be included in +// all copies or substantial portions of the Software. +// +// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, +// EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO +// THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +// NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE +// LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION +// OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +// WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. + +#include <stdlib.h> +#include <math.h> +#include <assert.h> +#include "qcmsint.h" + +/* for MSVC, GCC, Intel, and Sun compilers */ +#if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64) +#define X86 +#endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */ + +//XXX: could use a bettername +typedef uint16_t uint16_fract_t; + +/* value must be a value between 0 and 1 */ +//XXX: is the above a good restriction to have? +float lut_interp_linear(double value, uint16_t *table, int length) +{ + int upper, lower; + value = value * (length - 1); // scale to length of the array + upper = ceil(value); + lower = floor(value); + //XXX: can we be more performant here? + value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value); + /* scale the value */ + return value * (1./65535.); +} + +/* same as above but takes and returns a uint16_t value representing a range from 0..1 */ +uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) +{ + /* Start scaling input_value to the length of the array: 65535*(length-1). + * We'll divide out the 65535 next */ + uint32_t value = (input_value * (length - 1)); + uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */ + uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */ + /* interp is the distance from upper to value scaled to 0..65535 */ + uint32_t interp = value % 65535; + + value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535 + + return value; +} + +/* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX + * and returns a uint8_t value representing a range from 0..1 */ +static +uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, int length) +{ + /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1). + * We'll divide out the PRECACHE_OUTPUT_MAX next */ + uint32_t value = (input_value * (length - 1)); + + /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */ + uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX; + /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */ + uint32_t lower = value / PRECACHE_OUTPUT_MAX; + /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */ + uint32_t interp = value % PRECACHE_OUTPUT_MAX; + + /* the table values range from 0..65535 */ + value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX) + + /* round and scale */ + value += (PRECACHE_OUTPUT_MAX*65535/255)/2; + value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255 + return value; +} + +#if 0 +/* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient + * because we can avoid the divisions and use a shifting instead */ +/* same as above but takes and returns a uint16_t value representing a range from 0..1 */ +uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) +{ + uint32_t value = (input_value * (length - 1)); + uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */ + uint32_t lower = value / 4096; /* equivalent to floor(value/4096) */ + uint32_t interp = value % 4096; + + value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096 + + return value; +} +#endif + +void compute_curve_gamma_table_type1(float gamma_table[256], double gamma) +{ + unsigned int i; + for (i = 0; i < 256; i++) { + gamma_table[i] = pow(i/255., gamma); + } +} + +void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length) +{ + unsigned int i; + for (i = 0; i < 256; i++) { + gamma_table[i] = lut_interp_linear(i/255., table, length); + } +} + +void compute_curve_gamma_table_type0(float gamma_table[256]) +{ + unsigned int i; + for (i = 0; i < 256; i++) { + gamma_table[i] = i/255.; + } +} + +unsigned char clamp_u8(float v) +{ + if (v > 255.) + return 255; + else if (v < 0) + return 0; + else + return floor(v+.5); +} + +struct vector { + float v[3]; +}; + +struct matrix { + float m[3][3]; + bool invalid; +}; + +struct vector matrix_eval(struct matrix mat, struct vector v) +{ + struct vector result; + result.v[0] = mat.m[0][0]*v.v[0] + mat.m[0][1]*v.v[1] + mat.m[0][2]*v.v[2]; + result.v[1] = mat.m[1][0]*v.v[0] + mat.m[1][1]*v.v[1] + mat.m[1][2]*v.v[2]; + result.v[2] = mat.m[2][0]*v.v[0] + mat.m[2][1]*v.v[1] + mat.m[2][2]*v.v[2]; + return result; +} + +//XXX: should probably pass by reference and we could +//probably reuse this computation in matrix_invert +float matrix_det(struct matrix mat) +{ + float det; + det = mat.m[0][0]*mat.m[1][1]*mat.m[2][2] + + mat.m[0][1]*mat.m[1][2]*mat.m[2][0] + + mat.m[0][2]*mat.m[1][0]*mat.m[2][1] - + mat.m[0][0]*mat.m[1][2]*mat.m[2][1] - + mat.m[0][1]*mat.m[1][0]*mat.m[2][2] - + mat.m[0][2]*mat.m[1][1]*mat.m[2][0]; + return det; +} + +/* from pixman and cairo and Mathematics for Game Programmers */ +/* lcms uses gauss-jordan elimination with partial pivoting which is + * less efficient and not as numerically stable. See Mathematics for + * Game Programmers. */ +struct matrix matrix_invert(struct matrix mat) +{ + struct matrix dest_mat; + int i,j; + static int a[3] = { 2, 2, 1 }; + static int b[3] = { 1, 0, 0 }; + + /* inv (A) = 1/det (A) * adj (A) */ + float det = matrix_det(mat); + + if (det == 0) { + dest_mat.invalid = true; + } else { + dest_mat.invalid = false; + } + + det = 1/det; + + for (j = 0; j < 3; j++) { + for (i = 0; i < 3; i++) { + double p; + int ai = a[i]; + int aj = a[j]; + int bi = b[i]; + int bj = b[j]; + + p = mat.m[ai][aj] * mat.m[bi][bj] - + mat.m[ai][bj] * mat.m[bi][aj]; + if (((i + j) & 1) != 0) + p = -p; + + dest_mat.m[j][i] = det * p; + } + } + return dest_mat; +} + +struct matrix matrix_identity(void) +{ + struct matrix i; + i.m[0][0] = 1; + i.m[0][1] = 0; + i.m[0][2] = 0; + i.m[1][0] = 0; + i.m[1][1] = 1; + i.m[1][2] = 0; + i.m[2][0] = 0; + i.m[2][1] = 0; + i.m[2][2] = 1; + i.invalid = false; + return i; +} + +static struct matrix matrix_invalid(void) +{ + struct matrix inv = matrix_identity(); + inv.invalid = true; + return inv; +} + + +/* from pixman */ +/* MAT3per... */ +struct matrix matrix_multiply(struct matrix a, struct matrix b) +{ + struct matrix result; + int dx, dy; + int o; + for (dy = 0; dy < 3; dy++) { + for (dx = 0; dx < 3; dx++) { + double v = 0; + for (o = 0; o < 3; o++) { + v += a.m[dy][o] * b.m[o][dx]; + } + result.m[dy][dx] = v; + } + } + result.invalid = a.invalid || b.invalid; + return result; +} + +float u8Fixed8Number_to_float(uint16_t x) +{ + // 0x0000 = 0. + // 0x0100 = 1. + // 0xffff = 255 + 255/256 + return x/256.; +} + +float *build_input_gamma_table(struct curveType *TRC) +{ + float *gamma_table = malloc(sizeof(float)*256); + if (gamma_table) { + if (TRC->count == 0) { + compute_curve_gamma_table_type0(gamma_table); + } else if (TRC->count == 1) { + compute_curve_gamma_table_type1(gamma_table, u8Fixed8Number_to_float(TRC->data[0])); + } else { + compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count); + } + } + return gamma_table; +} + +struct matrix build_colorant_matrix(qcms_profile *p) +{ + struct matrix result; + result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X); + result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X); + result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X); + result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y); + result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y); + result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y); + result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z); + result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z); + result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z); + result.invalid = false; + return result; +} + +/* The following code is copied nearly directly from lcms. + * I think it could be much better. For example, Argyll seems to have better code in + * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way + * to a working solution and allows for easy comparing with lcms. */ +uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length) +{ + int l = 1; + int r = 0x10000; + int x = 0, res; // 'int' Give spacing for negative values + int NumZeroes, NumPoles; + int cell0, cell1; + double val2; + double y0, y1, x0, x1; + double a, b, f; + + // July/27 2001 - Expanded to handle degenerated curves with an arbitrary + // number of elements containing 0 at the begining of the table (Zeroes) + // and another arbitrary number of poles (FFFFh) at the end. + // First the zero and pole extents are computed, then value is compared. + + NumZeroes = 0; + while (LutTable[NumZeroes] == 0 && NumZeroes < length-1) + NumZeroes++; + + // There are no zeros at the beginning and we are trying to find a zero, so + // return anything. It seems zero would be the less destructive choice + /* I'm not sure that this makes sense, but oh well... */ + if (NumZeroes == 0 && Value == 0) + return 0; + + NumPoles = 0; + while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1) + NumPoles++; + + // Does the curve belong to this case? + if (NumZeroes > 1 || NumPoles > 1) + { + int a, b; + + // Identify if value fall downto 0 or FFFF zone + if (Value == 0) return 0; + // if (Value == 0xFFFF) return 0xFFFF; + + // else restrict to valid zone + + a = ((NumZeroes-1) * 0xFFFF) / (length-1); + b = ((length-1 - NumPoles) * 0xFFFF) / (length-1); + + l = a - 1; + r = b + 1; + } + + + // Seems not a degenerated case... apply binary search + + while (r > l) { + + x = (l + r) / 2; + + res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length); + + if (res == Value) { + + // Found exact match. + + return (uint16_fract_t) (x - 1); + } + + if (res > Value) r = x - 1; + else l = x + 1; + } + + // Not found, should we interpolate? + + + // Get surrounding nodes + + val2 = (length-1) * ((double) (x - 1) / 65535.0); + + cell0 = (int) floor(val2); + cell1 = (int) ceil(val2); + + if (cell0 == cell1) return (uint16_fract_t) x; + + y0 = LutTable[cell0] ; + x0 = (65535.0 * cell0) / (length-1); + + y1 = LutTable[cell1] ; + x1 = (65535.0 * cell1) / (length-1); + + a = (y1 - y0) / (x1 - x0); + b = y0 - a * x0; + + if (fabs(a) < 0.01) return (uint16_fract_t) x; + + f = ((Value - b) / a); + + if (f < 0.0) return (uint16_fract_t) 0; + if (f >= 65535.0) return (uint16_fract_t) 0xFFFF; + + return (uint16_fract_t) floor(f + 0.5); + +} + +// Build a White point, primary chromas transfer matrix from RGB to CIE XYZ +// This is just an approximation, I am not handling all the non-linear +// aspects of the RGB to XYZ process, and assumming that the gamma correction +// has transitive property in the tranformation chain. +// +// the alghoritm: +// +// - First I build the absolute conversion matrix using +// primaries in XYZ. This matrix is next inverted +// - Then I eval the source white point across this matrix +// obtaining the coeficients of the transformation +// - Then, I apply these coeficients to the original matrix +static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs) +{ + struct matrix primaries; + struct matrix primaries_invert; + struct matrix result; + struct vector white_point; + struct vector coefs; + + double xn, yn; + double xr, yr; + double xg, yg; + double xb, yb; + + xn = white.x; + yn = white.y; + + if (yn == 0.0) + return matrix_invalid(); + + xr = primrs.red.x; + yr = primrs.red.y; + xg = primrs.green.x; + yg = primrs.green.y; + xb = primrs.blue.x; + yb = primrs.blue.y; + + primaries.m[0][0] = xr; + primaries.m[0][1] = xg; + primaries.m[0][2] = xb; + + primaries.m[1][0] = yr; + primaries.m[1][1] = yg; + primaries.m[1][2] = yb; + + primaries.m[2][0] = 1 - xr - yr; + primaries.m[2][1] = 1 - xg - yg; + primaries.m[2][2] = 1 - xb - yb; + primaries.invalid = false; + + white_point.v[0] = xn/yn; + white_point.v[1] = 1.; + white_point.v[2] = (1.0-xn-yn)/yn; + + primaries_invert = matrix_invert(primaries); + + coefs = matrix_eval(primaries_invert, white_point); + + result.m[0][0] = coefs.v[0]*xr; + result.m[0][1] = coefs.v[1]*xg; + result.m[0][2] = coefs.v[2]*xb; + + result.m[1][0] = coefs.v[0]*yr; + result.m[1][1] = coefs.v[1]*yg; + result.m[1][2] = coefs.v[2]*yb; + + result.m[2][0] = coefs.v[0]*(1.-xr-yr); + result.m[2][1] = coefs.v[1]*(1.-xg-yg); + result.m[2][2] = coefs.v[2]*(1.-xb-yb); + result.invalid = primaries_invert.invalid; + + return result; +} + +struct CIE_XYZ { + double X; + double Y; + double Z; +}; + +/* CIE Illuminant D50 */ +static const struct CIE_XYZ D50_XYZ = { + 0.9642, + 1.0000, + 0.8249 +}; + +/* from lcms: xyY2XYZ() + * corresponds to argyll: icmYxy2XYZ() */ +static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source) +{ + struct CIE_XYZ dest; + dest.X = (source.x / source.y) * source.Y; + dest.Y = source.Y; + dest.Z = ((1 - source.x - source.y) / source.y) * source.Y; + return dest; +} + +/* from lcms: ComputeChromaticAdaption */ +// Compute chromatic adaption matrix using chad as cone matrix +static struct matrix +compute_chromatic_adaption(struct CIE_XYZ source_white_point, + struct CIE_XYZ dest_white_point, + struct matrix chad) +{ + struct matrix chad_inv; + struct vector cone_source_XYZ, cone_source_rgb; + struct vector cone_dest_XYZ, cone_dest_rgb; + struct matrix cone, tmp; + + tmp = chad; + chad_inv = matrix_invert(tmp); + + cone_source_XYZ.v[0] = source_white_point.X; + cone_source_XYZ.v[1] = source_white_point.Y; + cone_source_XYZ.v[2] = source_white_point.Z; + + cone_dest_XYZ.v[0] = dest_white_point.X; + cone_dest_XYZ.v[1] = dest_white_point.Y; + cone_dest_XYZ.v[2] = dest_white_point.Z; + + cone_source_rgb = matrix_eval(chad, cone_source_XYZ); + cone_dest_rgb = matrix_eval(chad, cone_dest_XYZ); + + cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0]; + cone.m[0][1] = 0; + cone.m[0][2] = 0; + cone.m[1][0] = 0; + cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1]; + cone.m[1][2] = 0; + cone.m[2][0] = 0; + cone.m[2][1] = 0; + cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2]; + cone.invalid = false; + + // Normalize + return matrix_multiply(chad_inv, matrix_multiply(cone, chad)); +} + +/* from lcms: cmsAdaptionMatrix */ +// Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll +// Bradford is assumed +static struct matrix +adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination) +{ + struct matrix lam_rigg = {{ // Bradford matrix + { 0.8951, 0.2664, -0.1614 }, + { -0.7502, 1.7135, 0.0367 }, + { 0.0389, -0.0685, 1.0296 } + }}; + return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg); +} + +/* from lcms: cmsAdaptMatrixToD50 */ +static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_pt) +{ + struct CIE_XYZ Dn; + struct matrix Bradford; + + if (source_white_pt.y == 0.0) + return matrix_invalid(); + + Dn = xyY2XYZ(source_white_pt); + + Bradford = adaption_matrix(Dn, D50_XYZ); + return matrix_multiply(Bradford, r); +} + +qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries) +{ + struct matrix colorants; + colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries); + colorants = adapt_matrix_to_D50(colorants, white_point); + + if (colorants.invalid) + return false; + + /* note: there's a transpose type of operation going on here */ + profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]); + profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]); + profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]); + + profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]); + profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]); + profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]); + + profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]); + profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]); + profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]); + + return true; +} + +/* + The number of entries needed to invert a lookup table should not + necessarily be the same as the original number of entries. This is + especially true of lookup tables that have a small number of entries. + + For example: + Using a table like: + {0, 3104, 14263, 34802, 65535} + invert_lut will produce an inverse of: + {3, 34459, 47529, 56801, 65535} + which has an maximum error of about 9855 (pixel difference of ~38.346) + + For now, we punt the decision of output size to the caller. */ +static uint16_t *invert_lut(uint16_t *table, int length, int out_length) +{ + int i; + /* for now we invert the lut by creating a lut of size out_length + * and attempting to lookup a value for each entry using lut_inverse_interp16 */ + uint16_t *output = malloc(sizeof(uint16_t)*out_length); + if (!output) + return NULL; + + for (i = 0; i < out_length; i++) { + double x = ((double) i * 65535.) / (double) (out_length - 1); + uint16_fract_t input = floor(x + .5); + output[i] = lut_inverse_interp16(input, table, length); + } + return output; +} + +static uint16_t *build_linear_table(int length) +{ + int i; + uint16_t *output = malloc(sizeof(uint16_t)*length); + if (!output) + return NULL; + + for (i = 0; i < length; i++) { + double x = ((double) i * 65535.) / (double) (length - 1); + uint16_fract_t input = floor(x + .5); + output[i] = input; + } + return output; +} + +static uint16_t *build_pow_table(float gamma, int length) +{ + int i; + uint16_t *output = malloc(sizeof(uint16_t)*length); + if (!output) + return NULL; + + for (i = 0; i < length; i++) { + uint16_fract_t result; + double x = ((double) i) / (double) (length - 1); + x = pow(x, gamma); + //XXX turn this conversion into a function + result = floor(x*65535. + .5); + output[i] = result; + } + return output; +} + +static float clamp_float(float a) +{ + if (a > 1.) + return 1.; + else if (a < 0) + return 0; + else + return a; +} + +#if 0 +static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + int i; + float (*mat)[4] = transform->matrix; + for (i=0; i<length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + float out_device_r = pow(out_linear_r, transform->out_gamma_r); + float out_device_g = pow(out_linear_g, transform->out_gamma_g); + float out_device_b = pow(out_linear_b, transform->out_gamma_b); + + *dest++ = clamp_u8(255*out_device_r); + *dest++ = clamp_u8(255*out_device_g); + *dest++ = clamp_u8(255*out_device_b); + } +} +#endif + +static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + for (i = 0; i < length; i++) { + float out_device_r, out_device_g, out_device_b; + unsigned char device = *src++; + + float linear = transform->input_gamma_table_gray[device]; + + out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); + out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); + out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); + + *dest++ = clamp_u8(out_device_r*255); + *dest++ = clamp_u8(out_device_g*255); + *dest++ = clamp_u8(out_device_b*255); + } +} + +/* Alpha is not corrected. + A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If + RGB Is?" Tech Memo 17 (December 14, 1998). + See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf +*/ + +static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + for (i = 0; i < length; i++) { + float out_device_r, out_device_g, out_device_b; + unsigned char device = *src++; + unsigned char alpha = *src++; + + float linear = transform->input_gamma_table_gray[device]; + + out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); + out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); + out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); + + *dest++ = clamp_u8(out_device_r*255); + *dest++ = clamp_u8(out_device_g*255); + *dest++ = clamp_u8(out_device_b*255); + *dest++ = alpha; + } +} + + +static void qcms_transform_data_gray_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + for (i = 0; i < length; i++) { + unsigned char device = *src++; + uint16_t gray; + + float linear = transform->input_gamma_table_gray[device]; + + /* we could round here... */ + gray = linear * PRECACHE_OUTPUT_MAX; + + *dest++ = transform->output_table_r->data[gray]; + *dest++ = transform->output_table_g->data[gray]; + *dest++ = transform->output_table_b->data[gray]; + } +} + +static void qcms_transform_data_graya_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + for (i = 0; i < length; i++) { + unsigned char device = *src++; + unsigned char alpha = *src++; + uint16_t gray; + + float linear = transform->input_gamma_table_gray[device]; + + /* we could round here... */ + gray = linear * PRECACHE_OUTPUT_MAX; + + *dest++ = transform->output_table_r->data[gray]; + *dest++ = transform->output_table_g->data[gray]; + *dest++ = transform->output_table_b->data[gray]; + *dest++ = alpha; + } +} + +static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + uint16_t r, g, b; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + out_linear_r = clamp_float(out_linear_r); + out_linear_g = clamp_float(out_linear_g); + out_linear_b = clamp_float(out_linear_b); + + /* we could round here... */ + r = out_linear_r * PRECACHE_OUTPUT_MAX; + g = out_linear_g * PRECACHE_OUTPUT_MAX; + b = out_linear_b * PRECACHE_OUTPUT_MAX; + + *dest++ = transform->output_table_r->data[r]; + *dest++ = transform->output_table_g->data[g]; + *dest++ = transform->output_table_b->data[b]; + } +} + +static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + unsigned char alpha = *src++; + uint16_t r, g, b; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + out_linear_r = clamp_float(out_linear_r); + out_linear_g = clamp_float(out_linear_g); + out_linear_b = clamp_float(out_linear_b); + + /* we could round here... */ + r = out_linear_r * PRECACHE_OUTPUT_MAX; + g = out_linear_g * PRECACHE_OUTPUT_MAX; + b = out_linear_b * PRECACHE_OUTPUT_MAX; + + *dest++ = transform->output_table_r->data[r]; + *dest++ = transform->output_table_g->data[g]; + *dest++ = transform->output_table_b->data[b]; + *dest++ = alpha; + } +} + +static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + float out_device_r, out_device_g, out_device_b; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + out_linear_r = clamp_float(out_linear_r); + out_linear_g = clamp_float(out_linear_g); + out_linear_b = clamp_float(out_linear_b); + + out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); + out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); + out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); + + *dest++ = clamp_u8(out_device_r*255); + *dest++ = clamp_u8(out_device_g*255); + *dest++ = clamp_u8(out_device_b*255); + } +} + +static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + unsigned int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + unsigned char alpha = *src++; + float out_device_r, out_device_g, out_device_b; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + out_linear_r = clamp_float(out_linear_r); + out_linear_g = clamp_float(out_linear_g); + out_linear_b = clamp_float(out_linear_b); + + out_device_r = lut_interp_linear(out_linear_r, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); + out_device_g = lut_interp_linear(out_linear_g, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); + out_device_b = lut_interp_linear(out_linear_b, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); + + *dest++ = clamp_u8(out_device_r*255); + *dest++ = clamp_u8(out_device_g*255); + *dest++ = clamp_u8(out_device_b*255); + *dest++ = alpha; + } +} + +#if 0 +static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length) +{ + int i; + float (*mat)[4] = transform->matrix; + for (i = 0; i < length; i++) { + unsigned char device_r = *src++; + unsigned char device_g = *src++; + unsigned char device_b = *src++; + + float linear_r = transform->input_gamma_table_r[device_r]; + float linear_g = transform->input_gamma_table_g[device_g]; + float linear_b = transform->input_gamma_table_b[device_b]; + + float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; + float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; + float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; + + *dest++ = clamp_u8(out_linear_r*255); + *dest++ = clamp_u8(out_linear_g*255); + *dest++ = clamp_u8(out_linear_b*255); + } +} +#endif + +static struct precache_output *precache_reference(struct precache_output *p) +{ + p->ref_count++; + return p; +} + +static struct precache_output *precache_create() +{ + struct precache_output *p = malloc(sizeof(struct precache_output)); + if (p) + p->ref_count = 1; + return p; +} + +void precache_release(struct precache_output *p) +{ + if (--p->ref_count == 0) { + free(p); + } +} + +#ifdef HAS_POSIX_MEMALIGN +static qcms_transform *transform_alloc(void) +{ + qcms_transform *t; + if (!posix_memalign(&t, 16, sizeof(*t))) { + return t; + } else { + return NULL; + } +} +static void transform_free(qcms_transform *t) +{ + free(t); +} +#else +static qcms_transform *transform_alloc(void) +{ + /* transform needs to be aligned on a 16byte boundrary */ + char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1); + /* make room for a pointer to the block returned by calloc */ + void *transform_start = original_block + sizeof(void*); + /* align transform_start */ + qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf); + + /* store a pointer to the block returned by calloc so that we can free it later */ + void **(original_block_ptr) = (void**)transform_aligned; + if (!original_block) + return NULL; + original_block_ptr--; + *original_block_ptr = original_block; + + return transform_aligned; +} +static void transform_free(qcms_transform *t) +{ + /* get at the pointer to the unaligned block returned by calloc */ + void **p = (void**)t; + p--; + free(*p); +} +#endif + +void qcms_transform_release(qcms_transform *t) +{ + /* ensure we only free the gamma tables once even if there are + * multiple references to the same data */ + + if (t->output_table_r) + precache_release(t->output_table_r); + if (t->output_table_g) + precache_release(t->output_table_g); + if (t->output_table_b) + precache_release(t->output_table_b); + + free(t->input_gamma_table_r); + if (t->input_gamma_table_g != t->input_gamma_table_r) + free(t->input_gamma_table_g); + if (t->input_gamma_table_g != t->input_gamma_table_r && + t->input_gamma_table_g != t->input_gamma_table_b) + free(t->input_gamma_table_b); + + free(t->input_gamma_table_gray); + + free(t->output_gamma_lut_r); + free(t->output_gamma_lut_g); + free(t->output_gamma_lut_b); + + transform_free(t); +} + +static void compute_precache_pow(uint8_t *output, float gamma) +{ + uint32_t v = 0; + for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { + //XXX: don't do integer/float conversion... and round? + output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma); + } +} + +void compute_precache_lut(uint8_t *output, uint16_t *table, int length) +{ + uint32_t v = 0; + for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { + output[v] = lut_interp_linear_precache_output(v, table, length); + } +} + +void compute_precache_linear(uint8_t *output) +{ + uint32_t v = 0; + for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { + //XXX: round? + output[v] = v / (PRECACHE_OUTPUT_SIZE/256); + } +} + +qcms_bool compute_precache(struct curveType *trc, uint8_t *output) +{ + if (trc->count == 0) { + compute_precache_linear(output); + } else if (trc->count == 1) { + compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0])); + } else { + uint16_t *inverted; + int inverted_size = trc->count; + //XXX: the choice of a minimum of 256 here is not backed by any theory, measurement or data, however it is what lcms uses. + // the maximum number we would need is 65535 because that's the accuracy used for computing the precache table + if (inverted_size < 256) + inverted_size = 256; + + inverted = invert_lut(trc->data, trc->count, inverted_size); + if (!inverted) + return false; + compute_precache_lut(output, inverted, inverted_size); + free(inverted); + } + return true; +} + +#ifdef X86 +// Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in +// mozilla/jpeg) + // ------------------------------------------------------------------------- +#if defined(_M_IX86) && defined(_MSC_VER) +#define HAS_CPUID +/* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC + register - I'm not sure if that ever happens on windows, but cpuid isn't + on the critical path so we just preserve the register to be safe and to be + consistent with the non-windows version. */ +static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { + uint32_t a_, b_, c_, d_; + __asm { + xchg ebx, esi + mov eax, fxn + cpuid + mov a_, eax + mov b_, ebx + mov c_, ecx + mov d_, edx + xchg ebx, esi + } + *a = a_; + *b = b_; + *c = c_; + *d = d_; +} +#elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || defined(__i386)) +#define HAS_CPUID +/* Get us a CPUID function. We can't use ebx because it's the PIC register on + some platforms, so we use ESI instead and save ebx to avoid clobbering it. */ +static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { + + uint32_t a_, b_, c_, d_; + __asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;" + : "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a" (fxn)); + *a = a_; + *b = b_; + *c = c_; + *d = d_; +} +#endif + +// -------------------------Runtime SSEx Detection----------------------------- + +/* MMX is always supported per + * Gecko v1.9.1 minimum CPU requirements */ +#define SSE1_EDX_MASK (1UL << 25) +#define SSE2_EDX_MASK (1UL << 26) +#define SSE3_ECX_MASK (1UL << 0) + +static int sse_version_available(void) +{ +#if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64) + /* we know at build time that 64-bit CPUs always have SSE2 + * this tells the compiler that non-SSE2 branches will never be + * taken (i.e. OK to optimze away the SSE1 and non-SIMD code */ + return 2; +#elif defined(HAS_CPUID) + static int sse_version = -1; + uint32_t a, b, c, d; + uint32_t function = 0x00000001; + + if (sse_version == -1) { + sse_version = 0; + cpuid(function, &a, &b, &c, &d); + if (c & SSE3_ECX_MASK) + sse_version = 3; + else if (d & SSE2_EDX_MASK) + sse_version = 2; + else if (d & SSE1_EDX_MASK) + sse_version = 1; + } + + return sse_version; +#else + return 0; +#endif +} +#endif + +void build_output_lut(struct curveType *trc, + uint16_t **output_gamma_lut, size_t *output_gamma_lut_length) +{ + if (trc->count == 0) { + *output_gamma_lut = build_linear_table(4096); + *output_gamma_lut_length = 4096; + } else if (trc->count == 1) { + float gamma = 1./u8Fixed8Number_to_float(trc->data[0]); + *output_gamma_lut = build_pow_table(gamma, 4096); + *output_gamma_lut_length = 4096; + } else { + //XXX: the choice of a minimum of 256 here is not backed by any theory, measurement or data, however it is what lcms uses. + *output_gamma_lut_length = trc->count; + if (*output_gamma_lut_length < 256) + *output_gamma_lut_length = 256; + + *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length); + } + +} + +void qcms_profile_precache_output_transform(qcms_profile *profile) +{ + /* we only support precaching on rgb profiles */ + if (profile->color_space != RGB_SIGNATURE) + return; + + if (!profile->output_table_r) { + profile->output_table_r = precache_create(); + if (profile->output_table_r && + !compute_precache(profile->redTRC, profile->output_table_r->data)) { + precache_release(profile->output_table_r); + profile->output_table_r = NULL; + } + } + if (!profile->output_table_g) { + profile->output_table_g = precache_create(); + if (profile->output_table_g && + !compute_precache(profile->greenTRC, profile->output_table_g->data)) { + precache_release(profile->output_table_g); + profile->output_table_g = NULL; + } + } + if (!profile->output_table_b) { + profile->output_table_b = precache_create(); + if (profile->output_table_b && + !compute_precache(profile->blueTRC, profile->output_table_b->data)) { + precache_release(profile->output_table_b); + profile->output_table_b = NULL; + } + } +} + +#define NO_MEM_TRANSFORM NULL + +qcms_transform* qcms_transform_create( + qcms_profile *in, qcms_data_type in_type, + qcms_profile* out, qcms_data_type out_type, + qcms_intent intent) +{ + bool precache = false; + + qcms_transform *transform = transform_alloc(); + if (!transform) { + return NULL; + } + if (out_type != QCMS_DATA_RGB_8 && + out_type != QCMS_DATA_RGBA_8) { + assert(0 && "output type"); + transform_free(transform); + return NULL; + } + + if (out->output_table_r && + out->output_table_g && + out->output_table_b) { + precache = true; + } + + if (precache) { + transform->output_table_r = precache_reference(out->output_table_r); + transform->output_table_g = precache_reference(out->output_table_g); + transform->output_table_b = precache_reference(out->output_table_b); + } else { + build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length); + build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length); + build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length); + if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) { + qcms_transform_release(transform); + return NO_MEM_TRANSFORM; + } + } + + if (in->color_space == RGB_SIGNATURE) { + struct matrix in_matrix, out_matrix, result; + + if (in_type != QCMS_DATA_RGB_8 && + in_type != QCMS_DATA_RGBA_8){ + assert(0 && "input type"); + transform_free(transform); + return NULL; + } + if (precache) { +#ifdef X86 + if (sse_version_available() >= 2) { + if (in_type == QCMS_DATA_RGB_8) + transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2; + else + transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2; + +#if !(defined(_MSC_VER) && defined(_M_AMD64)) + /* Microsoft Compiler for x64 doesn't support MMX. + * SSE code uses MMX so that we disable on x64 */ + } else + if (sse_version_available() >= 1) { + if (in_type == QCMS_DATA_RGB_8) + transform->transform_fn = qcms_transform_data_rgb_out_lut_sse1; + else + transform->transform_fn = qcms_transform_data_rgba_out_lut_sse1; +#endif + } else +#endif + { + if (in_type == QCMS_DATA_RGB_8) + transform->transform_fn = qcms_transform_data_rgb_out_lut_precache; + else + transform->transform_fn = qcms_transform_data_rgba_out_lut_precache; + } + } else { + if (in_type == QCMS_DATA_RGB_8) + transform->transform_fn = qcms_transform_data_rgb_out_lut; + else + transform->transform_fn = qcms_transform_data_rgba_out_lut; + } + + //XXX: avoid duplicating tables if we can + transform->input_gamma_table_r = build_input_gamma_table(in->redTRC); + transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC); + transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC); + + if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) { + qcms_transform_release(transform); + return NO_MEM_TRANSFORM; + } + + /* build combined colorant matrix */ + in_matrix = build_colorant_matrix(in); + out_matrix = build_colorant_matrix(out); + out_matrix = matrix_invert(out_matrix); + if (out_matrix.invalid) { + qcms_transform_release(transform); + return NULL; + } + result = matrix_multiply(out_matrix, in_matrix); + + /* store the results in column major mode + * this makes doing the multiplication with sse easier */ + transform->matrix[0][0] = result.m[0][0]; + transform->matrix[1][0] = result.m[0][1]; + transform->matrix[2][0] = result.m[0][2]; + transform->matrix[0][1] = result.m[1][0]; + transform->matrix[1][1] = result.m[1][1]; + transform->matrix[2][1] = result.m[1][2]; + transform->matrix[0][2] = result.m[2][0]; + transform->matrix[1][2] = result.m[2][1]; + transform->matrix[2][2] = result.m[2][2]; + + } else if (in->color_space == GRAY_SIGNATURE) { + if (in_type != QCMS_DATA_GRAY_8 && + in_type != QCMS_DATA_GRAYA_8){ + assert(0 && "input type"); + transform_free(transform); + return NULL; + } + + transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC); + if (!transform->input_gamma_table_gray) { + qcms_transform_release(transform); + return NO_MEM_TRANSFORM; + } + + if (precache) { + if (in_type == QCMS_DATA_GRAY_8) { + transform->transform_fn = qcms_transform_data_gray_out_precache; + } else { + transform->transform_fn = qcms_transform_data_graya_out_precache; + } + } else { + if (in_type == QCMS_DATA_GRAY_8) { + transform->transform_fn = qcms_transform_data_gray_out_lut; + } else { + transform->transform_fn = qcms_transform_data_graya_out_lut; + } + } + } else { + assert(0 && "unexpected colorspace"); + qcms_transform_release(transform); + return NO_MEM_TRANSFORM; + } + return transform; +} + +#if defined(__GNUC__) && !defined(__x86_64__) && !defined(__amd64__) +/* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */ +__attribute__((__force_align_arg_pointer__)) +#endif +void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length) +{ + transform->transform_fn(transform, src, dest, length); +} |