diff options
author | aa@google.com <aa@google.com@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-08-30 01:36:02 +0000 |
---|---|---|
committer | aa@google.com <aa@google.com@0039d316-1c4b-4281-b951-d872f2087c98> | 2008-08-30 01:36:02 +0000 |
commit | 0daa4fc8d2809bb42f93f1a348e43924608ff7fe (patch) | |
tree | 9aae73bbe8dd7589669b539710380cf8facbdb76 /third_party/sqlite/func.c | |
parent | 0d5e0eb4b86a87924db2317a869971cdad53c4f6 (diff) | |
download | chromium_src-0daa4fc8d2809bb42f93f1a348e43924608ff7fe.zip chromium_src-0daa4fc8d2809bb42f93f1a348e43924608ff7fe.tar.gz chromium_src-0daa4fc8d2809bb42f93f1a348e43924608ff7fe.tar.bz2 |
Move SQLite from src/chrome/third_party to src/third_party
since it will be shared with WebCore and Gears in the
future.
git-svn-id: svn://svn.chromium.org/chrome/trunk/src@1586 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'third_party/sqlite/func.c')
-rw-r--r-- | third_party/sqlite/func.c | 1491 |
1 files changed, 1491 insertions, 0 deletions
diff --git a/third_party/sqlite/func.c b/third_party/sqlite/func.c new file mode 100644 index 0000000..2a7019d --- /dev/null +++ b/third_party/sqlite/func.c @@ -0,0 +1,1491 @@ +/* +** 2002 February 23 +** +** The author disclaims copyright to this source code. In place of +** a legal notice, here is a blessing: +** +** May you do good and not evil. +** May you find forgiveness for yourself and forgive others. +** May you share freely, never taking more than you give. +** +************************************************************************* +** This file contains the C functions that implement various SQL +** functions of SQLite. +** +** There is only one exported symbol in this file - the function +** sqliteRegisterBuildinFunctions() found at the bottom of the file. +** All other code has file scope. +** +** $Id: func.c,v 1.163 2007/07/26 06:50:06 danielk1977 Exp $ +*/ +#include "sqliteInt.h" +#include <ctype.h> +/* #include <math.h> */ +#include <stdlib.h> +#include <assert.h> +#include "vdbeInt.h" +#include "os.h" + + +/* +** Return the collating function associated with a function. +*/ +static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ + return context->pColl; +} + +/* +** Implementation of the non-aggregate min() and max() functions +*/ +static void minmaxFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i; + int mask; /* 0 for min() or 0xffffffff for max() */ + int iBest; + CollSeq *pColl; + + if( argc==0 ) return; + mask = sqlite3_user_data(context)==0 ? 0 : -1; + pColl = sqlite3GetFuncCollSeq(context); + assert( pColl ); + assert( mask==-1 || mask==0 ); + iBest = 0; + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + for(i=1; i<argc; i++){ + if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return; + if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){ + iBest = i; + } + } + sqlite3_result_value(context, argv[iBest]); +} + +/* +** Return the type of the argument. +*/ +static void typeofFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const char *z = 0; + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_NULL: z = "null"; break; + case SQLITE_INTEGER: z = "integer"; break; + case SQLITE_TEXT: z = "text"; break; + case SQLITE_FLOAT: z = "real"; break; + case SQLITE_BLOB: z = "blob"; break; + } + sqlite3_result_text(context, z, -1, SQLITE_STATIC); +} + + +/* +** Implementation of the length() function +*/ +static void lengthFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int len; + + assert( argc==1 ); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_BLOB: + case SQLITE_INTEGER: + case SQLITE_FLOAT: { + sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); + break; + } + case SQLITE_TEXT: { + const unsigned char *z = sqlite3_value_text(argv[0]); + if( z==0 ) return; + len = 0; + while( *z ){ + len++; + SQLITE_SKIP_UTF8(z); + } + sqlite3_result_int(context, len); + break; + } + default: { + sqlite3_result_null(context); + break; + } + } +} + +/* +** Implementation of the abs() function +*/ +static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + assert( argc==1 ); + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_INTEGER: { + i64 iVal = sqlite3_value_int64(argv[0]); + if( iVal<0 ){ + if( (iVal<<1)==0 ){ + sqlite3_result_error(context, "integer overflow", -1); + return; + } + iVal = -iVal; + } + sqlite3_result_int64(context, iVal); + break; + } + case SQLITE_NULL: { + sqlite3_result_null(context); + break; + } + default: { + double rVal = sqlite3_value_double(argv[0]); + if( rVal<0 ) rVal = -rVal; + sqlite3_result_double(context, rVal); + break; + } + } +} + +/* +** Implementation of the substr() function. +** +** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. +** p1 is 1-indexed. So substr(x,1,1) returns the first character +** of x. If x is text, then we actually count UTF-8 characters. +** If x is a blob, then we count bytes. +** +** If p1 is negative, then we begin abs(p1) from the end of x[]. +*/ +static void substrFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *z; + const unsigned char *z2; + int len; + int p0type; + i64 p1, p2; + + assert( argc==3 ); + p0type = sqlite3_value_type(argv[0]); + if( p0type==SQLITE_BLOB ){ + len = sqlite3_value_bytes(argv[0]); + z = sqlite3_value_blob(argv[0]); + if( z==0 ) return; + assert( len==sqlite3_value_bytes(argv[0]) ); + }else{ + z = sqlite3_value_text(argv[0]); + if( z==0 ) return; + len = 0; + for(z2=z; *z2; len++){ + SQLITE_SKIP_UTF8(z2); + } + } + p1 = sqlite3_value_int(argv[1]); + p2 = sqlite3_value_int(argv[2]); + if( p1<0 ){ + p1 += len; + if( p1<0 ){ + p2 += p1; + p1 = 0; + } + }else if( p1>0 ){ + p1--; + } + if( p1+p2>len ){ + p2 = len-p1; + } + if( p0type!=SQLITE_BLOB ){ + while( *z && p1 ){ + SQLITE_SKIP_UTF8(z); + p1--; + } + for(z2=z; *z2 && p2; p2--){ + SQLITE_SKIP_UTF8(z2); + } + sqlite3_result_text(context, (char*)z, z2-z, SQLITE_TRANSIENT); + }else{ + if( p2<0 ) p2 = 0; + sqlite3_result_blob(context, (char*)&z[p1], p2, SQLITE_TRANSIENT); + } +} + +/* +** Implementation of the round() function +*/ +static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + int n = 0; + double r; + char zBuf[500]; /* larger than the %f representation of the largest double */ + assert( argc==1 || argc==2 ); + if( argc==2 ){ + if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; + n = sqlite3_value_int(argv[1]); + if( n>30 ) n = 30; + if( n<0 ) n = 0; + } + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + r = sqlite3_value_double(argv[0]); + sqlite3_snprintf(sizeof(zBuf),zBuf,"%.*f",n,r); + sqlite3AtoF(zBuf, &r); + sqlite3_result_double(context, r); +} + +/* +** Implementation of the upper() and lower() SQL functions. +*/ +static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + char *z1; + const char *z2; + int i, n; + if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; + z2 = (char*)sqlite3_value_text(argv[0]); + n = sqlite3_value_bytes(argv[0]); + /* Verify that the call to _bytes() does not invalidate the _text() pointer */ + assert( z2==(char*)sqlite3_value_text(argv[0]) ); + if( z2 ){ + z1 = sqlite3_malloc(n+1); + if( z1 ){ + memcpy(z1, z2, n+1); + for(i=0; z1[i]; i++){ + z1[i] = toupper(z1[i]); + } + sqlite3_result_text(context, z1, -1, sqlite3_free); + } + } +} +static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + char *z1; + const char *z2; + int i, n; + if( argc<1 || SQLITE_NULL==sqlite3_value_type(argv[0]) ) return; + z2 = (char*)sqlite3_value_text(argv[0]); + n = sqlite3_value_bytes(argv[0]); + /* Verify that the call to _bytes() does not invalidate the _text() pointer */ + assert( z2==(char*)sqlite3_value_text(argv[0]) ); + if( z2 ){ + z1 = sqlite3_malloc(n+1); + if( z1 ){ + memcpy(z1, z2, n+1); + for(i=0; z1[i]; i++){ + z1[i] = tolower(z1[i]); + } + sqlite3_result_text(context, z1, -1, sqlite3_free); + } + } +} + +/* +** Implementation of the IFNULL(), NVL(), and COALESCE() functions. +** All three do the same thing. They return the first non-NULL +** argument. +*/ +static void ifnullFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i; + for(i=0; i<argc; i++){ + if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){ + sqlite3_result_value(context, argv[i]); + break; + } + } +} + +/* +** Implementation of random(). Return a random integer. +*/ +static void randomFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite_int64 r; + sqlite3Randomness(sizeof(r), &r); + if( (r<<1)==0 ) r = 0; /* Prevent 0x8000.... as the result so that we */ + /* can always do abs() of the result */ + sqlite3_result_int64(context, r); +} + +/* +** Implementation of randomblob(N). Return a random blob +** that is N bytes long. +*/ +static void randomBlob( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int n; + unsigned char *p; + assert( argc==1 ); + n = sqlite3_value_int(argv[0]); + if( n<1 ){ + n = 1; + } + if( n>SQLITE_MAX_LENGTH ){ + sqlite3_result_error_toobig(context); + return; + } + p = sqliteMalloc(n); + if( p ){ + sqlite3Randomness(n, p); + sqlite3_result_blob(context, (char*)p, n, sqlite3FreeX); + } +} + +/* +** Implementation of the last_insert_rowid() SQL function. The return +** value is the same as the sqlite3_last_insert_rowid() API function. +*/ +static void last_insert_rowid( + sqlite3_context *context, + int arg, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_user_data(context); + sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); +} + +/* +** Implementation of the changes() SQL function. The return value is the +** same as the sqlite3_changes() API function. +*/ +static void changes( + sqlite3_context *context, + int arg, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_user_data(context); + sqlite3_result_int(context, sqlite3_changes(db)); +} + +/* +** Implementation of the total_changes() SQL function. The return value is +** the same as the sqlite3_total_changes() API function. +*/ +static void total_changes( + sqlite3_context *context, + int arg, + sqlite3_value **argv +){ + sqlite3 *db = sqlite3_user_data(context); + sqlite3_result_int(context, sqlite3_total_changes(db)); +} + +/* +** A structure defining how to do GLOB-style comparisons. +*/ +struct compareInfo { + u8 matchAll; + u8 matchOne; + u8 matchSet; + u8 noCase; +}; + +static const struct compareInfo globInfo = { '*', '?', '[', 0 }; +/* The correct SQL-92 behavior is for the LIKE operator to ignore +** case. Thus 'a' LIKE 'A' would be true. */ +static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; +/* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator +** is case sensitive causing 'a' LIKE 'A' to be false */ +static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; + +/* +** Compare two UTF-8 strings for equality where the first string can +** potentially be a "glob" expression. Return true (1) if they +** are the same and false (0) if they are different. +** +** Globbing rules: +** +** '*' Matches any sequence of zero or more characters. +** +** '?' Matches exactly one character. +** +** [...] Matches one character from the enclosed list of +** characters. +** +** [^...] Matches one character not in the enclosed list. +** +** With the [...] and [^...] matching, a ']' character can be included +** in the list by making it the first character after '[' or '^'. A +** range of characters can be specified using '-'. Example: +** "[a-z]" matches any single lower-case letter. To match a '-', make +** it the last character in the list. +** +** This routine is usually quick, but can be N**2 in the worst case. +** +** Hints: to match '*' or '?', put them in "[]". Like this: +** +** abc[*]xyz Matches "abc*xyz" only +*/ +static int patternCompare( + const u8 *zPattern, /* The glob pattern */ + const u8 *zString, /* The string to compare against the glob */ + const struct compareInfo *pInfo, /* Information about how to do the compare */ + const int esc /* The escape character */ +){ + int c, c2; + int invert; + int seen; + u8 matchOne = pInfo->matchOne; + u8 matchAll = pInfo->matchAll; + u8 matchSet = pInfo->matchSet; + u8 noCase = pInfo->noCase; + int prevEscape = 0; /* True if the previous character was 'escape' */ + + while( (c = sqlite3Utf8Read(zPattern,0,&zPattern))!=0 ){ + if( !prevEscape && c==matchAll ){ + while( (c=sqlite3Utf8Read(zPattern,0,&zPattern)) == matchAll + || c == matchOne ){ + if( c==matchOne && sqlite3Utf8Read(zString, 0, &zString)==0 ){ + return 0; + } + } + if( c==0 ){ + return 1; + }else if( c==esc ){ + c = sqlite3Utf8Read(zPattern, 0, &zPattern); + if( c==0 ){ + return 0; + } + }else if( c==matchSet ){ + assert( esc==0 ); /* This is GLOB, not LIKE */ + assert( matchSet<0x80 ); /* '[' is a single-byte character */ + while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){ + SQLITE_SKIP_UTF8(zString); + } + return *zString!=0; + } + while( (c2 = sqlite3Utf8Read(zString,0,&zString))!=0 ){ + if( noCase ){ + c2 = c2<0x80 ? sqlite3UpperToLower[c2] : c2; + c = c<0x80 ? sqlite3UpperToLower[c] : c; + while( c2 != 0 && c2 != c ){ + c2 = sqlite3Utf8Read(zString, 0, &zString); + if( c2<0x80 ) c2 = sqlite3UpperToLower[c2]; + } + }else{ + while( c2 != 0 && c2 != c ){ + c2 = sqlite3Utf8Read(zString, 0, &zString); + } + } + if( c2==0 ) return 0; + if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; + } + return 0; + }else if( !prevEscape && c==matchOne ){ + if( sqlite3Utf8Read(zString, 0, &zString)==0 ){ + return 0; + } + }else if( c==matchSet ){ + int prior_c = 0; + assert( esc==0 ); /* This only occurs for GLOB, not LIKE */ + seen = 0; + invert = 0; + c = sqlite3Utf8Read(zString, 0, &zString); + if( c==0 ) return 0; + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + if( c2=='^' ){ + invert = 1; + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + } + if( c2==']' ){ + if( c==']' ) seen = 1; + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + } + while( c2 && c2!=']' ){ + if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + if( c>=prior_c && c<=c2 ) seen = 1; + prior_c = 0; + }else{ + if( c==c2 ){ + seen = 1; + } + prior_c = c2; + } + c2 = sqlite3Utf8Read(zPattern, 0, &zPattern); + } + if( c2==0 || (seen ^ invert)==0 ){ + return 0; + } + }else if( esc==c && !prevEscape ){ + prevEscape = 1; + }else{ + c2 = sqlite3Utf8Read(zString, 0, &zString); + if( noCase ){ + c = c<0x80 ? sqlite3UpperToLower[c] : c; + c2 = c2<0x80 ? sqlite3UpperToLower[c2] : c2; + } + if( c!=c2 ){ + return 0; + } + prevEscape = 0; + } + } + return *zString==0; +} + +/* +** Count the number of times that the LIKE operator (or GLOB which is +** just a variation of LIKE) gets called. This is used for testing +** only. +*/ +#ifdef SQLITE_TEST +int sqlite3_like_count = 0; +#endif + + +/* +** Implementation of the like() SQL function. This function implements +** the build-in LIKE operator. The first argument to the function is the +** pattern and the second argument is the string. So, the SQL statements: +** +** A LIKE B +** +** is implemented as like(B,A). +** +** This same function (with a different compareInfo structure) computes +** the GLOB operator. +*/ +static void likeFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zA, *zB; + int escape = 0; + + zB = sqlite3_value_text(argv[0]); + zA = sqlite3_value_text(argv[1]); + + /* Limit the length of the LIKE or GLOB pattern to avoid problems + ** of deep recursion and N*N behavior in patternCompare(). + */ + if( sqlite3_value_bytes(argv[0])>SQLITE_MAX_LIKE_PATTERN_LENGTH ){ + sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); + return; + } + assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */ + + if( argc==3 ){ + /* The escape character string must consist of a single UTF-8 character. + ** Otherwise, return an error. + */ + const unsigned char *zEsc = sqlite3_value_text(argv[2]); + if( zEsc==0 ) return; + if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ + sqlite3_result_error(context, + "ESCAPE expression must be a single character", -1); + return; + } + escape = sqlite3Utf8Read(zEsc, 0, &zEsc); + } + if( zA && zB ){ + struct compareInfo *pInfo = sqlite3_user_data(context); +#ifdef SQLITE_TEST + sqlite3_like_count++; +#endif + + sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)); + } +} + +/* +** Implementation of the NULLIF(x,y) function. The result is the first +** argument if the arguments are different. The result is NULL if the +** arguments are equal to each other. +*/ +static void nullifFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + CollSeq *pColl = sqlite3GetFuncCollSeq(context); + if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ + sqlite3_result_value(context, argv[0]); + } +} + +/* +** Implementation of the VERSION(*) function. The result is the version +** of the SQLite library that is running. +*/ +static void versionFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + sqlite3_result_text(context, sqlite3_version, -1, SQLITE_STATIC); +} + +/* Array for converting from half-bytes (nybbles) into ASCII hex +** digits. */ +static const char hexdigits[] = { + '0', '1', '2', '3', '4', '5', '6', '7', + '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' +}; + +/* +** EXPERIMENTAL - This is not an official function. The interface may +** change. This function may disappear. Do not write code that depends +** on this function. +** +** Implementation of the QUOTE() function. This function takes a single +** argument. If the argument is numeric, the return value is the same as +** the argument. If the argument is NULL, the return value is the string +** "NULL". Otherwise, the argument is enclosed in single quotes with +** single-quote escapes. +*/ +static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ + if( argc<1 ) return; + switch( sqlite3_value_type(argv[0]) ){ + case SQLITE_NULL: { + sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); + break; + } + case SQLITE_INTEGER: + case SQLITE_FLOAT: { + sqlite3_result_value(context, argv[0]); + break; + } + case SQLITE_BLOB: { + char *zText = 0; + char const *zBlob = sqlite3_value_blob(argv[0]); + int nBlob = sqlite3_value_bytes(argv[0]); + assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ + + if( 2*nBlob+4>SQLITE_MAX_LENGTH ){ + sqlite3_result_error_toobig(context); + return; + } + zText = (char *)sqliteMalloc((2*nBlob)+4); + if( !zText ){ + sqlite3_result_error(context, "out of memory", -1); + }else{ + int i; + for(i=0; i<nBlob; i++){ + zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; + zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; + } + zText[(nBlob*2)+2] = '\''; + zText[(nBlob*2)+3] = '\0'; + zText[0] = 'X'; + zText[1] = '\''; + sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); + sqliteFree(zText); + } + break; + } + case SQLITE_TEXT: { + int i,j; + u64 n; + const unsigned char *zArg = sqlite3_value_text(argv[0]); + char *z; + + if( zArg==0 ) return; + for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } + if( i+n+3>SQLITE_MAX_LENGTH ){ + sqlite3_result_error_toobig(context); + return; + } + z = sqliteMalloc( i+n+3 ); + if( z==0 ) return; + z[0] = '\''; + for(i=0, j=1; zArg[i]; i++){ + z[j++] = zArg[i]; + if( zArg[i]=='\'' ){ + z[j++] = '\''; + } + } + z[j++] = '\''; + z[j] = 0; + sqlite3_result_text(context, z, j, SQLITE_TRANSIENT); + sqliteFree(z); + } + } +} + +/* +** The hex() function. Interpret the argument as a blob. Return +** a hexadecimal rendering as text. +*/ +static void hexFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + int i, n; + const unsigned char *pBlob; + char *zHex, *z; + assert( argc==1 ); + pBlob = sqlite3_value_blob(argv[0]); + n = sqlite3_value_bytes(argv[0]); + if( n*2+1>SQLITE_MAX_LENGTH ){ + sqlite3_result_error_toobig(context); + return; + } + assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ + z = zHex = sqlite3_malloc(n*2 + 1); + if( zHex==0 ) return; + for(i=0; i<n; i++, pBlob++){ + unsigned char c = *pBlob; + *(z++) = hexdigits[(c>>4)&0xf]; + *(z++) = hexdigits[c&0xf]; + } + *z = 0; + sqlite3_result_text(context, zHex, n*2, sqlite3_free); +} + +/* +** The zeroblob(N) function returns a zero-filled blob of size N bytes. +*/ +static void zeroblobFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + i64 n; + assert( argc==1 ); + n = sqlite3_value_int64(argv[0]); + if( n>SQLITE_MAX_LENGTH ){ + sqlite3_result_error_toobig(context); + }else{ + sqlite3_result_zeroblob(context, n); + } +} + +/* +** The replace() function. Three arguments are all strings: call +** them A, B, and C. The result is also a string which is derived +** from A by replacing every occurance of B with C. The match +** must be exact. Collating sequences are not used. +*/ +static void replaceFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zStr; /* The input string A */ + const unsigned char *zPattern; /* The pattern string B */ + const unsigned char *zRep; /* The replacement string C */ + unsigned char *zOut; /* The output */ + int nStr; /* Size of zStr */ + int nPattern; /* Size of zPattern */ + int nRep; /* Size of zRep */ + i64 nOut; /* Maximum size of zOut */ + int loopLimit; /* Last zStr[] that might match zPattern[] */ + int i, j; /* Loop counters */ + + assert( argc==3 ); + zStr = sqlite3_value_text(argv[0]); + if( zStr==0 ) return; + nStr = sqlite3_value_bytes(argv[0]); + assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ + zPattern = sqlite3_value_text(argv[1]); + if( zPattern==0 || zPattern[0]==0 ) return; + nPattern = sqlite3_value_bytes(argv[1]); + assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ + zRep = sqlite3_value_text(argv[2]); + if( zRep==0 ) return; + nRep = sqlite3_value_bytes(argv[2]); + assert( zRep==sqlite3_value_text(argv[2]) ); + nOut = nStr + 1; + assert( nOut<SQLITE_MAX_LENGTH ); + zOut = sqlite3_malloc((int)nOut); + if( zOut==0 ){ + return; + } + loopLimit = nStr - nPattern; + for(i=j=0; i<=loopLimit; i++){ + if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){ + zOut[j++] = zStr[i]; + }else{ + nOut += nRep - nPattern; + if( nOut>=SQLITE_MAX_LENGTH ){ + sqlite3_result_error_toobig(context); + sqlite3_free(zOut); + return; + } + zOut = sqlite3_realloc(zOut, (int)nOut); + if( zOut==0 ){ + return; + } + memcpy(&zOut[j], zRep, nRep); + j += nRep; + i += nPattern-1; + } + } + assert( j+nStr-i+1==nOut ); + memcpy(&zOut[j], &zStr[i], nStr-i); + j += nStr - i; + assert( j<=nOut ); + zOut[j] = 0; + sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); +} + +/* +** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. +** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. +*/ +static void trimFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + const unsigned char *zIn; /* Input string */ + const unsigned char *zCharSet; /* Set of characters to trim */ + int nIn; /* Number of bytes in input */ + int flags; /* 1: trimleft 2: trimright 3: trim */ + int i; /* Loop counter */ + unsigned char *aLen; /* Length of each character in zCharSet */ + const unsigned char **azChar; /* Individual characters in zCharSet */ + int nChar; /* Number of characters in zCharSet */ + + if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ + return; + } + zIn = sqlite3_value_text(argv[0]); + if( zIn==0 ) return; + nIn = sqlite3_value_bytes(argv[0]); + assert( zIn==sqlite3_value_text(argv[0]) ); + if( argc==1 ){ + static const unsigned char lenOne[] = { 1 }; + static const unsigned char *azOne[] = { (u8*)" " }; + nChar = 1; + aLen = (u8*)lenOne; + azChar = azOne; + zCharSet = 0; + }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ + return; + }else{ + const unsigned char *z; + for(z=zCharSet, nChar=0; *z; nChar++){ + SQLITE_SKIP_UTF8(z); + } + if( nChar>0 ){ + azChar = sqlite3_malloc( nChar*(sizeof(char*)+1) ); + if( azChar==0 ){ + return; + } + aLen = (unsigned char*)&azChar[nChar]; + for(z=zCharSet, nChar=0; *z; nChar++){ + azChar[nChar] = z; + SQLITE_SKIP_UTF8(z); + aLen[nChar] = z - azChar[nChar]; + } + } + } + if( nChar>0 ){ + flags = (int)sqlite3_user_data(context); + if( flags & 1 ){ + while( nIn>0 ){ + int len; + for(i=0; i<nChar; i++){ + len = aLen[i]; + if( memcmp(zIn, azChar[i], len)==0 ) break; + } + if( i>=nChar ) break; + zIn += len; + nIn -= len; + } + } + if( flags & 2 ){ + while( nIn>0 ){ + int len; + for(i=0; i<nChar; i++){ + len = aLen[i]; + if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break; + } + if( i>=nChar ) break; + nIn -= len; + } + } + if( zCharSet ){ + sqlite3_free(azChar); + } + } + sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); +} + +#ifdef SQLITE_SOUNDEX +/* +** Compute the soundex encoding of a word. +*/ +static void soundexFunc( + sqlite3_context *context, + int argc, + sqlite3_value **argv +){ + char zResult[8]; + const u8 *zIn; + int i, j; + static const unsigned char iCode[] = { + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, + 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, + 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, + 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, + 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, + }; + assert( argc==1 ); + zIn = (u8*)sqlite3_value_text(argv[0]); + if( zIn==0 ) zIn = (u8*)""; + for(i=0; zIn[i] && !isalpha(zIn[i]); i++){} + if( zIn[i] ){ + u8 prevcode = iCode[zIn[i]&0x7f]; + zResult[0] = toupper(zIn[i]); + for(j=1; j<4 && zIn[i]; i++){ + int code = iCode[zIn[i]&0x7f]; + if( code>0 ){ + if( code!=prevcode ){ + prevcode = code; + zResult[j++] = code + '0'; + } + }else{ + prevcode = 0; + } + } + while( j<4 ){ + zResult[j++] = '0'; + } + zResult[j] = 0; + sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); + }else{ + sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); + } +} +#endif + +#ifndef SQLITE_OMIT_LOAD_EXTENSION +/* +** A function that loads a shared-library extension then returns NULL. +*/ +static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ + const char *zFile = (const char *)sqlite3_value_text(argv[0]); + const char *zProc; + sqlite3 *db = sqlite3_user_data(context); + char *zErrMsg = 0; + + if( argc==2 ){ + zProc = (const char *)sqlite3_value_text(argv[1]); + }else{ + zProc = 0; + } + if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ + sqlite3_result_error(context, zErrMsg, -1); + sqlite3_free(zErrMsg); + } +} +#endif + +#ifdef SQLITE_TEST +/* +** This function generates a string of random characters. Used for +** generating test data. +*/ +static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){ + static const unsigned char zSrc[] = + "abcdefghijklmnopqrstuvwxyz" + "ABCDEFGHIJKLMNOPQRSTUVWXYZ" + "0123456789" + ".-!,:*^+=_|?/<> "; + int iMin, iMax, n, r, i; + unsigned char zBuf[1000]; + if( argc>=1 ){ + iMin = sqlite3_value_int(argv[0]); + if( iMin<0 ) iMin = 0; + if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1; + }else{ + iMin = 1; + } + if( argc>=2 ){ + iMax = sqlite3_value_int(argv[1]); + if( iMax<iMin ) iMax = iMin; + if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1; + }else{ + iMax = 50; + } + n = iMin; + if( iMax>iMin ){ + sqlite3Randomness(sizeof(r), &r); + r &= 0x7fffffff; + n += r%(iMax + 1 - iMin); + } + assert( n<sizeof(zBuf) ); + sqlite3Randomness(n, zBuf); + for(i=0; i<n; i++){ + zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)]; + } + zBuf[n] = 0; + sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT); +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** The following two SQL functions are used to test returning a text +** result with a destructor. Function 'test_destructor' takes one argument +** and returns the same argument interpreted as TEXT. A destructor is +** passed with the sqlite3_result_text() call. +** +** SQL function 'test_destructor_count' returns the number of outstanding +** allocations made by 'test_destructor'; +** +** WARNING: Not threadsafe. +*/ +static int test_destructor_count_var = 0; +static void destructor(void *p){ + char *zVal = (char *)p; + assert(zVal); + zVal--; + sqliteFree(zVal); + test_destructor_count_var--; +} +static void test_destructor( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + char *zVal; + int len; + sqlite3 *db = sqlite3_user_data(pCtx); + + test_destructor_count_var++; + assert( nArg==1 ); + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + len = sqlite3ValueBytes(argv[0], ENC(db)); + zVal = sqliteMalloc(len+3); + zVal[len] = 0; + zVal[len-1] = 0; + assert( zVal ); + zVal++; + memcpy(zVal, sqlite3ValueText(argv[0], ENC(db)), len); + if( ENC(db)==SQLITE_UTF8 ){ + sqlite3_result_text(pCtx, zVal, -1, destructor); +#ifndef SQLITE_OMIT_UTF16 + }else if( ENC(db)==SQLITE_UTF16LE ){ + sqlite3_result_text16le(pCtx, zVal, -1, destructor); + }else{ + sqlite3_result_text16be(pCtx, zVal, -1, destructor); +#endif /* SQLITE_OMIT_UTF16 */ + } +} +static void test_destructor_count( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + sqlite3_result_int(pCtx, test_destructor_count_var); +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata() +** interface. +** +** The test_auxdata() SQL function attempts to register each of its arguments +** as auxiliary data. If there are no prior registrations of aux data for +** that argument (meaning the argument is not a constant or this is its first +** call) then the result for that argument is 0. If there is a prior +** registration, the result for that argument is 1. The overall result +** is the individual argument results separated by spaces. +*/ +static void free_test_auxdata(void *p) {sqliteFree(p);} +static void test_auxdata( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + int i; + char *zRet = sqliteMalloc(nArg*2); + if( !zRet ) return; + for(i=0; i<nArg; i++){ + char const *z = (char*)sqlite3_value_text(argv[i]); + if( z ){ + char *zAux = sqlite3_get_auxdata(pCtx, i); + if( zAux ){ + zRet[i*2] = '1'; + if( strcmp(zAux, z) ){ + free_test_auxdata((void *)zRet); + sqlite3_result_error(pCtx, "Auxilary data corruption", -1); + return; + } + }else{ + zRet[i*2] = '0'; + zAux = sqliteStrDup(z); + sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata); + } + zRet[i*2+1] = ' '; + } + } + sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata); +} +#endif /* SQLITE_TEST */ + +#ifdef SQLITE_TEST +/* +** A function to test error reporting from user functions. This function +** returns a copy of it's first argument as an error. +*/ +static void test_error( + sqlite3_context *pCtx, + int nArg, + sqlite3_value **argv +){ + sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), 0); +} +#endif /* SQLITE_TEST */ + +/* +** An instance of the following structure holds the context of a +** sum() or avg() aggregate computation. +*/ +typedef struct SumCtx SumCtx; +struct SumCtx { + double rSum; /* Floating point sum */ + i64 iSum; /* Integer sum */ + i64 cnt; /* Number of elements summed */ + u8 overflow; /* True if integer overflow seen */ + u8 approx; /* True if non-integer value was input to the sum */ +}; + +/* +** Routines used to compute the sum, average, and total. +** +** The SUM() function follows the (broken) SQL standard which means +** that it returns NULL if it sums over no inputs. TOTAL returns +** 0.0 in that case. In addition, TOTAL always returns a float where +** SUM might return an integer if it never encounters a floating point +** value. TOTAL never fails, but SUM might through an exception if +** it overflows an integer. +*/ +static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + SumCtx *p; + int type; + assert( argc==1 ); + p = sqlite3_aggregate_context(context, sizeof(*p)); + type = sqlite3_value_numeric_type(argv[0]); + if( p && type!=SQLITE_NULL ){ + p->cnt++; + if( type==SQLITE_INTEGER ){ + i64 v = sqlite3_value_int64(argv[0]); + p->rSum += v; + if( (p->approx|p->overflow)==0 ){ + i64 iNewSum = p->iSum + v; + int s1 = p->iSum >> (sizeof(i64)*8-1); + int s2 = v >> (sizeof(i64)*8-1); + int s3 = iNewSum >> (sizeof(i64)*8-1); + p->overflow = (s1&s2&~s3) | (~s1&~s2&s3); + p->iSum = iNewSum; + } + }else{ + p->rSum += sqlite3_value_double(argv[0]); + p->approx = 1; + } + } +} +static void sumFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, 0); + if( p && p->cnt>0 ){ + if( p->overflow ){ + sqlite3_result_error(context,"integer overflow",-1); + }else if( p->approx ){ + sqlite3_result_double(context, p->rSum); + }else{ + sqlite3_result_int64(context, p->iSum); + } + } +} +static void avgFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, 0); + if( p && p->cnt>0 ){ + sqlite3_result_double(context, p->rSum/(double)p->cnt); + } +} +static void totalFinalize(sqlite3_context *context){ + SumCtx *p; + p = sqlite3_aggregate_context(context, 0); + sqlite3_result_double(context, p ? p->rSum : 0.0); +} + +/* +** The following structure keeps track of state information for the +** count() aggregate function. +*/ +typedef struct CountCtx CountCtx; +struct CountCtx { + i64 n; +}; + +/* +** Routines to implement the count() aggregate function. +*/ +static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + CountCtx *p; + p = sqlite3_aggregate_context(context, sizeof(*p)); + if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ + p->n++; + } +} +static void countFinalize(sqlite3_context *context){ + CountCtx *p; + p = sqlite3_aggregate_context(context, 0); + sqlite3_result_int64(context, p ? p->n : 0); +} + +/* +** Routines to implement min() and max() aggregate functions. +*/ +static void minmaxStep(sqlite3_context *context, int argc, sqlite3_value **argv){ + Mem *pArg = (Mem *)argv[0]; + Mem *pBest; + + if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; + pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); + if( !pBest ) return; + + if( pBest->flags ){ + int max; + int cmp; + CollSeq *pColl = sqlite3GetFuncCollSeq(context); + /* This step function is used for both the min() and max() aggregates, + ** the only difference between the two being that the sense of the + ** comparison is inverted. For the max() aggregate, the + ** sqlite3_user_data() function returns (void *)-1. For min() it + ** returns (void *)db, where db is the sqlite3* database pointer. + ** Therefore the next statement sets variable 'max' to 1 for the max() + ** aggregate, or 0 for min(). + */ + max = sqlite3_user_data(context)!=0; + cmp = sqlite3MemCompare(pBest, pArg, pColl); + if( (max && cmp<0) || (!max && cmp>0) ){ + sqlite3VdbeMemCopy(pBest, pArg); + } + }else{ + sqlite3VdbeMemCopy(pBest, pArg); + } +} +static void minMaxFinalize(sqlite3_context *context){ + sqlite3_value *pRes; + pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); + if( pRes ){ + if( pRes->flags ){ + sqlite3_result_value(context, pRes); + } + sqlite3VdbeMemRelease(pRes); + } +} + + +/* +** This function registered all of the above C functions as SQL +** functions. This should be the only routine in this file with +** external linkage. +*/ +void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ + static const struct { + char *zName; + signed char nArg; + u8 argType; /* ff: db 1: 0, 2: 1, 3: 2,... N: N-1. */ + u8 eTextRep; /* 1: UTF-16. 0: UTF-8 */ + u8 needCollSeq; + void (*xFunc)(sqlite3_context*,int,sqlite3_value **); + } aFuncs[] = { + { "min", -1, 0, SQLITE_UTF8, 1, minmaxFunc }, + { "min", 0, 0, SQLITE_UTF8, 1, 0 }, + { "max", -1, 1, SQLITE_UTF8, 1, minmaxFunc }, + { "max", 0, 1, SQLITE_UTF8, 1, 0 }, + { "typeof", 1, 0, SQLITE_UTF8, 0, typeofFunc }, + { "length", 1, 0, SQLITE_UTF8, 0, lengthFunc }, + { "substr", 3, 0, SQLITE_UTF8, 0, substrFunc }, + { "abs", 1, 0, SQLITE_UTF8, 0, absFunc }, + { "round", 1, 0, SQLITE_UTF8, 0, roundFunc }, + { "round", 2, 0, SQLITE_UTF8, 0, roundFunc }, + { "upper", 1, 0, SQLITE_UTF8, 0, upperFunc }, + { "lower", 1, 0, SQLITE_UTF8, 0, lowerFunc }, + { "coalesce", -1, 0, SQLITE_UTF8, 0, ifnullFunc }, + { "coalesce", 0, 0, SQLITE_UTF8, 0, 0 }, + { "coalesce", 1, 0, SQLITE_UTF8, 0, 0 }, + { "hex", 1, 0, SQLITE_UTF8, 0, hexFunc }, + { "ifnull", 2, 0, SQLITE_UTF8, 1, ifnullFunc }, + { "random", -1, 0, SQLITE_UTF8, 0, randomFunc }, + { "randomblob", 1, 0, SQLITE_UTF8, 0, randomBlob }, + { "nullif", 2, 0, SQLITE_UTF8, 1, nullifFunc }, + { "sqlite_version", 0, 0, SQLITE_UTF8, 0, versionFunc}, + { "quote", 1, 0, SQLITE_UTF8, 0, quoteFunc }, + { "last_insert_rowid", 0, 0xff, SQLITE_UTF8, 0, last_insert_rowid }, + { "changes", 0, 0xff, SQLITE_UTF8, 0, changes }, + { "total_changes", 0, 0xff, SQLITE_UTF8, 0, total_changes }, + { "replace", 3, 0, SQLITE_UTF8, 0, replaceFunc }, + { "ltrim", 1, 1, SQLITE_UTF8, 0, trimFunc }, + { "ltrim", 2, 1, SQLITE_UTF8, 0, trimFunc }, + { "rtrim", 1, 2, SQLITE_UTF8, 0, trimFunc }, + { "rtrim", 2, 2, SQLITE_UTF8, 0, trimFunc }, + { "trim", 1, 3, SQLITE_UTF8, 0, trimFunc }, + { "trim", 2, 3, SQLITE_UTF8, 0, trimFunc }, + { "zeroblob", 1, 0, SQLITE_UTF8, 0, zeroblobFunc }, +#ifdef SQLITE_SOUNDEX + { "soundex", 1, 0, SQLITE_UTF8, 0, soundexFunc}, +#endif +#ifndef SQLITE_OMIT_LOAD_EXTENSION + { "load_extension", 1, 0xff, SQLITE_UTF8, 0, loadExt }, + { "load_extension", 2, 0xff, SQLITE_UTF8, 0, loadExt }, +#endif +#ifdef SQLITE_TEST + { "randstr", 2, 0, SQLITE_UTF8, 0, randStr }, + { "test_destructor", 1, 0xff, SQLITE_UTF8, 0, test_destructor}, + { "test_destructor_count", 0, 0, SQLITE_UTF8, 0, test_destructor_count}, + { "test_auxdata", -1, 0, SQLITE_UTF8, 0, test_auxdata}, + { "test_error", 1, 0, SQLITE_UTF8, 0, test_error}, +#endif + }; + static const struct { + char *zName; + signed char nArg; + u8 argType; + u8 needCollSeq; + void (*xStep)(sqlite3_context*,int,sqlite3_value**); + void (*xFinalize)(sqlite3_context*); + } aAggs[] = { + { "min", 1, 0, 1, minmaxStep, minMaxFinalize }, + { "max", 1, 1, 1, minmaxStep, minMaxFinalize }, + { "sum", 1, 0, 0, sumStep, sumFinalize }, + { "total", 1, 0, 0, sumStep, totalFinalize }, + { "avg", 1, 0, 0, sumStep, avgFinalize }, + { "count", 0, 0, 0, countStep, countFinalize }, + { "count", 1, 0, 0, countStep, countFinalize }, + }; + int i; + + for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){ + void *pArg; + u8 argType = aFuncs[i].argType; + if( argType==0xff ){ + pArg = db; + }else{ + pArg = (void*)(int)argType; + } + sqlite3CreateFunc(db, aFuncs[i].zName, aFuncs[i].nArg, + aFuncs[i].eTextRep, pArg, aFuncs[i].xFunc, 0, 0); + if( aFuncs[i].needCollSeq ){ + FuncDef *pFunc = sqlite3FindFunction(db, aFuncs[i].zName, + strlen(aFuncs[i].zName), aFuncs[i].nArg, aFuncs[i].eTextRep, 0); + if( pFunc && aFuncs[i].needCollSeq ){ + pFunc->needCollSeq = 1; + } + } + } +#ifndef SQLITE_OMIT_ALTERTABLE + sqlite3AlterFunctions(db); +#endif +#ifndef SQLITE_OMIT_PARSER + sqlite3AttachFunctions(db); +#endif + for(i=0; i<sizeof(aAggs)/sizeof(aAggs[0]); i++){ + void *pArg = (void*)(int)aAggs[i].argType; + sqlite3CreateFunc(db, aAggs[i].zName, aAggs[i].nArg, SQLITE_UTF8, + pArg, 0, aAggs[i].xStep, aAggs[i].xFinalize); + if( aAggs[i].needCollSeq ){ + FuncDef *pFunc = sqlite3FindFunction( db, aAggs[i].zName, + strlen(aAggs[i].zName), aAggs[i].nArg, SQLITE_UTF8, 0); + if( pFunc && aAggs[i].needCollSeq ){ + pFunc->needCollSeq = 1; + } + } + } + sqlite3RegisterDateTimeFunctions(db); + if( !sqlite3MallocFailed() ){ + int rc = sqlite3_overload_function(db, "MATCH", 2); + assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); + if( rc==SQLITE_NOMEM ){ + sqlite3FailedMalloc(); + } + } +#ifdef SQLITE_SSE + (void)sqlite3SseFunctions(db); +#endif +#ifdef SQLITE_CASE_SENSITIVE_LIKE + sqlite3RegisterLikeFunctions(db, 1); +#else + sqlite3RegisterLikeFunctions(db, 0); +#endif +} + +/* +** Set the LIKEOPT flag on the 2-argument function with the given name. +*/ +static void setLikeOptFlag(sqlite3 *db, const char *zName, int flagVal){ + FuncDef *pDef; + pDef = sqlite3FindFunction(db, zName, strlen(zName), 2, SQLITE_UTF8, 0); + if( pDef ){ + pDef->flags = flagVal; + } +} + +/* +** Register the built-in LIKE and GLOB functions. The caseSensitive +** parameter determines whether or not the LIKE operator is case +** sensitive. GLOB is always case sensitive. +*/ +void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ + struct compareInfo *pInfo; + if( caseSensitive ){ + pInfo = (struct compareInfo*)&likeInfoAlt; + }else{ + pInfo = (struct compareInfo*)&likeInfoNorm; + } + sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0); + sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0); + sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, + (struct compareInfo*)&globInfo, likeFunc, 0,0); + setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); + setLikeOptFlag(db, "like", + caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE); +} + +/* +** pExpr points to an expression which implements a function. If +** it is appropriate to apply the LIKE optimization to that function +** then set aWc[0] through aWc[2] to the wildcard characters and +** return TRUE. If the function is not a LIKE-style function then +** return FALSE. +*/ +int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ + FuncDef *pDef; + if( pExpr->op!=TK_FUNCTION || !pExpr->pList ){ + return 0; + } + if( pExpr->pList->nExpr!=2 ){ + return 0; + } + pDef = sqlite3FindFunction(db, (char*)pExpr->token.z, pExpr->token.n, 2, + SQLITE_UTF8, 0); + if( pDef==0 || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){ + return 0; + } + + /* The memcpy() statement assumes that the wildcard characters are + ** the first three statements in the compareInfo structure. The + ** asserts() that follow verify that assumption + */ + memcpy(aWc, pDef->pUserData, 3); + assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); + assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); + assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); + *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0; + return 1; +} |