summaryrefslogtreecommitdiffstats
path: root/third_party
diff options
context:
space:
mode:
authormbelshe@google.com <mbelshe@google.com@0039d316-1c4b-4281-b951-d872f2087c98>2009-08-12 02:17:14 +0000
committermbelshe@google.com <mbelshe@google.com@0039d316-1c4b-4281-b951-d872f2087c98>2009-08-12 02:17:14 +0000
commit14239acc00731e94736ac62e80fc6b17c31ea131 (patch)
tree4638c1895f339b829145df4292d5c62ce8c155a4 /third_party
parentd734f220da466c52f94423acc91bb347ef8811dd (diff)
downloadchromium_src-14239acc00731e94736ac62e80fc6b17c31ea131.zip
chromium_src-14239acc00731e94736ac62e80fc6b17c31ea131.tar.gz
chromium_src-14239acc00731e94736ac62e80fc6b17c31ea131.tar.bz2
Major changes to the Chrome allocator.
Changes include: * Fix tcmalloc to release memory. Implements the TCMalloc_SystemCommit() mechanism so that tcmalloc can implement SystemRelease() and later reuse that memory. * Enable dynamic switching of allocators based on an environment variable. Users can now switch between tcmalloc, jemalloc, the default windows heap, and the windows low-fragmentation heap. * Implements set_new_mode() across all allocators so that we can be sure that out-of-memory conditions are handled safely. BUG=18345 TEST=none; plan to get all unit tests running through these allocators. Review URL: http://codereview.chromium.org/165275 git-svn-id: svn://svn.chromium.org/chrome/trunk/src@23140 0039d316-1c4b-4281-b951-d872f2087c98
Diffstat (limited to 'third_party')
-rw-r--r--third_party/tcmalloc/README60
-rw-r--r--third_party/tcmalloc/allocator_shim.cc256
-rw-r--r--third_party/tcmalloc/generic_allocators.cc130
-rw-r--r--third_party/tcmalloc/jemalloc/jemalloc.c7276
-rw-r--r--third_party/tcmalloc/jemalloc/jemalloc.h222
-rw-r--r--third_party/tcmalloc/jemalloc/ql.h115
-rw-r--r--third_party/tcmalloc/jemalloc/qr.h99
-rw-r--r--third_party/tcmalloc/jemalloc/rb.h983
-rw-r--r--third_party/tcmalloc/page_heap.cc495
-rw-r--r--third_party/tcmalloc/port.cc301
-rw-r--r--third_party/tcmalloc/system-alloc.cc505
-rw-r--r--third_party/tcmalloc/system-alloc.h119
-rw-r--r--third_party/tcmalloc/tcmalloc.cc1293
-rw-r--r--third_party/tcmalloc/tcmalloc.gyp42
-rw-r--r--third_party/tcmalloc/win_allocator.cc46
15 files changed, 11939 insertions, 3 deletions
diff --git a/third_party/tcmalloc/README b/third_party/tcmalloc/README
new file mode 100644
index 0000000..b72502c
--- /dev/null
+++ b/third_party/tcmalloc/README
@@ -0,0 +1,60 @@
+Notes about the Chrome port of tcmalloc & jemalloc.
+
+Background
+----------
+We use this library as a generic way to fork into any of several allocators.
+Currently we can, at runtime, switch between:
+ the default windows allocator
+ the windows low-fragmentation-heap
+ tcmalloc
+ jemalloc (the heap used most notably within Mozilla Firefox)
+
+The mechanism for hooking LIBCMT in windows is rather tricky. The core
+problem is that by default, the windows library does not declare malloc and
+free as weak symbols. Because of this, they cannot be overriden. To work
+around this, we start with the LIBCMT.LIB, and manually remove all allocator
+related functions from it using the visual studio library tool. Once removed,
+we can now link against the library and provide custom versions of the
+allocator related functionality.
+
+
+Source code
+-----------
+Everything within the directory tcmalloc/tcmalloc is pulled directly from the
+google-perftools repository. For the most part, tcmalloc is a stock build
+from there.
+
+We have forked a few files. We always push our changes upstream, so over
+time the forked files should disappear. Currently forked files include:
+ page_heap.cc
+ port.cc
+ system-alloc.cc
+ system-alloc.h
+ tcmalloc.cc
+
+Adding a new allocator requires definition of the following five functions:
+ extern "C" {
+ bool init();
+ void* malloc(size_t s);
+ void* realloc(void* p, size_t s);
+ void free(void* s);
+ size_t msize(void* p);
+ }
+
+All other allocation related functions (new/delete/calloc/etc) have been
+implemented generically to work across all allocators.
+
+
+Usage
+-----
+You can use the different allocators by setting the environment variable
+CHROME_ALLOCATOR to:
+ "tcmalloc" - TC Malloc (default)
+ "jemalloc" - JE Malloc
+ "winheap" - Windows default heap
+ "winlfh" - Windows Low-Fragmentation heap
+
+
+Local modifications
+-------------------
+jemalloc has been modified slightly to work within the Chromium build.
diff --git a/third_party/tcmalloc/allocator_shim.cc b/third_party/tcmalloc/allocator_shim.cc
new file mode 100644
index 0000000..9877059
--- /dev/null
+++ b/third_party/tcmalloc/allocator_shim.cc
@@ -0,0 +1,256 @@
+// Copyright (c) 2009 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <config.h>
+
+// When defined, different heap allocators can be used via an environment
+// variable set before running the program. This may reduce the amount
+// of inlining that we get with malloc/free/etc. Disabling makes it
+// so that only tcmalloc can be used.
+#define ENABLE_DYNAMIC_ALLOCATOR_SWITCHING
+
+// TODO(mbelshe): Ensure that all calls to tcmalloc have the proper call depth
+// from the "user code" so that debugging tools (HeapChecker) can work.
+
+// __THROW is defined in glibc systems. It means, counter-intuitively,
+// "This function will never throw an exception." It's an optional
+// optimization tool, but we may need to use it to match glibc prototypes.
+#ifndef __THROW // I guess we're not on a glibc system
+# define __THROW // __THROW is just an optimization, so ok to make it ""
+#endif
+
+// new_mode behaves similarly to MSVC's _set_new_mode.
+// If flag is 0 (default), calls to malloc will behave normally.
+// If flag is 1, calls to malloc will behave like calls to new,
+// and the std_new_handler will be invoked on failure.
+// Can be set by calling _set_new_mode().
+static int new_mode = 0;
+
+typedef enum {
+ TCMALLOC, // TCMalloc is the default allocator.
+ JEMALLOC, // JEMalloc
+ WINDEFAULT, // Windows Heap
+ WINLFH, // Windows LFH Heap
+} Allocator;
+
+// This is the default allocator.
+static Allocator allocator = TCMALLOC;
+
+// We include tcmalloc and the win_allocator to get as much inlining as
+// possible.
+#include "tcmalloc.cc"
+#include "win_allocator.cc"
+
+// Forward declarations from jemalloc.
+extern "C" {
+void* je_malloc(size_t s);
+void* je_realloc(void* p, size_t s);
+void je_free(void* s);
+size_t je_msize(void* p);
+bool je_malloc_init_hard();
+}
+
+extern "C" {
+
+// Call the new handler, if one has been set.
+// Returns true on successfully calling the handler, false otherwise.
+inline bool call_new_handler(bool nothrow) {
+ // Get the current new handler. NB: this function is not
+ // thread-safe. We make a feeble stab at making it so here, but
+ // this lock only protects against tcmalloc interfering with
+ // itself, not with other libraries calling set_new_handler.
+ std::new_handler nh;
+ {
+ SpinLockHolder h(&set_new_handler_lock);
+ nh = std::set_new_handler(0);
+ (void) std::set_new_handler(nh);
+ }
+#if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
+ if (!nh)
+ return false;
+ // Since exceptions are disabled, we don't really know if new_handler
+ // failed. Assume it will abort if it fails.
+ (*nh)();
+ return true;
+#else
+ // If no new_handler is established, the allocation failed.
+ if (!nh) {
+ if (nothrow)
+ return 0;
+ throw std::bad_alloc();
+ }
+ // Otherwise, try the new_handler. If it returns, retry the
+ // allocation. If it throws std::bad_alloc, fail the allocation.
+ // if it throws something else, don't interfere.
+ try {
+ (*nh)();
+ } catch (const std::bad_alloc&) {
+ if (!nothrow)
+ throw;
+ return p;
+ }
+#endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
+}
+
+void* malloc(size_t size) __THROW {
+ void* ptr;
+ for (;;) {
+#ifdef ENABLE_DYNAMIC_ALLOCATOR_SWITCHING
+ switch (allocator) {
+ case JEMALLOC:
+ ptr = je_malloc(size);
+ break;
+ case WINDEFAULT:
+ case WINLFH:
+ ptr = win_heap_malloc(size);
+ break;
+ case TCMALLOC:
+ default:
+ ptr = do_malloc(size);
+ break;
+ }
+#else
+ // TCMalloc case.
+ ptr = do_malloc(size);
+#endif
+ if (ptr)
+ return ptr;
+
+ if (!new_mode || !call_new_handler(true))
+ break;
+ }
+ return ptr;
+}
+
+void free(void* p) __THROW {
+#ifdef ENABLE_DYNAMIC_ALLOCATOR_SWITCHING
+ switch (allocator) {
+ case JEMALLOC:
+ je_free(p);
+ return;
+ case WINDEFAULT:
+ case WINLFH:
+ win_heap_free(p);
+ return;
+ }
+#endif
+ // TCMalloc case.
+ do_free(p);
+}
+
+void* realloc(void* ptr, size_t size) __THROW {
+ void* new_ptr;
+ for (;;) {
+#ifdef ENABLE_DYNAMIC_ALLOCATOR_SWITCHING
+ switch (allocator) {
+ case JEMALLOC:
+ new_ptr = je_realloc(ptr, size);
+ break;
+ case WINDEFAULT:
+ case WINLFH:
+ new_ptr = win_heap_realloc(ptr, size);
+ break;
+ case TCMALLOC:
+ default:
+ new_ptr = do_realloc(ptr, size);
+ break;
+ }
+#else
+ // TCMalloc case.
+ new_ptr = do_realloc(ptr, size);
+#endif
+ if (new_ptr)
+ return new_ptr;
+ if (!new_mode || !call_new_handler(true))
+ break;
+ }
+ return new_ptr;
+}
+
+// TODO(mbelshe): Implement this for other allocators.
+void malloc_stats(void) __THROW {
+#ifdef ENABLE_DYNAMIC_ALLOCATOR_SWITCHING
+ switch (allocator) {
+ case JEMALLOC:
+ // No stats.
+ return;
+ case WINDEFAULT:
+ case WINLFH:
+ // No stats.
+ return;
+ }
+#endif
+ tc_malloc_stats();
+}
+
+#ifdef WIN32
+
+extern "C" size_t _msize(void* p) {
+#ifdef ENABLE_DYNAMIC_ALLOCATOR_SWITCHING
+ switch (allocator) {
+ case JEMALLOC:
+ return je_msize(p);
+ case WINDEFAULT:
+ case WINLFH:
+ return win_heap_msize(p);
+ }
+#endif
+ return MallocExtension::instance()->GetAllocatedSize(p);
+}
+
+// This is included to resolve references from libcmt.
+extern "C" intptr_t _get_heap_handle() {
+ return 0;
+}
+
+// The CRT heap initialization stub.
+extern "C" int _heap_init() {
+#ifdef ENABLE_DYNAMIC_ALLOCATOR_SWITCHING
+ const char* override = GetenvBeforeMain("CHROME_ALLOCATOR");
+ if (override) {
+ if (!stricmp(override, "jemalloc"))
+ allocator = JEMALLOC;
+ else if (!stricmp(override, "winheap"))
+ allocator = WINDEFAULT;
+ else if (!stricmp(override, "winlfh"))
+ allocator = WINLFH;
+ else if (!stricmp(override, "tcmalloc"))
+ allocator = TCMALLOC;
+ }
+
+ switch (allocator) {
+ case JEMALLOC:
+ return je_malloc_init_hard() ? 0 : 1;
+ case WINDEFAULT:
+ return win_heap_init(false) ? 1 : 0;
+ case WINLFH:
+ return win_heap_init(true) ? 1 : 0;
+ case TCMALLOC:
+ default:
+ // fall through
+ break;
+ }
+#endif
+ // Initializing tcmalloc.
+ // We intentionally leak this object. It lasts for the process
+ // lifetime. Trying to teardown at _heap_term() is so late that
+ // you can't do anything useful anyway.
+ new TCMallocGuard();
+ return 1;
+}
+
+// The CRT heap cleanup stub.
+extern "C" void _heap_term() {}
+
+// We set this to 1 because part of the CRT uses a check of _crtheap != 0
+// to test whether the CRT has been initialized. Once we've ripped out
+// the allocators from libcmt, we need to provide this definition so that
+// the rest of the CRT is still usable.
+extern "C" void* _crtheap = reinterpret_cast<void*>(1);
+
+#endif // WIN32
+
+#include "generic_allocators.cc"
+
+} // extern C
diff --git a/third_party/tcmalloc/generic_allocators.cc b/third_party/tcmalloc/generic_allocators.cc
new file mode 100644
index 0000000..343c9e4
--- /dev/null
+++ b/third_party/tcmalloc/generic_allocators.cc
@@ -0,0 +1,130 @@
+// Copyright (c) 2009 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// When possible, we implement allocator functions on top of the basic
+// low-level functions malloc() and free(). This way, including a new
+// allocator is as simple as providing just a small interface.
+//
+// As such, this file should not contain any allocator-specific code.
+
+// Implement a C++ style allocation, which always calls the new_handler
+// on failure.
+inline void* generic_cpp_alloc(size_t size, bool nothrow) {
+ void* ptr;
+ for (;;) {
+ ptr = malloc(size);
+ if (ptr)
+ return ptr;
+ if (!call_new_handler(nothrow))
+ break;
+ }
+ return ptr;
+}
+
+extern "C++" {
+
+void* __cdecl operator new(size_t size) {
+ return generic_cpp_alloc(size, false);
+}
+
+void operator delete(void* p) __THROW {
+ free(p);
+}
+
+void* operator new[](size_t size) {
+ return generic_cpp_alloc(size, false);
+}
+
+void operator delete[](void* p) __THROW {
+ free(p);
+}
+
+void* operator new(size_t size, const std::nothrow_t& nt) __THROW {
+ return generic_cpp_alloc(size, true);
+}
+
+void* operator new[](size_t size, const std::nothrow_t& nt) __THROW {
+ return generic_cpp_alloc(size, true);
+}
+
+} // extern "C++"
+
+extern "C" {
+
+// This function behaves similarly to MSVC's _set_new_mode.
+// If flag is 0 (default), calls to malloc will behave normally.
+// If flag is 1, calls to malloc will behave like calls to new,
+// and the std_new_handler will be invoked on failure.
+// Returns the previous mode.
+int _set_new_mode(int flag) __THROW {
+ int old_mode = new_mode;
+ new_mode = flag;
+ return old_mode;
+}
+
+void* calloc(size_t n, size_t elem_size) __THROW {
+ // Overflow check
+ const size_t size = n * elem_size;
+ if (elem_size != 0 && size / elem_size != n) return NULL;
+
+ void* result = malloc(size);
+ if (result != NULL) {
+ memset(result, 0, size);
+ }
+ return result;
+}
+
+void cfree(void* p) __THROW {
+ free(p);
+}
+
+#ifdef WIN32
+
+void* _recalloc(void* p, size_t n, size_t elem_size) {
+ const size_t size = n * elem_size;
+ if (elem_size != 0 && size / elem_size != n) return NULL;
+
+ void* result = realloc(p, size);
+ memset(result, 0, size);
+ return result;
+}
+
+void* _calloc_impl(size_t n, size_t size) {
+ return calloc(n, size);
+}
+
+#ifndef NDEBUG
+#undef malloc
+#undef free
+#undef calloc
+int _CrtDbgReport(int, const char*, int, const char*, const char*, ...) {
+ return 0;
+}
+
+int _CrtDbgReportW(int, const wchar_t*, int, const wchar_t*,
+ const wchar_t*, ...) {
+ return 0;
+}
+
+int _CrtSetReportMode(int, int) {
+ return 0;
+}
+
+void* _malloc_dbg(size_t size, int , const char*, int) {
+ return malloc(size);
+}
+
+void _free_dbg(void* ptr, int) {
+ free(ptr);
+}
+
+void* _calloc_dbg(size_t n, size_t size, int, const char*, int) {
+ return calloc(n, size);
+}
+#endif // NDEBUG
+
+#endif // WIN32
+
+} // extern C
+
diff --git a/third_party/tcmalloc/jemalloc/jemalloc.c b/third_party/tcmalloc/jemalloc/jemalloc.c
new file mode 100644
index 0000000..65eb0b3
--- /dev/null
+++ b/third_party/tcmalloc/jemalloc/jemalloc.c
@@ -0,0 +1,7276 @@
+/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */
+/* vim:set softtabstop=8 shiftwidth=8: */
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems. The following
+ * features are included for this purpose:
+ *
+ * + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ * contention and cache sloshing.
+ *
+ * + Cache line sharing between arenas is avoided for internal data
+ * structures.
+ *
+ * + Memory is managed in chunks and runs (chunks can be split into runs),
+ * rather than as individual pages. This provides a constant-time
+ * mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained. Allocations are broken into
+ * categories according to size class. Assuming runtime defaults, 4 kB pages
+ * and a 16 byte quantum on a 32-bit system, the size classes in each category
+ * are as follows:
+ *
+ * |=====================================|
+ * | Category | Subcategory | Size |
+ * |=====================================|
+ * | Small | Tiny | 2 |
+ * | | | 4 |
+ * | | | 8 |
+ * | |----------------+---------|
+ * | | Quantum-spaced | 16 |
+ * | | | 32 |
+ * | | | 48 |
+ * | | | ... |
+ * | | | 480 |
+ * | | | 496 |
+ * | | | 512 |
+ * | |----------------+---------|
+ * | | Sub-page | 1 kB |
+ * | | | 2 kB |
+ * |=====================================|
+ * | Large | 4 kB |
+ * | | 8 kB |
+ * | | 12 kB |
+ * | | ... |
+ * | | 1012 kB |
+ * | | 1016 kB |
+ * | | 1020 kB |
+ * |=====================================|
+ * | Huge | 1 MB |
+ * | | 2 MB |
+ * | | 3 MB |
+ * | | ... |
+ * |=====================================|
+ *
+ * A different mechanism is used for each category:
+ *
+ * Small : Each size class is segregated into its own set of runs. Each run
+ * maintains a bitmap of which regions are free/allocated.
+ *
+ * Large : Each allocation is backed by a dedicated run. Metadata are stored
+ * in the associated arena chunk header maps.
+ *
+ * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ * Metadata are stored in a separate red-black tree.
+ *
+ *******************************************************************************
+ */
+
+/*
+ * NOTE(mbelshe): Added these defines to fit within chromium build system.
+ */
+#define MOZ_MEMORY_WINDOWS
+#define MOZ_MEMORY
+#define DONT_OVERRIDE_LIBC
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
+ * defaults the A and J runtime options to off. These settings are appropriate
+ * for production systems.
+ */
+#ifndef MOZ_MEMORY_DEBUG
+# define MALLOC_PRODUCTION
+#endif
+
+/*
+ * Use only one arena by default. Mozilla does not currently make extensive
+ * use of concurrent allocation, so the increased fragmentation associated with
+ * multiple arenas is not warranted.
+ */
+#define MOZ_MEMORY_NARENAS_DEFAULT_ONE
+
+/*
+ * MALLOC_STATS enables statistics calculation, and is required for
+ * jemalloc_stats().
+ */
+#define MALLOC_STATS
+
+#ifndef MALLOC_PRODUCTION
+ /*
+ * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+ * inline functions.
+ */
+# define MALLOC_DEBUG
+
+ /* Memory filling (junk/zero). */
+# define MALLOC_FILL
+
+ /* Allocation tracing. */
+# ifndef MOZ_MEMORY_WINDOWS
+# define MALLOC_UTRACE
+# endif
+
+ /* Support optional abort() on OOM. */
+# define MALLOC_XMALLOC
+
+ /* Support SYSV semantics. */
+# define MALLOC_SYSV
+#endif
+
+/*
+ * MALLOC_VALIDATE causes malloc_usable_size() to perform some pointer
+ * validation. There are many possible errors that validation does not even
+ * attempt to detect.
+ */
+#define MALLOC_VALIDATE
+
+/* Embed no-op macros that support memory allocation tracking via valgrind. */
+#ifdef MOZ_VALGRIND
+# define MALLOC_VALGRIND
+#endif
+#ifdef MALLOC_VALGRIND
+# include <valgrind/valgrind.h>
+#else
+# define VALGRIND_MALLOCLIKE_BLOCK(addr, sizeB, rzB, is_zeroed)
+# define VALGRIND_FREELIKE_BLOCK(addr, rzB)
+#endif
+
+/*
+ * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
+ * re-balances arena load if exponentially averaged contention exceeds a
+ * certain threshold.
+ */
+/* #define MALLOC_BALANCE */
+
+#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN))
+ /*
+ * MALLOC_PAGEFILE causes all mmap()ed memory to be backed by temporary
+ * files, so that if a chunk is mapped, it is guaranteed to be swappable.
+ * This avoids asynchronous OOM failures that are due to VM over-commit.
+ *
+ * XXX OS X over-commits, so we should probably use mmap() instead of
+ * vm_allocate(), so that MALLOC_PAGEFILE works.
+ */
+#define MALLOC_PAGEFILE
+#endif
+
+#ifdef MALLOC_PAGEFILE
+/* Write size when initializing a page file. */
+# define MALLOC_PAGEFILE_WRITE_SIZE 512
+#endif
+
+#ifdef MOZ_MEMORY_LINUX
+#define _GNU_SOURCE /* For mremap(2). */
+#define issetugid() 0
+#if 0 /* Enable in order to test decommit code on Linux. */
+# define MALLOC_DECOMMIT
+#endif
+#endif
+
+#ifndef MOZ_MEMORY_WINCE
+#include <sys/types.h>
+
+#include <errno.h>
+#include <stdlib.h>
+#endif
+#include <limits.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <string.h>
+
+#ifdef MOZ_MEMORY_WINDOWS
+#ifndef MOZ_MEMORY_WINCE
+//#include <cruntime.h>
+//#include <internal.h>
+#include <io.h>
+#else
+#include <cmnintrin.h>
+#include <crtdefs.h>
+#define SIZE_MAX UINT_MAX
+#endif
+#include <windows.h>
+
+#pragma warning( disable: 4267 4996 4146 )
+
+#define false FALSE
+#define true TRUE
+#define inline __inline
+#define SIZE_T_MAX SIZE_MAX
+#define STDERR_FILENO 2
+#define PATH_MAX MAX_PATH
+#define vsnprintf _vsnprintf
+
+#ifndef NO_TLS
+static unsigned long tlsIndex = 0xffffffff;
+#endif
+
+#define __thread
+#ifdef MOZ_MEMORY_WINCE
+#define _pthread_self() GetCurrentThreadId()
+#else
+#define _pthread_self() __threadid()
+#endif
+#define issetugid() 0
+
+#ifndef MOZ_MEMORY_WINCE
+/* use MSVC intrinsics */
+#pragma intrinsic(_BitScanForward)
+static __forceinline int
+ffs(int x)
+{
+ unsigned long i;
+
+ if (_BitScanForward(&i, x) != 0)
+ return (i + 1);
+
+ return (0);
+}
+
+/* Implement getenv without using malloc */
+static char mozillaMallocOptionsBuf[64];
+
+#define getenv xgetenv
+static char *
+getenv(const char *name)
+{
+
+ if (GetEnvironmentVariableA(name, (LPSTR)&mozillaMallocOptionsBuf,
+ sizeof(mozillaMallocOptionsBuf)) > 0)
+ return (mozillaMallocOptionsBuf);
+
+ return (NULL);
+}
+
+#else /* WIN CE */
+
+#define ENOMEM 12
+#define EINVAL 22
+
+static __forceinline int
+ffs(int x)
+{
+
+ return 32 - _CountLeadingZeros((-x) & x);
+}
+#endif
+
+typedef unsigned char uint8_t;
+typedef unsigned uint32_t;
+typedef unsigned long long uint64_t;
+typedef unsigned long long uintmax_t;
+typedef long ssize_t;
+
+#define MALLOC_DECOMMIT
+#endif
+
+#ifndef MOZ_MEMORY_WINDOWS
+#ifndef MOZ_MEMORY_SOLARIS
+#include <sys/cdefs.h>
+#endif
+#ifndef __DECONST
+# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+#endif
+#ifndef MOZ_MEMORY
+__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 180599 2008-07-18 19:35:44Z jasone $");
+#include "libc_private.h"
+#ifdef MALLOC_DEBUG
+# define _LOCK_DEBUG
+#endif
+#include "spinlock.h"
+#include "namespace.h"
+#endif
+#include <sys/mman.h>
+#ifndef MADV_FREE
+# define MADV_FREE MADV_DONTNEED
+#endif
+#ifndef MAP_NOSYNC
+# define MAP_NOSYNC 0
+#endif
+#include <sys/param.h>
+#ifndef MOZ_MEMORY
+#include <sys/stddef.h>
+#endif
+#include <sys/time.h>
+#include <sys/types.h>
+#ifndef MOZ_MEMORY_SOLARIS
+#include <sys/sysctl.h>
+#endif
+#include <sys/uio.h>
+#ifndef MOZ_MEMORY
+#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
+
+#include <machine/atomic.h>
+#include <machine/cpufunc.h>
+#include <machine/vmparam.h>
+#endif
+
+#include <errno.h>
+#include <limits.h>
+#ifndef SIZE_T_MAX
+# define SIZE_T_MAX SIZE_MAX
+#endif
+#include <pthread.h>
+#ifdef MOZ_MEMORY_DARWIN
+#define _pthread_self pthread_self
+#define _pthread_mutex_init pthread_mutex_init
+#define _pthread_mutex_trylock pthread_mutex_trylock
+#define _pthread_mutex_lock pthread_mutex_lock
+#define _pthread_mutex_unlock pthread_mutex_unlock
+#endif
+#include <sched.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#ifndef MOZ_MEMORY_DARWIN
+#include <strings.h>
+#endif
+#include <unistd.h>
+
+#ifdef MOZ_MEMORY_DARWIN
+#include <libkern/OSAtomic.h>
+#include <mach/mach_error.h>
+#include <mach/mach_init.h>
+#include <mach/vm_map.h>
+#include <malloc/malloc.h>
+#endif
+
+#ifndef MOZ_MEMORY
+#include "un-namespace.h"
+#endif
+
+#endif
+
+#include "jemalloc.h"
+
+#undef bool
+#define bool jemalloc_bool
+
+#ifdef MOZ_MEMORY_DARWIN
+static const bool __isthreaded = true;
+#endif
+
+#if defined(MOZ_MEMORY_SOLARIS) && defined(MAP_ALIGN) && !defined(JEMALLOC_NEVER_USES_MAP_ALIGN)
+#define JEMALLOC_USES_MAP_ALIGN /* Required on Solaris 10. Might improve performance elsewhere. */
+#endif
+
+#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
+#define JEMALLOC_USES_MAP_ALIGN /* Required for Windows CE < 6 */
+#endif
+
+#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+
+#include "qr.h"
+#include "ql.h"
+#ifdef MOZ_MEMORY_WINDOWS
+ /* MSVC++ does not support C99 variable-length arrays. */
+# define RB_NO_C99_VARARRAYS
+#endif
+#include "rb.h"
+
+#ifdef MALLOC_DEBUG
+ /* Disable inlining to make debugging easier. */
+#ifdef inline
+#undef inline
+#endif
+
+# define inline
+#endif
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define STRERROR_BUF 64
+
+/* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
+# define QUANTUM_2POW_MIN 4
+#ifdef MOZ_MEMORY_SIZEOF_PTR_2POW
+# define SIZEOF_PTR_2POW MOZ_MEMORY_SIZEOF_PTR_2POW
+#else
+# define SIZEOF_PTR_2POW 2
+#endif
+#define PIC
+#ifndef MOZ_MEMORY_DARWIN
+static const bool __isthreaded = true;
+#else
+# define NO_TLS
+#endif
+#if 0
+#ifdef __i386__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 2
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __ia64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+#endif
+#ifdef __alpha__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __sparc64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __amd64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __arm__
+# define QUANTUM_2POW_MIN 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __mips__
+# define QUANTUM_2POW_MIN 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __powerpc__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 2
+#endif
+#endif
+
+#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
+
+/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
+#ifndef SIZEOF_INT_2POW
+# define SIZEOF_INT_2POW 2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+# define NO_TLS
+#endif
+
+#ifdef NO_TLS
+ /* MALLOC_BALANCE requires TLS. */
+# ifdef MALLOC_BALANCE
+# undef MALLOC_BALANCE
+# endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
+#define CHUNK_2POW_DEFAULT 21
+#else
+#define CHUNK_2POW_DEFAULT 20
+#endif
+/* Maximum number of dirty pages per arena. */
+#define DIRTY_MAX_DEFAULT (1U << 10)
+
+/* Default reserve chunks. */
+#define RESERVE_MIN_2POW_DEFAULT 1
+/*
+ * Default range (in chunks) between reserve_min and reserve_max, in addition
+ * to the mandatory one chunk per arena.
+ */
+#ifdef MALLOC_PAGEFILE
+# define RESERVE_RANGE_2POW_DEFAULT 5
+#else
+# define RESERVE_RANGE_2POW_DEFAULT 0
+#endif
+
+/*
+ * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
+ * so over-estimates are okay (up to a point), but under-estimates will
+ * negatively affect performance.
+ */
+#define CACHELINE_2POW 6
+#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
+
+/* Smallest size class to support. */
+#define TINY_MIN_2POW 1
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define SMALL_MAX_2POW_DEFAULT 9
+#define SMALL_MAX_DEFAULT (1U << SMALL_MAX_2POW_DEFAULT)
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints. The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant). This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define RUN_BFP 12
+/* \/ Implicit binary fixed point. */
+#define RUN_MAX_OVRHD 0x0000003dU
+#define RUN_MAX_OVRHD_RELAX 0x00001800U
+
+/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
+#define RUN_MAX_SMALL_2POW 15
+#define RUN_MAX_SMALL (1U << RUN_MAX_SMALL_2POW)
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU. If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+# define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock. Backing off past a certain point
+ * can actually waste time.
+ */
+#define SPIN_LIMIT_2POW 11
+
+/*
+ * Conversion from spinning to blocking is expensive; we use (1U <<
+ * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
+ * worst-case spinning.
+ */
+#define BLOCK_COST_2POW 4
+
+#ifdef MALLOC_BALANCE
+ /*
+ * We use an exponential moving average to track recent lock contention,
+ * where the size of the history window is N, and alpha=2/(N+1).
+ *
+ * Due to integer math rounding, very small values here can cause
+ * substantial degradation in accuracy, thus making the moving average decay
+ * faster than it would with precise calculation.
+ */
+# define BALANCE_ALPHA_INV_2POW 9
+
+ /*
+ * Threshold value for the exponential moving contention average at which to
+ * re-assign a thread.
+ */
+# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
+#endif
+
+/******************************************************************************/
+
+/*
+ * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
+ * places, because they require malloc()ed memory, which causes bootstrapping
+ * issues in some cases.
+ */
+#if defined(MOZ_MEMORY_WINDOWS)
+#define malloc_mutex_t CRITICAL_SECTION
+#define malloc_spinlock_t CRITICAL_SECTION
+#elif defined(MOZ_MEMORY_DARWIN)
+typedef struct {
+ OSSpinLock lock;
+} malloc_mutex_t;
+typedef struct {
+ OSSpinLock lock;
+} malloc_spinlock_t;
+#elif defined(MOZ_MEMORY)
+typedef pthread_mutex_t malloc_mutex_t;
+typedef pthread_mutex_t malloc_spinlock_t;
+#else
+/* XXX these should #ifdef these for freebsd (and linux?) only */
+typedef struct {
+ spinlock_t lock;
+} malloc_mutex_t;
+typedef malloc_spinlock_t malloc_mutex_t;
+#endif
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+#if defined(MOZ_MEMORY_WINDOWS)
+/* No init lock for Windows. */
+#elif defined(MOZ_MEMORY_DARWIN)
+static malloc_mutex_t init_lock = {OS_SPINLOCK_INIT};
+#elif defined(MOZ_MEMORY_LINUX)
+static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
+#elif defined(MOZ_MEMORY)
+static malloc_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER;
+#else
+static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
+#endif
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+ /*
+ * Number of allocation requests that corresponded to the size of this
+ * bin.
+ */
+ uint64_t nrequests;
+
+ /* Total number of runs created for this bin's size class. */
+ uint64_t nruns;
+
+ /*
+ * Total number of runs reused by extracting them from the runs tree for
+ * this bin's size class.
+ */
+ uint64_t reruns;
+
+ /* High-water mark for this bin. */
+ unsigned long highruns;
+
+ /* Current number of runs in this bin. */
+ unsigned long curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+ /* Number of bytes currently mapped. */
+ size_t mapped;
+
+ /*
+ * Total number of purge sweeps, total number of madvise calls made,
+ * and total pages purged in order to keep dirty unused memory under
+ * control.
+ */
+ uint64_t npurge;
+ uint64_t nmadvise;
+ uint64_t purged;
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Total number of decommit/commit operations, and total number of
+ * pages decommitted.
+ */
+ uint64_t ndecommit;
+ uint64_t ncommit;
+ uint64_t decommitted;
+#endif
+
+ /* Per-size-category statistics. */
+ size_t allocated_small;
+ uint64_t nmalloc_small;
+ uint64_t ndalloc_small;
+
+ size_t allocated_large;
+ uint64_t nmalloc_large;
+ uint64_t ndalloc_large;
+
+#ifdef MALLOC_BALANCE
+ /* Number of times this arena reassigned a thread due to contention. */
+ uint64_t nbalance;
+#endif
+};
+
+typedef struct chunk_stats_s chunk_stats_t;
+struct chunk_stats_s {
+ /* Number of chunks that were allocated. */
+ uint64_t nchunks;
+
+ /* High-water mark for number of chunks allocated. */
+ unsigned long highchunks;
+
+ /*
+ * Current number of chunks allocated. This value isn't maintained for
+ * any other purpose, so keep track of it in order to be able to set
+ * highchunks.
+ */
+ unsigned long curchunks;
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Extent data structures.
+ */
+
+/* Tree of extents. */
+typedef struct extent_node_s extent_node_t;
+struct extent_node_s {
+ /* Linkage for the size/address-ordered tree. */
+ rb_node(extent_node_t) link_szad;
+
+ /* Linkage for the address-ordered tree. */
+ rb_node(extent_node_t) link_ad;
+
+ /* Pointer to the extent that this tree node is responsible for. */
+ void *addr;
+
+ /* Total region size. */
+ size_t size;
+};
+typedef rb_tree(extent_node_t) extent_tree_t;
+
+/******************************************************************************/
+/*
+ * Radix tree data structures.
+ */
+
+#ifdef MALLOC_VALIDATE
+ /*
+ * Size of each radix tree node (must be a power of 2). This impacts tree
+ * depth.
+ */
+# if (SIZEOF_PTR == 4)
+# define MALLOC_RTREE_NODESIZE (1U << 14)
+# else
+# define MALLOC_RTREE_NODESIZE CACHELINE
+# endif
+
+typedef struct malloc_rtree_s malloc_rtree_t;
+struct malloc_rtree_s {
+ malloc_spinlock_t lock;
+ void **root;
+ unsigned height;
+ unsigned level2bits[1]; /* Dynamically sized. */
+};
+#endif
+
+/******************************************************************************/
+/*
+ * Reserve data structures.
+ */
+
+/* Callback registration. */
+typedef struct reserve_reg_s reserve_reg_t;
+struct reserve_reg_s {
+ /* Linkage for list of all registered callbacks. */
+ ql_elm(reserve_reg_t) link;
+
+ /* Callback function pointer. */
+ reserve_cb_t *cb;
+
+ /* Opaque application data pointer. */
+ void *ctx;
+
+ /*
+ * Sequence number of condition notification most recently sent to this
+ * callback.
+ */
+ uint64_t seq;
+};
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+/* Each element of the chunk map corresponds to one page within the chunk. */
+typedef struct arena_chunk_map_s arena_chunk_map_t;
+struct arena_chunk_map_s {
+ /*
+ * Linkage for run trees. There are two disjoint uses:
+ *
+ * 1) arena_t's runs_avail tree.
+ * 2) arena_run_t conceptually uses this linkage for in-use non-full
+ * runs, rather than directly embedding linkage.
+ */
+ rb_node(arena_chunk_map_t) link;
+
+ /*
+ * Run address (or size) and various flags are stored together. The bit
+ * layout looks like (assuming 32-bit system):
+ *
+ * ???????? ???????? ????---- --ckdzla
+ *
+ * ? : Unallocated: Run address for first/last pages, unset for internal
+ * pages.
+ * Small: Run address.
+ * Large: Run size for first page, unset for trailing pages.
+ * - : Unused.
+ * c : decommitted?
+ * k : key?
+ * d : dirty?
+ * z : zeroed?
+ * l : large?
+ * a : allocated?
+ *
+ * Following are example bit patterns for the three types of runs.
+ *
+ * r : run address
+ * s : run size
+ * x : don't care
+ * - : 0
+ * [cdzla] : bit set
+ *
+ * Unallocated:
+ * ssssssss ssssssss ssss---- --c-----
+ * xxxxxxxx xxxxxxxx xxxx---- ----d---
+ * ssssssss ssssssss ssss---- -----z--
+ *
+ * Small:
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ *
+ * Large:
+ * ssssssss ssssssss ssss---- ------la
+ * -------- -------- -------- ------la
+ * -------- -------- -------- ------la
+ */
+ size_t bits;
+#ifdef MALLOC_DECOMMIT
+#define CHUNK_MAP_DECOMMITTED ((size_t)0x20U)
+#endif
+#define CHUNK_MAP_KEY ((size_t)0x10U)
+#define CHUNK_MAP_DIRTY ((size_t)0x08U)
+#define CHUNK_MAP_ZEROED ((size_t)0x04U)
+#define CHUNK_MAP_LARGE ((size_t)0x02U)
+#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
+};
+typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
+typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+ /* Arena that owns the chunk. */
+ arena_t *arena;
+
+ /* Linkage for the arena's chunks_dirty tree. */
+ rb_node(arena_chunk_t) link_dirty;
+
+ /* Number of dirty pages. */
+ size_t ndirty;
+
+ /* Map of pages within chunk that keeps track of free/large/small. */
+ arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+ /* Bin this run is associated with. */
+ arena_bin_t *bin;
+
+ /* Index of first element that might have a free region. */
+ unsigned regs_minelm;
+
+ /* Number of free regions in run. */
+ unsigned nfree;
+
+ /* Bitmask of in-use regions (0: in use, 1: free). */
+ unsigned regs_mask[1]; /* Dynamically sized. */
+};
+
+struct arena_bin_s {
+ /*
+ * Current run being used to service allocations of this bin's size
+ * class.
+ */
+ arena_run_t *runcur;
+
+ /*
+ * Tree of non-full runs. This tree is used when looking for an
+ * existing run when runcur is no longer usable. We choose the
+ * non-full run that is lowest in memory; this policy tends to keep
+ * objects packed well, and it can also help reduce the number of
+ * almost-empty chunks.
+ */
+ arena_run_tree_t runs;
+
+ /* Size of regions in a run for this bin's size class. */
+ size_t reg_size;
+
+ /* Total size of a run for this bin's size class. */
+ size_t run_size;
+
+ /* Total number of regions in a run for this bin's size class. */
+ uint32_t nregs;
+
+ /* Number of elements in a run's regs_mask for this bin's size class. */
+ uint32_t regs_mask_nelms;
+
+ /* Offset of first region in a run for this bin's size class. */
+ uint32_t reg0_offset;
+
+#ifdef MALLOC_STATS
+ /* Bin statistics. */
+ malloc_bin_stats_t stats;
+#endif
+};
+
+struct arena_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_MAGIC 0x947d3d24
+#endif
+
+ /* All operations on this arena require that lock be locked. */
+#ifdef MOZ_MEMORY
+ malloc_spinlock_t lock;
+#else
+ pthread_mutex_t lock;
+#endif
+
+#ifdef MALLOC_STATS
+ arena_stats_t stats;
+#endif
+
+ /*
+ * Chunk allocation sequence number, used to detect races with other
+ * threads during chunk allocation, and then discard unnecessary chunks.
+ */
+ uint64_t chunk_seq;
+
+ /* Tree of dirty-page-containing chunks this arena manages. */
+ arena_chunk_tree_t chunks_dirty;
+
+ /*
+ * In order to avoid rapid chunk allocation/deallocation when an arena
+ * oscillates right on the cusp of needing a new chunk, cache the most
+ * recently freed chunk. The spare is left in the arena's chunk trees
+ * until it is deleted.
+ *
+ * There is one spare chunk per arena, rather than one spare total, in
+ * order to avoid interactions between multiple threads that could make
+ * a single spare inadequate.
+ */
+ arena_chunk_t *spare;
+
+ /*
+ * Current count of pages within unused runs that are potentially
+ * dirty, and for which madvise(... MADV_FREE) has not been called. By
+ * tracking this, we can institute a limit on how much dirty unused
+ * memory is mapped for each arena.
+ */
+ size_t ndirty;
+
+ /*
+ * Size/address-ordered tree of this arena's available runs. This tree
+ * is used for first-best-fit run allocation.
+ */
+ arena_avail_tree_t runs_avail;
+
+#ifdef MALLOC_BALANCE
+ /*
+ * The arena load balancing machinery needs to keep track of how much
+ * lock contention there is. This value is exponentially averaged.
+ */
+ uint32_t contention;
+#endif
+
+ /*
+ * bins is used to store rings of free regions of the following sizes,
+ * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
+ *
+ * bins[i] | size |
+ * --------+------+
+ * 0 | 2 |
+ * 1 | 4 |
+ * 2 | 8 |
+ * --------+------+
+ * 3 | 16 |
+ * 4 | 32 |
+ * 5 | 48 |
+ * 6 | 64 |
+ * : :
+ * : :
+ * 33 | 496 |
+ * 34 | 512 |
+ * --------+------+
+ * 35 | 1024 |
+ * 36 | 2048 |
+ * --------+------+
+ */
+ arena_bin_t bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+/* Number of CPUs. */
+static unsigned ncpus;
+
+/* VM page size. */
+static size_t pagesize;
+static size_t pagesize_mask;
+static size_t pagesize_2pow;
+
+/* Various bin-related settings. */
+static size_t bin_maxclass; /* Max size class for bins. */
+static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
+static unsigned nqbins; /* Number of quantum-spaced bins. */
+static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
+static size_t small_min;
+static size_t small_max;
+
+/* Various quantum-related settings. */
+static size_t quantum;
+static size_t quantum_mask; /* (quantum - 1). */
+
+/* Various chunk-related settings. */
+static size_t chunksize;
+static size_t chunksize_mask; /* (chunksize - 1). */
+static size_t chunk_npages;
+static size_t arena_chunk_header_npages;
+static size_t arena_maxclass; /* Max size class for arenas. */
+
+/********/
+/*
+ * Chunks.
+ */
+
+#ifdef MALLOC_VALIDATE
+static malloc_rtree_t *chunk_rtree;
+#endif
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t huge_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static extent_tree_t huge;
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t huge_nmalloc;
+static uint64_t huge_ndalloc;
+static size_t huge_allocated;
+#endif
+
+/****************/
+/*
+ * Memory reserve.
+ */
+
+#ifdef MALLOC_PAGEFILE
+static char pagefile_templ[PATH_MAX];
+#endif
+
+/* Protects reserve-related data structures. */
+static malloc_mutex_t reserve_mtx;
+
+/*
+ * Bounds on acceptable reserve size, and current reserve size. Reserve
+ * depletion may cause (reserve_cur < reserve_min).
+ */
+static size_t reserve_min;
+static size_t reserve_cur;
+static size_t reserve_max;
+
+/* List of registered callbacks. */
+static ql_head(reserve_reg_t) reserve_regs;
+
+/*
+ * Condition notification sequence number, used to determine whether all
+ * registered callbacks have been notified of the most current condition.
+ */
+static uint64_t reserve_seq;
+
+/*
+ * Trees of chunks currently in the memory reserve. Depending on function,
+ * different tree orderings are needed, which is why there are two trees with
+ * the same contents.
+ */
+static extent_tree_t reserve_chunks_szad;
+static extent_tree_t reserve_chunks_ad;
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations. These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void *base_pages;
+static void *base_next_addr;
+#ifdef MALLOC_DECOMMIT
+static void *base_next_decommitted;
+#endif
+static void *base_past_addr; /* Addr immediately past base_pages. */
+static extent_node_t *base_nodes;
+static reserve_reg_t *base_reserve_regs;
+static malloc_mutex_t base_mtx;
+#ifdef MALLOC_STATS
+static size_t base_mapped;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests. Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t **arenas;
+static unsigned narenas;
+static unsigned narenas_2pow;
+#ifndef NO_TLS
+# ifdef MALLOC_BALANCE
+static unsigned narenas_2pow;
+# else
+static unsigned next_arena;
+# endif
+#endif
+#ifdef MOZ_MEMORY
+static malloc_spinlock_t arenas_lock; /* Protects arenas initialization. */
+#else
+static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
+#endif
+
+#ifndef NO_TLS
+/*
+ * Map of pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+#ifndef MOZ_MEMORY_WINDOWS
+static __thread arena_t *arenas_map;
+#endif
+#endif
+
+#ifdef MALLOC_STATS
+/* Chunk statistics. */
+static chunk_stats_t stats_chunks;
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+const char *_malloc_options;
+
+#ifndef MALLOC_PRODUCTION
+static bool opt_abort = true;
+#ifdef MALLOC_FILL
+static bool opt_junk = true;
+#endif
+#else
+static bool opt_abort = false;
+#ifdef MALLOC_FILL
+static bool opt_junk = false;
+#endif
+#endif
+static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
+#ifdef MALLOC_BALANCE
+static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
+#endif
+static bool opt_print_stats = false;
+static size_t opt_quantum_2pow = QUANTUM_2POW_MIN;
+static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
+static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
+static int opt_reserve_min_lshift = 0;
+static int opt_reserve_range_lshift = 0;
+#ifdef MALLOC_PAGEFILE
+static bool opt_pagefile = false;
+#endif
+#ifdef MALLOC_UTRACE
+static bool opt_utrace = false;
+#endif
+#ifdef MALLOC_SYSV
+static bool opt_sysv = false;
+#endif
+#ifdef MALLOC_XMALLOC
+static bool opt_xmalloc = false;
+#endif
+#ifdef MALLOC_FILL
+static bool opt_zero = false;
+#endif
+static int opt_narenas_lshift = 0;
+
+#ifdef MALLOC_UTRACE
+typedef struct {
+ void *p;
+ size_t s;
+ void *r;
+} malloc_utrace_t;
+
+#define UTRACE(a, b, c) \
+ if (opt_utrace) { \
+ malloc_utrace_t ut; \
+ ut.p = (a); \
+ ut.s = (b); \
+ ut.r = (c); \
+ utrace(&ut, sizeof(ut)); \
+ }
+#else
+#define UTRACE(a, b, c)
+#endif
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static char *umax2s(uintmax_t x, char *s);
+static bool malloc_mutex_init(malloc_mutex_t *mutex);
+static bool malloc_spin_init(malloc_spinlock_t *lock);
+static void wrtmessage(const char *p1, const char *p2, const char *p3,
+ const char *p4);
+#ifdef MALLOC_STATS
+#ifdef MOZ_MEMORY_DARWIN
+/* Avoid namespace collision with OS X's malloc APIs. */
+#define malloc_printf moz_malloc_printf
+#endif
+static void malloc_printf(const char *format, ...);
+#endif
+static bool base_pages_alloc_mmap(size_t minsize);
+static bool base_pages_alloc(size_t minsize);
+static void *base_alloc(size_t size);
+static void *base_calloc(size_t number, size_t size);
+static extent_node_t *base_node_alloc(void);
+static void base_node_dealloc(extent_node_t *node);
+static reserve_reg_t *base_reserve_reg_alloc(void);
+static void base_reserve_reg_dealloc(reserve_reg_t *reg);
+#ifdef MALLOC_STATS
+static void stats_print(arena_t *arena);
+#endif
+static void *pages_map(void *addr, size_t size, int pfd);
+static void pages_unmap(void *addr, size_t size);
+static void *chunk_alloc_mmap(size_t size, bool pagefile);
+#ifdef MALLOC_PAGEFILE
+static int pagefile_init(size_t size);
+static void pagefile_close(int pfd);
+#endif
+static void *chunk_recycle_reserve(size_t size, bool zero);
+static void *chunk_alloc(size_t size, bool zero, bool pagefile);
+static extent_node_t *chunk_dealloc_reserve(void *chunk, size_t size);
+static void chunk_dealloc_mmap(void *chunk, size_t size);
+static void chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+ bool large, bool zero);
+static void arena_chunk_init(arena_t *arena, arena_chunk_t *chunk);
+static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, arena_bin_t *bin,
+ size_t size, bool large, bool zero);
+static void arena_purge(arena_t *arena);
+static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
+static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize);
+static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
+static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+#ifdef MALLOC_BALANCE
+static void arena_lock_balance_hard(arena_t *arena);
+#endif
+static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
+static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+ size_t alloc_size);
+static size_t arena_salloc(const void *ptr);
+static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr);
+static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
+static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static bool arena_new(arena_t *arena);
+static arena_t *arenas_extend(unsigned ind);
+static void *huge_malloc(size_t size, bool zero);
+static void *huge_palloc(size_t alignment, size_t size);
+static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void huge_dalloc(void *ptr);
+static void malloc_print_stats(void);
+#ifndef MOZ_MEMORY_WINDOWS
+static
+#endif
+bool malloc_init_hard(void);
+static void reserve_shrink(void);
+static uint64_t reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq);
+static uint64_t reserve_crit(size_t size, const char *fname, uint64_t seq);
+static void reserve_fail(size_t size, const char *fname);
+
+void _malloc_prefork(void);
+void _malloc_postfork(void);
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+
+/*
+ * umax2s() provides minimal integer printing functionality, which is
+ * especially useful for situations where allocation in vsnprintf() calls would
+ * potentially cause deadlock.
+ */
+#define UMAX2S_BUFSIZE 21
+static char *
+umax2s(uintmax_t x, char *s)
+{
+ unsigned i;
+
+ i = UMAX2S_BUFSIZE - 1;
+ s[i] = '\0';
+ do {
+ i--;
+ s[i] = "0123456789"[x % 10];
+ x /= 10;
+ } while (x > 0);
+
+ return (&s[i]);
+}
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+#ifdef MOZ_MEMORY_WINCE
+ wchar_t buf[1024];
+#define WRT_PRINT(s) \
+ MultiByteToWideChar(CP_ACP, 0, s, -1, buf, 1024); \
+ OutputDebugStringW(buf)
+
+ WRT_PRINT(p1);
+ WRT_PRINT(p2);
+ WRT_PRINT(p3);
+ WRT_PRINT(p4);
+#else
+#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_WINDOWS)
+#define _write write
+#endif
+ _write(STDERR_FILENO, p1, (unsigned int) strlen(p1));
+ _write(STDERR_FILENO, p2, (unsigned int) strlen(p2));
+ _write(STDERR_FILENO, p3, (unsigned int) strlen(p3));
+ _write(STDERR_FILENO, p4, (unsigned int) strlen(p4));
+#endif
+
+}
+
+#define _malloc_message malloc_message
+
+void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+ const char *p4) = wrtmessage;
+
+#ifdef MALLOC_DEBUG
+# define assert(e) do { \
+ if (!(e)) { \
+ char line_buf[UMAX2S_BUFSIZE]; \
+ _malloc_message(__FILE__, ":", umax2s(__LINE__, \
+ line_buf), ": Failed assertion: "); \
+ _malloc_message("\"", #e, "\"\n", ""); \
+ abort(); \
+ } \
+} while (0)
+#else
+#define assert(e)
+#endif
+
+/******************************************************************************/
+/*
+ * Begin mutex. We can't use normal pthread mutexes in all places, because
+ * they require malloc()ed memory, which causes bootstrapping issues in some
+ * cases.
+ */
+
+static bool
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+#if defined(MOZ_MEMORY_WINCE)
+ InitializeCriticalSection(mutex);
+#elif defined(MOZ_MEMORY_WINDOWS)
+ // XXXMB
+ //if (__isthreaded)
+ // if (! __crtInitCritSecAndSpinCount(mutex, _CRT_SPINCOUNT))
+ // return (true);
+ if (!InitializeCriticalSectionAndSpinCount(mutex, 4000))
+ return true;
+#elif defined(MOZ_MEMORY_DARWIN)
+ mutex->lock = OS_SPINLOCK_INIT;
+#elif defined(MOZ_MEMORY_LINUX)
+ pthread_mutexattr_t attr;
+ if (pthread_mutexattr_init(&attr) != 0)
+ return (true);
+ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+ if (pthread_mutex_init(mutex, &attr) != 0) {
+ pthread_mutexattr_destroy(&attr);
+ return (true);
+ }
+ pthread_mutexattr_destroy(&attr);
+#elif defined(MOZ_MEMORY)
+ if (pthread_mutex_init(mutex, NULL) != 0)
+ return (true);
+#else
+ static const spinlock_t lock = _SPINLOCK_INITIALIZER;
+
+ mutex->lock = lock;
+#endif
+ return (false);
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+#if defined(MOZ_MEMORY_WINDOWS)
+ EnterCriticalSection(mutex);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockLock(&mutex->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_lock(mutex);
+#else
+ if (__isthreaded)
+ _SPINLOCK(&mutex->lock);
+#endif
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+#if defined(MOZ_MEMORY_WINDOWS)
+ LeaveCriticalSection(mutex);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockUnlock(&mutex->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_unlock(mutex);
+#else
+ if (__isthreaded)
+ _SPINUNLOCK(&mutex->lock);
+#endif
+}
+
+static bool
+malloc_spin_init(malloc_spinlock_t *lock)
+{
+#if defined(MOZ_MEMORY_WINCE)
+ InitializeCriticalSection(lock);
+#elif defined(MOZ_MEMORY_WINDOWS)
+ // XXXMB
+ //if (__isthreaded)
+ // if (! __crtInitCritSecAndSpinCount(lock, _CRT_SPINCOUNT))
+ // return (true);
+#elif defined(MOZ_MEMORY_DARWIN)
+ lock->lock = OS_SPINLOCK_INIT;
+#elif defined(MOZ_MEMORY_LINUX)
+ pthread_mutexattr_t attr;
+ if (pthread_mutexattr_init(&attr) != 0)
+ return (true);
+ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+ if (pthread_mutex_init(lock, &attr) != 0) {
+ pthread_mutexattr_destroy(&attr);
+ return (true);
+ }
+ pthread_mutexattr_destroy(&attr);
+#elif defined(MOZ_MEMORY)
+ if (pthread_mutex_init(lock, NULL) != 0)
+ return (true);
+#else
+ lock->lock = _SPINLOCK_INITIALIZER;
+#endif
+ return (false);
+}
+
+static inline void
+malloc_spin_lock(malloc_spinlock_t *lock)
+{
+
+#if defined(MOZ_MEMORY_WINDOWS)
+ EnterCriticalSection(lock);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockLock(&lock->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_lock(lock);
+#else
+ if (__isthreaded)
+ _SPINLOCK(&lock->lock);
+#endif
+}
+
+static inline void
+malloc_spin_unlock(malloc_spinlock_t *lock)
+{
+#if defined(MOZ_MEMORY_WINDOWS)
+ LeaveCriticalSection(lock);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockUnlock(&lock->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_unlock(lock);
+#else
+ if (__isthreaded)
+ _SPINUNLOCK(&lock->lock);
+#endif
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock. Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_DARWIN)
+# define malloc_spin_init malloc_mutex_init
+# define malloc_spin_lock malloc_mutex_lock
+# define malloc_spin_unlock malloc_mutex_unlock
+#endif
+
+#ifndef MOZ_MEMORY
+/*
+ * We use an unpublished interface to initialize pthread mutexes with an
+ * allocation callback, in order to avoid infinite recursion.
+ */
+int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t));
+
+__weak_reference(_pthread_mutex_init_calloc_cb_stub,
+ _pthread_mutex_init_calloc_cb);
+
+int
+_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t))
+{
+
+ return (0);
+}
+
+static bool
+malloc_spin_init(pthread_mutex_t *lock)
+{
+
+ if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
+ return (true);
+
+ return (false);
+}
+
+static inline unsigned
+malloc_spin_lock(pthread_mutex_t *lock)
+{
+ unsigned ret = 0;
+
+ if (__isthreaded) {
+ if (_pthread_mutex_trylock(lock) != 0) {
+ unsigned i;
+ volatile unsigned j;
+
+ /* Exponentially back off. */
+ for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
+ for (j = 0; j < (1U << i); j++)
+ ret++;
+
+ CPU_SPINWAIT;
+ if (_pthread_mutex_trylock(lock) == 0)
+ return (ret);
+ }
+
+ /*
+ * Spinning failed. Block until the lock becomes
+ * available, in order to avoid indefinite priority
+ * inversion.
+ */
+ _pthread_mutex_lock(lock);
+ assert((ret << BLOCK_COST_2POW) != 0);
+ return (ret << BLOCK_COST_2POW);
+ }
+ }
+
+ return (ret);
+}
+
+static inline void
+malloc_spin_unlock(pthread_mutex_t *lock)
+{
+
+ if (__isthreaded)
+ _pthread_mutex_unlock(lock);
+}
+#endif
+
+/*
+ * End spin lock.
+ */
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define CHUNK_ADDR2BASE(a) \
+ ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define CHUNK_ADDR2OFFSET(a) \
+ ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define CHUNK_CEILING(s) \
+ (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define CACHELINE_CEILING(s) \
+ (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
+
+/* Return the smallest quantum multiple that is >= a. */
+#define QUANTUM_CEILING(a) \
+ (((a) + quantum_mask) & ~quantum_mask)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define PAGE_CEILING(s) \
+ (((s) + pagesize_mask) & ~pagesize_mask)
+
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil(size_t x)
+{
+
+ x--;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+ x |= x >> 32;
+#endif
+ x++;
+ return (x);
+}
+
+#ifdef MALLOC_BALANCE
+/*
+ * Use a simple linear congruential pseudo-random number generator:
+ *
+ * prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ * c == Odd number (relatively prime to 2^n).
+ * m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position. For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
+ * bits.
+ */
+# define PRN_DEFINE(suffix, var, a, c) \
+static inline void \
+sprn_##suffix(uint32_t seed) \
+{ \
+ var = seed; \
+} \
+ \
+static inline uint32_t \
+prn_##suffix(uint32_t lg_range) \
+{ \
+ uint32_t ret, x; \
+ \
+ assert(lg_range > 0); \
+ assert(lg_range <= 32); \
+ \
+ x = (var * (a)) + (c); \
+ var = x; \
+ ret = x >> (32 - lg_range); \
+ \
+ return (ret); \
+}
+# define SPRN(suffix, seed) sprn_##suffix(seed)
+# define PRN(suffix, lg_range) prn_##suffix(lg_range)
+#endif
+
+#ifdef MALLOC_BALANCE
+/* Define the PRNG used for arena assignment. */
+static __thread uint32_t balance_x;
+PRN_DEFINE(balance, balance_x, 1297, 1301)
+#endif
+
+#ifdef MALLOC_UTRACE
+static int
+utrace(const void *addr, size_t len)
+{
+ malloc_utrace_t *ut = (malloc_utrace_t *)addr;
+
+ assert(len == sizeof(malloc_utrace_t));
+
+ if (ut->p == NULL && ut->s == 0 && ut->r == NULL)
+ malloc_printf("%d x USER malloc_init()\n", getpid());
+ else if (ut->p == NULL && ut->r != NULL) {
+ malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r,
+ ut->s);
+ } else if (ut->p != NULL && ut->r != NULL) {
+ malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(),
+ ut->r, ut->p, ut->s);
+ } else
+ malloc_printf("%d x USER free(%p)\n", getpid(), ut->p);
+
+ return (0);
+}
+#endif
+
+static inline const char *
+_getprogname(void)
+{
+
+ return ("<jemalloc>");
+}
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+#ifndef WINCE
+ char buf[4096];
+ va_list ap;
+
+ va_start(ap, format);
+ vsnprintf(buf, sizeof(buf), format, ap);
+ va_end(ap);
+ _malloc_message(buf, "", "", "");
+#endif
+}
+#endif
+
+/******************************************************************************/
+
+#ifdef MALLOC_DECOMMIT
+static inline void
+pages_decommit(void *addr, size_t size)
+{
+
+#ifdef MOZ_MEMORY_WINDOWS
+ VirtualFree(addr, size, MEM_DECOMMIT);
+#else
+ if (mmap(addr, size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1,
+ 0) == MAP_FAILED)
+ abort();
+#endif
+}
+
+static inline void
+pages_commit(void *addr, size_t size)
+{
+
+# ifdef MOZ_MEMORY_WINDOWS
+ VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE);
+# else
+ if (mmap(addr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE |
+ MAP_ANON, -1, 0) == MAP_FAILED)
+ abort();
+# endif
+}
+#endif
+
+static bool
+base_pages_alloc_mmap(size_t minsize)
+{
+ bool ret;
+ size_t csize;
+#ifdef MALLOC_DECOMMIT
+ size_t pminsize;
+#endif
+ int pfd;
+
+ assert(minsize != 0);
+ csize = CHUNK_CEILING(minsize);
+#ifdef MALLOC_PAGEFILE
+ if (opt_pagefile) {
+ pfd = pagefile_init(csize);
+ if (pfd == -1)
+ return (true);
+ } else
+#endif
+ pfd = -1;
+ base_pages = pages_map(NULL, csize, pfd);
+ if (base_pages == NULL) {
+ ret = true;
+ goto RETURN;
+ }
+ base_next_addr = base_pages;
+ base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Leave enough pages for minsize committed, since otherwise they would
+ * have to be immediately recommitted.
+ */
+ pminsize = PAGE_CEILING(minsize);
+ base_next_decommitted = (void *)((uintptr_t)base_pages + pminsize);
+ if (pminsize < csize)
+ pages_decommit(base_next_decommitted, csize - pminsize);
+#endif
+#ifdef MALLOC_STATS
+ base_mapped += csize;
+#endif
+
+ ret = false;
+RETURN:
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1)
+ pagefile_close(pfd);
+#endif
+ return (false);
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+
+ if (base_pages_alloc_mmap(minsize) == false)
+ return (false);
+
+ return (true);
+}
+
+static void *
+base_alloc(size_t size)
+{
+ void *ret;
+ size_t csize;
+
+ /* Round size up to nearest multiple of the cacheline size. */
+ csize = CACHELINE_CEILING(size);
+
+ malloc_mutex_lock(&base_mtx);
+ /* Make sure there's enough space for the allocation. */
+ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+ if (base_pages_alloc(csize)) {
+ malloc_mutex_unlock(&base_mtx);
+ return (NULL);
+ }
+ }
+ /* Allocate. */
+ ret = base_next_addr;
+ base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+#ifdef MALLOC_DECOMMIT
+ /* Make sure enough pages are committed for the new allocation. */
+ if ((uintptr_t)base_next_addr > (uintptr_t)base_next_decommitted) {
+ void *pbase_next_addr =
+ (void *)(PAGE_CEILING((uintptr_t)base_next_addr));
+
+ pages_commit(base_next_decommitted, (uintptr_t)pbase_next_addr -
+ (uintptr_t)base_next_decommitted);
+ base_next_decommitted = pbase_next_addr;
+ }
+#endif
+ malloc_mutex_unlock(&base_mtx);
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false);
+
+ return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+ void *ret;
+
+ ret = base_alloc(number * size);
+#ifdef MALLOC_VALGRIND
+ if (ret != NULL) {
+ VALGRIND_FREELIKE_BLOCK(ret, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, true);
+ }
+#endif
+ memset(ret, 0, number * size);
+
+ return (ret);
+}
+
+static extent_node_t *
+base_node_alloc(void)
+{
+ extent_node_t *ret;
+
+ malloc_mutex_lock(&base_mtx);
+ if (base_nodes != NULL) {
+ ret = base_nodes;
+ base_nodes = *(extent_node_t **)ret;
+ VALGRIND_FREELIKE_BLOCK(ret, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(extent_node_t), 0, false);
+ malloc_mutex_unlock(&base_mtx);
+ } else {
+ malloc_mutex_unlock(&base_mtx);
+ ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
+ }
+
+ return (ret);
+}
+
+static void
+base_node_dealloc(extent_node_t *node)
+{
+
+ malloc_mutex_lock(&base_mtx);
+ VALGRIND_FREELIKE_BLOCK(node, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(node, sizeof(extent_node_t *), 0, false);
+ *(extent_node_t **)node = base_nodes;
+ base_nodes = node;
+ malloc_mutex_unlock(&base_mtx);
+}
+
+static reserve_reg_t *
+base_reserve_reg_alloc(void)
+{
+ reserve_reg_t *ret;
+
+ malloc_mutex_lock(&base_mtx);
+ if (base_reserve_regs != NULL) {
+ ret = base_reserve_regs;
+ base_reserve_regs = *(reserve_reg_t **)ret;
+ VALGRIND_FREELIKE_BLOCK(ret, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(reserve_reg_t), 0, false);
+ malloc_mutex_unlock(&base_mtx);
+ } else {
+ malloc_mutex_unlock(&base_mtx);
+ ret = (reserve_reg_t *)base_alloc(sizeof(reserve_reg_t));
+ }
+
+ return (ret);
+}
+
+static void
+base_reserve_reg_dealloc(reserve_reg_t *reg)
+{
+
+ malloc_mutex_lock(&base_mtx);
+ VALGRIND_FREELIKE_BLOCK(reg, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(reg, sizeof(reserve_reg_t *), 0, false);
+ *(reserve_reg_t **)reg = base_reserve_regs;
+ base_reserve_regs = reg;
+ malloc_mutex_unlock(&base_mtx);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_STATS
+static void
+stats_print(arena_t *arena)
+{
+ unsigned i, gap_start;
+
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf("dirty: %Iu page%s dirty, %I64u sweep%s,"
+ " %I64u madvise%s, %I64u page%s purged\n",
+ arena->ndirty, arena->ndirty == 1 ? "" : "s",
+ arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+ arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+ arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+# ifdef MALLOC_DECOMMIT
+ malloc_printf("decommit: %I64u decommit%s, %I64u commit%s,"
+ " %I64u page%s decommitted\n",
+ arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
+ arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
+ arena->stats.decommitted,
+ (arena->stats.decommitted == 1) ? "" : "s");
+# endif
+
+ malloc_printf(" allocated nmalloc ndalloc\n");
+ malloc_printf("small: %12Iu %12I64u %12I64u\n",
+ arena->stats.allocated_small, arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("large: %12Iu %12I64u %12I64u\n",
+ arena->stats.allocated_large, arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12Iu %12I64u %12I64u\n",
+ arena->stats.allocated_small + arena->stats.allocated_large,
+ arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+ malloc_printf("mapped: %12Iu\n", arena->stats.mapped);
+#else
+ malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
+ " %llu madvise%s, %llu page%s purged\n",
+ arena->ndirty, arena->ndirty == 1 ? "" : "s",
+ arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+ arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+ arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+# ifdef MALLOC_DECOMMIT
+ malloc_printf("decommit: %llu decommit%s, %llu commit%s,"
+ " %llu page%s decommitted\n",
+ arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
+ arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
+ arena->stats.decommitted,
+ (arena->stats.decommitted == 1) ? "" : "s");
+# endif
+
+ malloc_printf(" allocated nmalloc ndalloc\n");
+ malloc_printf("small: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small, arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("large: %12zu %12llu %12llu\n",
+ arena->stats.allocated_large, arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small + arena->stats.allocated_large,
+ arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+ malloc_printf("mapped: %12zu\n", arena->stats.mapped);
+#endif
+ malloc_printf("bins: bin size regs pgs requests newruns"
+ " reruns maxruns curruns\n");
+ for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) {
+ if (arena->bins[i].stats.nrequests == 0) {
+ if (gap_start == UINT_MAX)
+ gap_start = i;
+ } else {
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n",
+ gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ gap_start = UINT_MAX;
+ }
+ malloc_printf(
+#if defined(MOZ_MEMORY_WINDOWS)
+ "%13u %1s %4u %4u %3u %9I64u %9I64u"
+ " %9I64u %7u %7u\n",
+#else
+ "%13u %1s %4u %4u %3u %9llu %9llu"
+ " %9llu %7lu %7lu\n",
+#endif
+ i,
+ i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
+ arena->bins[i].reg_size,
+ arena->bins[i].nregs,
+ arena->bins[i].run_size >> pagesize_2pow,
+ arena->bins[i].stats.nrequests,
+ arena->bins[i].stats.nruns,
+ arena->bins[i].stats.reruns,
+ arena->bins[i].stats.highruns,
+ arena->bins[i].stats.curruns);
+ }
+ }
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n", gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ }
+}
+#endif
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin extent tree code.
+ */
+
+static inline int
+extent_szad_comp(extent_node_t *a, extent_node_t *b)
+{
+ int ret;
+ size_t a_size = a->size;
+ size_t b_size = b->size;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ ret = (a_addr > b_addr) - (a_addr < b_addr);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_szad_, extent_tree_t, extent_node_t,
+ link_szad, extent_szad_comp)
+
+static inline int
+extent_ad_comp(extent_node_t *a, extent_node_t *b)
+{
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ return ((a_addr > b_addr) - (a_addr < b_addr));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
+ extent_ad_comp)
+
+/*
+ * End extent tree code.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+#ifdef MOZ_MEMORY_WINDOWS
+#ifdef MOZ_MEMORY_WINCE
+#define ALIGN_ADDR2OFFSET(al, ad) \
+ ((uintptr_t)ad & (al - 1))
+static void *
+pages_map_align(size_t size, int pfd, size_t alignment)
+{
+
+ void *ret;
+ int offset;
+ if (size % alignment)
+ size += (alignment - (size % alignment));
+ assert(size >= alignment);
+ ret = pages_map(NULL, size, pfd);
+ offset = ALIGN_ADDR2OFFSET(alignment, ret);
+ if (offset) {
+ /* try to over allocate by the ammount we're offset */
+ void *tmp;
+ pages_unmap(ret, size);
+ tmp = VirtualAlloc(NULL, size + alignment - offset,
+ MEM_RESERVE, PAGE_NOACCESS);
+ if (offset == ALIGN_ADDR2OFFSET(alignment, tmp))
+ ret = VirtualAlloc((void*)((intptr_t)tmp + alignment
+ - offset), size, MEM_COMMIT,
+ PAGE_READWRITE);
+ else
+ VirtualFree(tmp, 0, MEM_RELEASE);
+ offset = ALIGN_ADDR2OFFSET(alignment, ret);
+
+
+ if (offset) {
+ /* over allocate to ensure we have an aligned region */
+ ret = VirtualAlloc(NULL, size + alignment, MEM_RESERVE,
+ PAGE_NOACCESS);
+ offset = ALIGN_ADDR2OFFSET(alignment, ret);
+ ret = VirtualAlloc((void*)((intptr_t)ret +
+ alignment - offset),
+ size, MEM_COMMIT, PAGE_READWRITE);
+ }
+ }
+ return (ret);
+}
+#endif
+
+static void *
+pages_map(void *addr, size_t size, int pfd)
+{
+ void *ret = NULL;
+#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
+ void *va_ret;
+ assert(addr == NULL);
+ va_ret = VirtualAlloc(addr, size, MEM_RESERVE, PAGE_NOACCESS);
+ if (va_ret)
+ ret = VirtualAlloc(va_ret, size, MEM_COMMIT, PAGE_READWRITE);
+ assert(va_ret == ret);
+#else
+ ret = VirtualAlloc(addr, size, MEM_COMMIT | MEM_RESERVE,
+ PAGE_READWRITE);
+#endif
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+ if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
+#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
+ if (GetLastError() == ERROR_INVALID_PARAMETER) {
+ MEMORY_BASIC_INFORMATION info;
+ VirtualQuery(addr, &info, sizeof(info));
+ if (VirtualFree(info.AllocationBase, 0, MEM_RELEASE))
+ return;
+ }
+#endif
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in VirtualFree()\n", "", "");
+ if (opt_abort)
+ abort();
+ }
+}
+#elif (defined(MOZ_MEMORY_DARWIN))
+static void *
+pages_map(void *addr, size_t size, int pfd)
+{
+ void *ret;
+ kern_return_t err;
+ int flags;
+
+ if (addr != NULL) {
+ ret = addr;
+ flags = 0;
+ } else
+ flags = VM_FLAGS_ANYWHERE;
+
+ err = vm_allocate((vm_map_t)mach_task_self(), (vm_address_t *)&ret,
+ (vm_size_t)size, flags);
+ if (err != KERN_SUCCESS)
+ ret = NULL;
+
+ assert(ret == NULL || (addr == NULL && ret != addr)
+ || (addr != NULL && ret == addr));
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+ kern_return_t err;
+
+ err = vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)addr,
+ (vm_size_t)size);
+ if (err != KERN_SUCCESS) {
+ malloc_message(_getprogname(),
+ ": (malloc) Error in vm_deallocate(): ",
+ mach_error_string(err), "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+
+#define VM_COPY_MIN (pagesize << 5)
+static inline void
+pages_copy(void *dest, const void *src, size_t n)
+{
+
+ assert((void *)((uintptr_t)dest & ~pagesize_mask) == dest);
+ assert(n >= VM_COPY_MIN);
+ assert((void *)((uintptr_t)src & ~pagesize_mask) == src);
+
+ vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n,
+ (vm_address_t)dest);
+}
+#else /* MOZ_MEMORY_DARWIN */
+#ifdef JEMALLOC_USES_MAP_ALIGN
+static void *
+pages_map_align(size_t size, int pfd, size_t alignment)
+{
+ void *ret;
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1) {
+ ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_NOSYNC | MAP_ALIGN, pfd, 0);
+ } else
+#endif
+ {
+ ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_NOSYNC | MAP_ALIGN | MAP_ANON, -1, 0);
+ }
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED)
+ ret = NULL;
+ return (ret);
+}
+#endif
+
+static void *
+pages_map(void *addr, size_t size, int pfd)
+{
+ void *ret;
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1) {
+ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_NOSYNC, pfd, 0);
+ } else
+#endif
+ {
+ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_ANON, -1, 0);
+ }
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED)
+ ret = NULL;
+ else if (addr != NULL && ret != addr) {
+ /*
+ * We succeeded in mapping memory, but not in the right place.
+ */
+ if (munmap(ret, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+ ret = NULL;
+ }
+
+ assert(ret == NULL || (addr == NULL && ret != addr)
+ || (addr != NULL && ret == addr));
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+ if (munmap(addr, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+#endif
+
+#ifdef MALLOC_VALIDATE
+static inline malloc_rtree_t *
+malloc_rtree_new(unsigned bits)
+{
+ malloc_rtree_t *ret;
+ unsigned bits_per_level, height, i;
+
+ bits_per_level = ffs(pow2_ceil((MALLOC_RTREE_NODESIZE /
+ sizeof(void *)))) - 1;
+ height = bits / bits_per_level;
+ if (height * bits_per_level != bits)
+ height++;
+ assert(height * bits_per_level >= bits);
+
+ ret = (malloc_rtree_t*)base_calloc(1, sizeof(malloc_rtree_t) + (sizeof(unsigned) *
+ (height - 1)));
+ if (ret == NULL)
+ return (NULL);
+
+ malloc_spin_init(&ret->lock);
+ ret->height = height;
+ if (bits_per_level * height > bits)
+ ret->level2bits[0] = bits % bits_per_level;
+ else
+ ret->level2bits[0] = bits_per_level;
+ for (i = 1; i < height; i++)
+ ret->level2bits[i] = bits_per_level;
+
+ ret->root = (void**)base_calloc(1, sizeof(void *) << ret->level2bits[0]);
+ if (ret->root == NULL) {
+ /*
+ * We leak the rtree here, since there's no generic base
+ * deallocation.
+ */
+ return (NULL);
+ }
+
+ return (ret);
+}
+
+/* The least significant bits of the key are ignored. */
+static inline void *
+malloc_rtree_get(malloc_rtree_t *rtree, uintptr_t key)
+{
+ void *ret;
+ uintptr_t subkey;
+ unsigned i, lshift, height, bits;
+ void **node, **child;
+
+ malloc_spin_lock(&rtree->lock);
+ for (i = lshift = 0, height = rtree->height, node = rtree->root;
+ i < height - 1;
+ i++, lshift += bits, node = child) {
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ child = (void**)node[subkey];
+ if (child == NULL) {
+ malloc_spin_unlock(&rtree->lock);
+ return (NULL);
+ }
+ }
+
+ /* node is a leaf, so it contains values rather than node pointers. */
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ ret = node[subkey];
+ malloc_spin_unlock(&rtree->lock);
+
+ return (ret);
+}
+
+static inline bool
+malloc_rtree_set(malloc_rtree_t *rtree, uintptr_t key, void *val)
+{
+ uintptr_t subkey;
+ unsigned i, lshift, height, bits;
+ void **node, **child;
+
+ malloc_spin_lock(&rtree->lock);
+ for (i = lshift = 0, height = rtree->height, node = rtree->root;
+ i < height - 1;
+ i++, lshift += bits, node = child) {
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ child = (void**)node[subkey];
+ if (child == NULL) {
+ child = (void**)base_calloc(1, sizeof(void *) <<
+ rtree->level2bits[i+1]);
+ if (child == NULL) {
+ malloc_spin_unlock(&rtree->lock);
+ return (true);
+ }
+ node[subkey] = child;
+ }
+ }
+
+ /* node is a leaf, so it contains values rather than node pointers. */
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ node[subkey] = val;
+ malloc_spin_unlock(&rtree->lock);
+
+ return (false);
+}
+#endif
+
+static void *
+chunk_alloc_mmap(size_t size, bool pagefile)
+{
+ void *ret;
+#ifndef JEMALLOC_USES_MAP_ALIGN
+ size_t offset;
+#endif
+ int pfd;
+
+#ifdef MALLOC_PAGEFILE
+ if (opt_pagefile && pagefile) {
+ pfd = pagefile_init(size);
+ if (pfd == -1)
+ return (NULL);
+ } else
+#endif
+ pfd = -1;
+
+ /*
+ * Windows requires that there be a 1:1 mapping between VM
+ * allocation/deallocation operations. Therefore, take care here to
+ * acquire the final result via one mapping operation. This means
+ * unmapping any preliminary result that is not correctly aligned.
+ *
+ * The MALLOC_PAGEFILE code also benefits from this mapping algorithm,
+ * since it reduces the number of page files.
+ */
+
+#ifdef JEMALLOC_USES_MAP_ALIGN
+ ret = pages_map_align(size, pfd, chunksize);
+#else
+ ret = pages_map(NULL, size, pfd);
+ if (ret == NULL)
+ goto RETURN;
+
+ offset = CHUNK_ADDR2OFFSET(ret);
+ if (offset != 0) {
+ /* Deallocate, then try to allocate at (ret + size - offset). */
+ pages_unmap(ret, size);
+ ret = pages_map((void *)((uintptr_t)ret + size - offset), size,
+ pfd);
+ while (ret == NULL) {
+ /*
+ * Over-allocate in order to map a memory region that
+ * is definitely large enough.
+ */
+ ret = pages_map(NULL, size + chunksize, -1);
+ if (ret == NULL)
+ goto RETURN;
+ /*
+ * Deallocate, then allocate the correct size, within
+ * the over-sized mapping.
+ */
+ offset = CHUNK_ADDR2OFFSET(ret);
+ pages_unmap(ret, size + chunksize);
+ if (offset == 0)
+ ret = pages_map(ret, size, pfd);
+ else {
+ ret = pages_map((void *)((uintptr_t)ret +
+ chunksize - offset), size, pfd);
+ }
+ /*
+ * Failure here indicates a race with another thread, so
+ * try again.
+ */
+ }
+ }
+RETURN:
+#endif
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1)
+ pagefile_close(pfd);
+#endif
+#ifdef MALLOC_STATS
+ if (ret != NULL)
+ stats_chunks.nchunks += (size / chunksize);
+#endif
+ return (ret);
+}
+
+#ifdef MALLOC_PAGEFILE
+static int
+pagefile_init(size_t size)
+{
+ int ret;
+ size_t i;
+ char pagefile_path[PATH_MAX];
+ char zbuf[MALLOC_PAGEFILE_WRITE_SIZE];
+
+ /*
+ * Create a temporary file, then immediately unlink it so that it will
+ * not persist.
+ */
+ strcpy(pagefile_path, pagefile_templ);
+ ret = mkstemp(pagefile_path);
+ if (ret == -1)
+ return (ret);
+ if (unlink(pagefile_path)) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(), ": (malloc) Error in unlink(\"",
+ pagefile_path, "\"):");
+ _malloc_message(buf, "\n", "", "");
+ if (opt_abort)
+ abort();
+ }
+
+ /*
+ * Write sequential zeroes to the file in order to assure that disk
+ * space is committed, with minimal fragmentation. It would be
+ * sufficient to write one zero per disk block, but that potentially
+ * results in more system calls, for no real gain.
+ */
+ memset(zbuf, 0, sizeof(zbuf));
+ for (i = 0; i < size; i += sizeof(zbuf)) {
+ if (write(ret, zbuf, sizeof(zbuf)) != sizeof(zbuf)) {
+ if (errno != ENOSPC) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in write(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+ pagefile_close(ret);
+ return (-1);
+ }
+ }
+
+ return (ret);
+}
+
+static void
+pagefile_close(int pfd)
+{
+
+ if (close(pfd)) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in close(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+#endif
+
+static void *
+chunk_recycle_reserve(size_t size, bool zero)
+{
+ extent_node_t *node, key;
+
+#ifdef MALLOC_DECOMMIT
+ if (size != chunksize)
+ return (NULL);
+#endif
+
+ key.addr = NULL;
+ key.size = size;
+ malloc_mutex_lock(&reserve_mtx);
+ node = extent_tree_szad_nsearch(&reserve_chunks_szad, &key);
+ if (node != NULL) {
+ void *ret = node->addr;
+
+ /* Remove node from the tree. */
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+#ifndef MALLOC_DECOMMIT
+ if (node->size == size) {
+#else
+ assert(node->size == size);
+#endif
+ extent_tree_ad_remove(&reserve_chunks_ad, node);
+ base_node_dealloc(node);
+#ifndef MALLOC_DECOMMIT
+ } else {
+ /*
+ * Insert the remainder of node's address range as a
+ * smaller chunk. Its position within reserve_chunks_ad
+ * does not change.
+ */
+ assert(node->size > size);
+ node->addr = (void *)((uintptr_t)node->addr + size);
+ node->size -= size;
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+ }
+#endif
+ reserve_cur -= size;
+ /*
+ * Try to replenish the reserve if this allocation depleted it.
+ */
+#ifndef MALLOC_DECOMMIT
+ if (reserve_cur < reserve_min) {
+ size_t diff = reserve_min - reserve_cur;
+#else
+ while (reserve_cur < reserve_min) {
+# define diff chunksize
+#endif
+ void *chunk;
+
+ malloc_mutex_unlock(&reserve_mtx);
+ chunk = chunk_alloc_mmap(diff, true);
+ malloc_mutex_lock(&reserve_mtx);
+ if (chunk == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_notify(RESERVE_CND_LOW,
+ size, seq);
+ if (seq == 0)
+ goto MALLOC_OUT;
+ } while (reserve_cur < reserve_min);
+ } else {
+ extent_node_t *node;
+
+ node = chunk_dealloc_reserve(chunk, diff);
+ if (node == NULL) {
+ uint64_t seq = 0;
+
+ pages_unmap(chunk, diff);
+ do {
+ seq = reserve_notify(
+ RESERVE_CND_LOW, size, seq);
+ if (seq == 0)
+ goto MALLOC_OUT;
+ } while (reserve_cur < reserve_min);
+ }
+ }
+ }
+MALLOC_OUT:
+ malloc_mutex_unlock(&reserve_mtx);
+
+#ifdef MALLOC_DECOMMIT
+ pages_commit(ret, size);
+# undef diff
+#else
+ if (zero)
+ memset(ret, 0, size);
+#endif
+ return (ret);
+ }
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (NULL);
+}
+
+static void *
+chunk_alloc(size_t size, bool zero, bool pagefile)
+{
+ void *ret;
+
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+ ret = chunk_recycle_reserve(size, zero);
+ if (ret != NULL)
+ goto RETURN;
+
+ ret = chunk_alloc_mmap(size, pagefile);
+ if (ret != NULL) {
+ goto RETURN;
+ }
+
+ /* All strategies for allocation failed. */
+ ret = NULL;
+RETURN:
+#ifdef MALLOC_STATS
+ if (ret != NULL)
+ stats_chunks.curchunks += (size / chunksize);
+ if (stats_chunks.curchunks > stats_chunks.highchunks)
+ stats_chunks.highchunks = stats_chunks.curchunks;
+#endif
+
+#ifdef MALLOC_VALIDATE
+ if (ret != NULL) {
+ if (malloc_rtree_set(chunk_rtree, (uintptr_t)ret, ret)) {
+ chunk_dealloc(ret, size);
+ return (NULL);
+ }
+ }
+#endif
+
+ assert(CHUNK_ADDR2BASE(ret) == ret);
+ return (ret);
+}
+
+static extent_node_t *
+chunk_dealloc_reserve(void *chunk, size_t size)
+{
+ extent_node_t *node;
+
+#ifdef MALLOC_DECOMMIT
+ if (size != chunksize)
+ return (NULL);
+#else
+ extent_node_t *prev, key;
+
+ key.addr = (void *)((uintptr_t)chunk + size);
+ node = extent_tree_ad_nsearch(&reserve_chunks_ad, &key);
+ /* Try to coalesce forward. */
+ if (node != NULL && node->addr == key.addr) {
+ /*
+ * Coalesce chunk with the following address range. This does
+ * not change the position within reserve_chunks_ad, so only
+ * remove/insert from/into reserve_chunks_szad.
+ */
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+ node->addr = chunk;
+ node->size += size;
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+ } else {
+#endif
+ /* Coalescing forward failed, so insert a new node. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+ node->addr = chunk;
+ node->size = size;
+ extent_tree_ad_insert(&reserve_chunks_ad, node);
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+#ifndef MALLOC_DECOMMIT
+ }
+
+ /* Try to coalesce backward. */
+ prev = extent_tree_ad_prev(&reserve_chunks_ad, node);
+ if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
+ chunk) {
+ /*
+ * Coalesce chunk with the previous address range. This does
+ * not change the position within reserve_chunks_ad, so only
+ * remove/insert node from/into reserve_chunks_szad.
+ */
+ extent_tree_szad_remove(&reserve_chunks_szad, prev);
+ extent_tree_ad_remove(&reserve_chunks_ad, prev);
+
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+ node->addr = prev->addr;
+ node->size += prev->size;
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+
+ base_node_dealloc(prev);
+ }
+#endif
+
+#ifdef MALLOC_DECOMMIT
+ pages_decommit(chunk, size);
+#else
+ madvise(chunk, size, MADV_FREE);
+#endif
+
+ reserve_cur += size;
+ if (reserve_cur > reserve_max)
+ reserve_shrink();
+
+ return (node);
+}
+
+static void
+chunk_dealloc_mmap(void *chunk, size_t size)
+{
+
+ pages_unmap(chunk, size);
+}
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+ extent_node_t *node;
+
+ assert(chunk != NULL);
+ assert(CHUNK_ADDR2BASE(chunk) == chunk);
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_STATS
+ stats_chunks.curchunks -= (size / chunksize);
+#endif
+#ifdef MALLOC_VALIDATE
+ malloc_rtree_set(chunk_rtree, (uintptr_t)chunk, NULL);
+#endif
+
+ /* Try to merge chunk into the reserve. */
+ malloc_mutex_lock(&reserve_mtx);
+ node = chunk_dealloc_reserve(chunk, size);
+ malloc_mutex_unlock(&reserve_mtx);
+ if (node == NULL)
+ chunk_dealloc_mmap(chunk, size);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+ arena_t *ret;
+
+ /*
+ * We can only use TLS if this is a PIC library, since for the static
+ * library version, libc's malloc is used by TLS allocation, which
+ * introduces a bootstrapping issue.
+ */
+#ifndef NO_TLS
+ if (__isthreaded == false) {
+ /* Avoid the overhead of TLS for single-threaded operation. */
+ return (arenas[0]);
+ }
+
+# ifdef MOZ_MEMORY_WINDOWS
+ ret = (arena_t*)TlsGetValue(tlsIndex);
+# else
+ ret = arenas_map;
+# endif
+
+ if (ret == NULL) {
+ ret = choose_arena_hard();
+ assert(ret != NULL);
+ }
+#else
+ if (__isthreaded && narenas > 1) {
+ unsigned long ind;
+
+ /*
+ * Hash _pthread_self() to one of the arenas. There is a prime
+ * number of arenas, so this has a reasonable chance of
+ * working. Even so, the hashing can be easily thwarted by
+ * inconvenient _pthread_self() values. Without specific
+ * knowledge of how _pthread_self() calculates values, we can't
+ * easily do much better than this.
+ */
+ ind = (unsigned long) _pthread_self() % narenas;
+
+ /*
+ * Optimistially assume that arenas[ind] has been initialized.
+ * At worst, we find out that some other thread has already
+ * done so, after acquiring the lock in preparation. Note that
+ * this lazy locking also has the effect of lazily forcing
+ * cache coherency; without the lock acquisition, there's no
+ * guarantee that modification of arenas[ind] by another thread
+ * would be seen on this CPU for an arbitrary amount of time.
+ *
+ * In general, this approach to modifying a synchronized value
+ * isn't a good idea, but in this case we only ever modify the
+ * value once, so things work out well.
+ */
+ ret = arenas[ind];
+ if (ret == NULL) {
+ /*
+ * Avoid races with another thread that may have already
+ * initialized arenas[ind].
+ */
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] == NULL)
+ ret = arenas_extend((unsigned)ind);
+ else
+ ret = arenas[ind];
+ malloc_spin_unlock(&arenas_lock);
+ }
+ } else
+ ret = arenas[0];
+#endif
+
+ assert(ret != NULL);
+ return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+ arena_t *ret;
+
+ assert(__isthreaded);
+
+#ifdef MALLOC_BALANCE
+ /* Seed the PRNG used for arena load balancing. */
+ SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
+#endif
+
+ if (narenas > 1) {
+#ifdef MALLOC_BALANCE
+ unsigned ind;
+
+ ind = PRN(balance, narenas_2pow);
+ if ((ret = arenas[ind]) == NULL) {
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[ind]) == NULL)
+ ret = arenas_extend(ind);
+ malloc_spin_unlock(&arenas_lock);
+ }
+#else
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[next_arena]) == NULL)
+ ret = arenas_extend(next_arena);
+ next_arena = (next_arena + 1) % narenas;
+ malloc_spin_unlock(&arenas_lock);
+#endif
+ } else
+ ret = arenas[0];
+
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, ret);
+#else
+ arenas_map = ret;
+#endif
+
+ return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+ uintptr_t a_chunk = (uintptr_t)a;
+ uintptr_t b_chunk = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
+ arena_chunk_t, link_dirty, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ uintptr_t a_mapelm = (uintptr_t)a;
+ uintptr_t b_mapelm = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, link,
+ arena_run_comp)
+
+static inline int
+arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ int ret;
+ size_t a_size = a->bits & ~pagesize_mask;
+ size_t b_size = b->bits & ~pagesize_mask;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_mapelm, b_mapelm;
+
+ if ((a->bits & CHUNK_MAP_KEY) == 0)
+ a_mapelm = (uintptr_t)a;
+ else {
+ /*
+ * Treat keys as though they are lower than anything
+ * else.
+ */
+ a_mapelm = 0;
+ }
+ b_mapelm = (uintptr_t)b;
+
+ ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_avail_tree_, arena_avail_tree_t, arena_chunk_map_t, link,
+ arena_avail_comp)
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+ void *ret;
+ unsigned i, mask, bit, regind;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->regs_minelm < bin->regs_mask_nelms);
+
+ /*
+ * Move the first check outside the loop, so that run->regs_minelm can
+ * be updated unconditionally, without the possibility of updating it
+ * multiple times.
+ */
+ i = run->regs_minelm;
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ return (ret);
+ }
+
+ for (i++; i < bin->regs_mask_nelms; i++) {
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ /*
+ * Make a note that nothing before this element
+ * contains a free region.
+ */
+ run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+ return (ret);
+ }
+ }
+ /* Not reached. */
+ assert(0);
+ return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
+{
+ /*
+ * To divide by a number D that is not a power of two we multiply
+ * by (2^21 / D) and then right shift by 21 positions.
+ *
+ * X / D
+ *
+ * becomes
+ *
+ * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
+ */
+#define SIZE_INV_SHIFT 21
+#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
+ static const unsigned size_invs[] = {
+ SIZE_INV(3),
+ SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
+ SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
+ SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
+ SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
+ SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
+ SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
+ SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
+#if (QUANTUM_2POW_MIN < 4)
+ ,
+ SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
+ SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
+ SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
+ SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
+ SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
+ SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
+ SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
+ SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
+#endif
+ };
+ unsigned diff, regind, elm, bit;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
+ >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
+
+ /*
+ * Avoid doing division with a variable divisor if possible. Using
+ * actual division here can reduce allocator throughput by over 20%!
+ */
+ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+ if ((size & (size - 1)) == 0) {
+ /*
+ * log2_table allows fast division of a power of two in the
+ * [1..128] range.
+ *
+ * (x / divisor) becomes (x >> log2_table[divisor - 1]).
+ */
+ static const unsigned char log2_table[] = {
+ 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
+ };
+
+ if (size <= 128)
+ regind = (diff >> log2_table[size - 1]);
+ else if (size <= 32768)
+ regind = diff >> (8 + log2_table[(size >> 8) - 1]);
+ else {
+ /*
+ * The run size is too large for us to use the lookup
+ * table. Use real division.
+ */
+ regind = diff / size;
+ }
+ } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
+ << QUANTUM_2POW_MIN) + 2) {
+ regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else {
+ /*
+ * size_invs isn't large enough to handle this size class, so
+ * calculate regind using actual division. This only happens
+ * if the user increases small_max via the 'S' runtime
+ * configuration option.
+ */
+ regind = diff / size;
+ };
+ assert(diff == regind * size);
+ assert(regind < bin->nregs);
+
+ elm = regind >> (SIZEOF_INT_2POW + 3);
+ if (elm < run->regs_minelm)
+ run->regs_minelm = elm;
+ bit = regind - (elm << (SIZEOF_INT_2POW + 3));
+ assert((run->regs_mask[elm] & (1U << bit)) == 0);
+ run->regs_mask[elm] |= (1U << bit);
+#undef SIZE_INV
+#undef SIZE_INV_SHIFT
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
+ bool zero)
+{
+ arena_chunk_t *chunk;
+ size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ old_ndirty = chunk->ndirty;
+ run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
+ pagesize_2pow;
+ need_pages = (size >> pagesize_2pow);
+ assert(need_pages > 0);
+ assert(need_pages <= total_pages);
+ rem_pages = total_pages - need_pages;
+
+ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Keep track of trailing unused pages for later use. */
+ if (rem_pages > 0) {
+ chunk->map[run_ind+need_pages].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
+ pagesize_mask);
+ chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
+ pagesize_mask);
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[run_ind+need_pages]);
+ }
+
+ for (i = 0; i < need_pages; i++) {
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Commit decommitted pages if necessary. If a decommitted
+ * page is encountered, commit all needed adjacent decommitted
+ * pages in one operation, in order to reduce system call
+ * overhead.
+ */
+ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DECOMMITTED) {
+ size_t j;
+
+ /*
+ * Advance i+j to just past the index of the last page
+ * to commit. Clear CHUNK_MAP_DECOMMITTED along the
+ * way.
+ */
+ for (j = 0; i + j < need_pages && (chunk->map[run_ind +
+ i + j].bits & CHUNK_MAP_DECOMMITTED); j++) {
+ chunk->map[run_ind + i + j].bits ^=
+ CHUNK_MAP_DECOMMITTED;
+ }
+
+ pages_commit((void *)((uintptr_t)chunk + ((run_ind + i)
+ << pagesize_2pow)), (j << pagesize_2pow));
+# ifdef MALLOC_STATS
+ arena->stats.ncommit++;
+# endif
+ } else /* No need to zero since commit zeros. */
+#endif
+
+ /* Zero if necessary. */
+ if (zero) {
+ if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
+ == 0) {
+ VALGRIND_MALLOCLIKE_BLOCK((void *)((uintptr_t)
+ chunk + ((run_ind + i) << pagesize_2pow)),
+ pagesize, 0, false);
+ memset((void *)((uintptr_t)chunk + ((run_ind
+ + i) << pagesize_2pow)), 0, pagesize);
+ VALGRIND_FREELIKE_BLOCK((void *)((uintptr_t)
+ chunk + ((run_ind + i) << pagesize_2pow)),
+ 0);
+ /* CHUNK_MAP_ZEROED is cleared below. */
+ }
+ }
+
+ /* Update dirty page accounting. */
+ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
+ chunk->ndirty--;
+ arena->ndirty--;
+ /* CHUNK_MAP_DIRTY is cleared below. */
+ }
+
+ /* Initialize the chunk map. */
+ if (large) {
+ chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+ } else {
+ chunk->map[run_ind + i].bits = (size_t)run
+ | CHUNK_MAP_ALLOCATED;
+ }
+ }
+
+ /*
+ * Set the run size only in the first element for large runs. This is
+ * primarily a debugging aid, since the lack of size info for trailing
+ * pages only matters if the application tries to operate on an
+ * interior pointer.
+ */
+ if (large)
+ chunk->map[run_ind].bits |= size;
+
+ if (chunk->ndirty == 0 && old_ndirty > 0)
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
+}
+
+static void
+arena_chunk_init(arena_t *arena, arena_chunk_t *chunk)
+{
+ arena_run_t *run;
+ size_t i;
+
+ VALGRIND_MALLOCLIKE_BLOCK(chunk, (arena_chunk_header_npages <<
+ pagesize_2pow), 0, false);
+#ifdef MALLOC_STATS
+ arena->stats.mapped += chunksize;
+#endif
+
+ chunk->arena = arena;
+
+ /*
+ * Claim that no pages are in use, since the header is merely overhead.
+ */
+ chunk->ndirty = 0;
+
+ /* Initialize the map to contain one maximal free untouched run. */
+ run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+ pagesize_2pow));
+ for (i = 0; i < arena_chunk_header_npages; i++)
+ chunk->map[i].bits = 0;
+ chunk->map[i].bits = arena_maxclass
+#ifdef MALLOC_DECOMMIT
+ | CHUNK_MAP_DECOMMITTED
+#endif
+ | CHUNK_MAP_ZEROED;
+ for (i++; i < chunk_npages-1; i++) {
+ chunk->map[i].bits =
+#ifdef MALLOC_DECOMMIT
+ CHUNK_MAP_DECOMMITTED |
+#endif
+ CHUNK_MAP_ZEROED;
+ }
+ chunk->map[chunk_npages-1].bits = arena_maxclass
+#ifdef MALLOC_DECOMMIT
+ | CHUNK_MAP_DECOMMITTED
+#endif
+ | CHUNK_MAP_ZEROED;
+
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Start out decommitted, in order to force a closer correspondence
+ * between dirty pages and committed untouched pages.
+ */
+ pages_decommit(run, arena_maxclass);
+# ifdef MALLOC_STATS
+ arena->stats.ndecommit++;
+ arena->stats.decommitted += (chunk_npages - arena_chunk_header_npages);
+# endif
+#endif
+
+ /* Insert the run into the runs_avail tree. */
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+
+ if (arena->spare != NULL) {
+ if (arena->spare->ndirty > 0) {
+ arena_chunk_tree_dirty_remove(
+ &chunk->arena->chunks_dirty, arena->spare);
+ arena->ndirty -= arena->spare->ndirty;
+ }
+ VALGRIND_FREELIKE_BLOCK(arena->spare, 0);
+ chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+ arena->stats.mapped -= chunksize;
+#endif
+ }
+
+ /*
+ * Remove run from runs_avail, regardless of whether this chunk
+ * will be cached, so that the arena does not use it. Dirty page
+ * flushing only uses the chunks_dirty tree, so leaving this chunk in
+ * the chunks_* trees is sufficient for that purpose.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+ arena->spare = chunk;
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, arena_bin_t *bin, size_t size, bool large,
+ bool zero)
+{
+ arena_chunk_t *chunk;
+ arena_run_t *run;
+ arena_chunk_map_t *mapelm, key;
+
+ assert(size <= arena_maxclass);
+ assert((size & pagesize_mask) == 0);
+
+ chunk = NULL;
+ while (true) {
+ /* Search the arena's chunks for the lowest best fit. */
+ key.bits = size | CHUNK_MAP_KEY;
+ mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
+ if (mapelm != NULL) {
+ arena_chunk_t *run_chunk = (arena_chunk_t*)CHUNK_ADDR2BASE(mapelm);
+ size_t pageind = ((uintptr_t)mapelm -
+ (uintptr_t)run_chunk->map) /
+ sizeof(arena_chunk_map_t);
+
+ if (chunk != NULL)
+ chunk_dealloc(chunk, chunksize);
+ run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
+ << pagesize_2pow));
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+
+ if (arena->spare != NULL) {
+ /* Use the spare. */
+ chunk = arena->spare;
+ arena->spare = NULL;
+ run = (arena_run_t *)((uintptr_t)chunk +
+ (arena_chunk_header_npages << pagesize_2pow));
+ /* Insert the run into the runs_avail tree. */
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+
+ /*
+ * No usable runs. Create a new chunk from which to allocate
+ * the run.
+ */
+ if (chunk == NULL) {
+ uint64_t chunk_seq;
+
+ /*
+ * Record the chunk allocation sequence number in order
+ * to detect races.
+ */
+ arena->chunk_seq++;
+ chunk_seq = arena->chunk_seq;
+
+ /*
+ * Drop the arena lock while allocating a chunk, since
+ * reserve notifications may cause recursive
+ * allocation. Dropping the lock here opens an
+ * allocataion race, but we recover.
+ */
+ malloc_mutex_unlock(&arena->lock);
+ chunk = (arena_chunk_t *)chunk_alloc(chunksize, true,
+ true);
+ malloc_mutex_lock(&arena->lock);
+
+ /*
+ * Check whether a race allowed a usable run to appear.
+ */
+ if (bin != NULL && (run = bin->runcur) != NULL &&
+ run->nfree > 0) {
+ if (chunk != NULL)
+ chunk_dealloc(chunk, chunksize);
+ return (run);
+ }
+
+ /*
+ * If this thread raced with another such that multiple
+ * chunks were allocated, make sure that there is still
+ * inadequate space before using this chunk.
+ */
+ if (chunk_seq != arena->chunk_seq)
+ continue;
+
+ /*
+ * Check for an error *after* checking for a race,
+ * since a race could also cause a transient OOM
+ * condition.
+ */
+ if (chunk == NULL)
+ return (NULL);
+ }
+
+ arena_chunk_init(arena, chunk);
+ run = (arena_run_t *)((uintptr_t)chunk +
+ (arena_chunk_header_npages << pagesize_2pow));
+ /* Update page map. */
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+}
+
+static void
+arena_purge(arena_t *arena)
+{
+ arena_chunk_t *chunk;
+ size_t i, npages;
+#ifdef MALLOC_DEBUG
+ size_t ndirty = 0;
+ rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
+ chunk) {
+ ndirty += chunk->ndirty;
+ } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
+ assert(ndirty == arena->ndirty);
+#endif
+ assert(arena->ndirty > opt_dirty_max);
+
+#ifdef MALLOC_STATS
+ arena->stats.npurge++;
+#endif
+
+ /*
+ * Iterate downward through chunks until enough dirty memory has been
+ * purged. Terminate as soon as possible in order to minimize the
+ * number of system calls, even if a chunk has only been partially
+ * purged.
+ */
+ while (arena->ndirty > (opt_dirty_max >> 1)) {
+ chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
+ assert(chunk != NULL);
+
+ for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
+ assert(i >= arena_chunk_header_npages);
+
+ if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
+#ifdef MALLOC_DECOMMIT
+ assert((chunk->map[i].bits &
+ CHUNK_MAP_DECOMMITTED) == 0);
+#endif
+ chunk->map[i].bits ^=
+#ifdef MALLOC_DECOMMIT
+ CHUNK_MAP_DECOMMITTED |
+#endif
+ CHUNK_MAP_DIRTY;
+ /* Find adjacent dirty run(s). */
+ for (npages = 1; i > arena_chunk_header_npages
+ && (chunk->map[i - 1].bits &
+ CHUNK_MAP_DIRTY); npages++) {
+ i--;
+#ifdef MALLOC_DECOMMIT
+ assert((chunk->map[i].bits &
+ CHUNK_MAP_DECOMMITTED) == 0);
+#endif
+ chunk->map[i].bits ^=
+#ifdef MALLOC_DECOMMIT
+ CHUNK_MAP_DECOMMITTED |
+#endif
+ CHUNK_MAP_DIRTY;
+ }
+ chunk->ndirty -= npages;
+ arena->ndirty -= npages;
+
+#ifdef MALLOC_DECOMMIT
+ pages_decommit((void *)((uintptr_t)
+ chunk + (i << pagesize_2pow)),
+ (npages << pagesize_2pow));
+# ifdef MALLOC_STATS
+ arena->stats.ndecommit++;
+ arena->stats.decommitted += npages;
+# endif
+#else
+ madvise((void *)((uintptr_t)chunk + (i <<
+ pagesize_2pow)), (npages << pagesize_2pow),
+ MADV_FREE);
+#endif
+#ifdef MALLOC_STATS
+ arena->stats.nmadvise++;
+ arena->stats.purged += npages;
+#endif
+ if (arena->ndirty <= (opt_dirty_max >> 1))
+ break;
+ }
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
+ chunk);
+ }
+ }
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
+{
+ arena_chunk_t *chunk;
+ size_t size, run_ind, run_pages;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ assert(run_ind >= arena_chunk_header_npages);
+ assert(run_ind < chunk_npages);
+ if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
+ size = chunk->map[run_ind].bits & ~pagesize_mask;
+ else
+ size = run->bin->run_size;
+ run_pages = (size >> pagesize_2pow);
+
+ /* Mark pages as unallocated in the chunk map. */
+ if (dirty) {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
+ == 0);
+ chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
+ chunk);
+ }
+ chunk->ndirty += run_pages;
+ arena->ndirty += run_pages;
+ } else {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED);
+ }
+ }
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+
+ /* Try to coalesce forward. */
+ if (run_ind + run_pages < chunk_npages &&
+ (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
+ size_t nrun_size = chunk->map[run_ind+run_pages].bits &
+ ~pagesize_mask;
+
+ /*
+ * Remove successor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind+run_pages]);
+
+ size += nrun_size;
+ run_pages = size >> pagesize_2pow;
+
+ assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
+ == nrun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Try to coalesce backward. */
+ if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
+ CHUNK_MAP_ALLOCATED) == 0) {
+ size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
+
+ run_ind -= prun_size >> pagesize_2pow;
+
+ /*
+ * Remove predecessor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind]);
+
+ size += prun_size;
+ run_pages = size >> pagesize_2pow;
+
+ assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
+ prun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Insert into runs_avail, now that coalescing is complete. */
+ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Deallocate chunk if it is now completely unused. */
+ if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
+ CHUNK_MAP_ALLOCATED)) == arena_maxclass)
+ arena_chunk_dealloc(arena, chunk);
+
+ /* Enforce opt_dirty_max. */
+ if (arena->ndirty > opt_dirty_max)
+ arena_purge(arena);
+}
+
+static void
+arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * leading run as separately allocated.
+ */
+ chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, run, false);
+}
+
+static void
+arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize, bool dirty)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = newsize >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * trailing run as separately allocated.
+ */
+ chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
+ dirty);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+ arena_chunk_map_t *mapelm;
+ arena_run_t *run;
+ unsigned i, remainder;
+
+ /* Look for a usable run. */
+ mapelm = arena_run_tree_first(&bin->runs);
+ if (mapelm != NULL) {
+ /* run is guaranteed to have available space. */
+ arena_run_tree_remove(&bin->runs, mapelm);
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+#ifdef MALLOC_STATS
+ bin->stats.reruns++;
+#endif
+ return (run);
+ }
+ /* No existing runs have any space available. */
+
+ /* Allocate a new run. */
+ run = arena_run_alloc(arena, bin, bin->run_size, false, false);
+ if (run == NULL)
+ return (NULL);
+ /*
+ * Don't initialize if a race in arena_run_alloc() allowed an existing
+ * run to become usable.
+ */
+ if (run == bin->runcur)
+ return (run);
+
+ VALGRIND_MALLOCLIKE_BLOCK(run, sizeof(arena_run_t) + (sizeof(unsigned) *
+ (bin->regs_mask_nelms - 1)), 0, false);
+
+ /* Initialize run internals. */
+ run->bin = bin;
+
+ for (i = 0; i < bin->regs_mask_nelms - 1; i++)
+ run->regs_mask[i] = UINT_MAX;
+ remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
+ if (remainder == 0)
+ run->regs_mask[i] = UINT_MAX;
+ else {
+ /* The last element has spare bits that need to be unset. */
+ run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
+ - remainder));
+ }
+
+ run->regs_minelm = 0;
+
+ run->nfree = bin->nregs;
+#ifdef MALLOC_DEBUG
+ run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+ bin->stats.nruns++;
+ bin->stats.curruns++;
+ if (bin->stats.curruns > bin->stats.highruns)
+ bin->stats.highruns = bin->stats.curruns;
+#endif
+ return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+ void *ret;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->nfree > 0);
+
+ ret = arena_run_reg_alloc(run, bin);
+ assert(ret != NULL);
+ run->nfree--;
+
+ return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+ bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+ if (bin->runcur == NULL)
+ return (NULL);
+ assert(bin->runcur->magic == ARENA_RUN_MAGIC);
+ assert(bin->runcur->nfree > 0);
+
+ return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ * *) bin->run_size >= min_run_size
+ * *) bin->run_size <= arena_maxclass
+ * *) bin->run_size <= RUN_MAX_SMALL
+ * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+ size_t try_run_size, good_run_size;
+ unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+ unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+ assert(min_run_size >= pagesize);
+ assert(min_run_size <= arena_maxclass);
+ assert(min_run_size <= RUN_MAX_SMALL);
+
+ /*
+ * Calculate known-valid settings before entering the run_size
+ * expansion loop, so that the first part of the loop always copies
+ * valid settings.
+ *
+ * The do..while loop iteratively reduces the number of regions until
+ * the run header and the regions no longer overlap. A closed formula
+ * would be quite messy, since there is an interdependency between the
+ * header's mask length and the number of regions.
+ */
+ try_run_size = min_run_size;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+ + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+ > try_reg0_offset);
+
+ /* run_size expansion loop. */
+ do {
+ /*
+ * Copy valid settings before trying more aggressive settings.
+ */
+ good_run_size = try_run_size;
+ good_nregs = try_nregs;
+ good_mask_nelms = try_mask_nelms;
+ good_reg0_offset = try_reg0_offset;
+
+ /* Try more aggressive settings. */
+ try_run_size += pagesize;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+ bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
+ 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs *
+ bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+ (try_mask_nelms - 1)) > try_reg0_offset);
+ } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
+ && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+ && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
+
+ assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+ <= good_reg0_offset);
+ assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
+
+ /* Copy final settings. */
+ bin->run_size = good_run_size;
+ bin->nregs = good_nregs;
+ bin->regs_mask_nelms = good_mask_nelms;
+ bin->reg0_offset = good_reg0_offset;
+
+ return (good_run_size);
+}
+
+#ifdef MALLOC_BALANCE
+static inline void
+arena_lock_balance(arena_t *arena)
+{
+ unsigned contention;
+
+ contention = malloc_spin_lock(&arena->lock);
+ if (narenas > 1) {
+ /*
+ * Calculate the exponentially averaged contention for this
+ * arena. Due to integer math always rounding down, this value
+ * decays somewhat faster then normal.
+ */
+ arena->contention = (((uint64_t)arena->contention
+ * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+ + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
+ if (arena->contention >= opt_balance_threshold)
+ arena_lock_balance_hard(arena);
+ }
+}
+
+static void
+arena_lock_balance_hard(arena_t *arena)
+{
+ uint32_t ind;
+
+ arena->contention = 0;
+#ifdef MALLOC_STATS
+ arena->stats.nbalance++;
+#endif
+ ind = PRN(balance, narenas_2pow);
+ if (arenas[ind] != NULL) {
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas[ind]);
+#else
+ arenas_map = arenas[ind];
+#endif
+ } else {
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] != NULL) {
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas[ind]);
+#else
+ arenas_map = arenas[ind];
+#endif
+ } else {
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas_extend(ind));
+#else
+ arenas_map = arenas_extend(ind);
+#endif
+ }
+ malloc_spin_unlock(&arenas_lock);
+ }
+}
+#endif
+
+static inline void *
+arena_malloc_small(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+ arena_bin_t *bin;
+ arena_run_t *run;
+
+ if (size < small_min) {
+ /* Tiny. */
+ size = pow2_ceil(size);
+ bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
+ 1)))];
+#if (!defined(NDEBUG) || defined(MALLOC_STATS))
+ /*
+ * Bin calculation is always correct, but we may need
+ * to fix size for the purposes of assertions and/or
+ * stats accuracy.
+ */
+ if (size < (1U << TINY_MIN_2POW))
+ size = (1U << TINY_MIN_2POW);
+#endif
+ } else if (size <= small_max) {
+ /* Quantum-spaced. */
+ size = QUANTUM_CEILING(size);
+ bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
+ - 1];
+ } else {
+ /* Sub-page. */
+ size = pow2_ceil(size);
+ bin = &arena->bins[ntbins + nqbins
+ + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
+ }
+ assert(size == bin->reg_size);
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ ret = arena_bin_malloc_easy(arena, bin, run);
+ else
+ ret = arena_bin_malloc_hard(arena, bin);
+
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+#ifdef MALLOC_STATS
+ bin->stats.nrequests++;
+ arena->stats.nmalloc_small++;
+ arena->stats.allocated_small += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero);
+ if (zero == false) {
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+#endif
+ } else
+ memset(ret, 0, size);
+
+ return (ret);
+}
+
+static void *
+arena_malloc_large(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+
+ /* Large allocation. */
+ size = PAGE_CEILING(size);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, NULL, size, true, zero);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero);
+ if (zero == false) {
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+#endif
+ }
+
+ return (ret);
+}
+
+static inline void *
+arena_malloc(arena_t *arena, size_t size, bool zero)
+{
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(size != 0);
+ assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+ if (size <= bin_maxclass) {
+ return (arena_malloc_small(arena, size, zero));
+ } else
+ return (arena_malloc_large(arena, size, zero));
+}
+
+static inline void *
+imalloc(size_t size)
+{
+
+ assert(size != 0);
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, false));
+ else
+ return (huge_malloc(size, false));
+}
+
+static inline void *
+icalloc(size_t size)
+{
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, true));
+ else
+ return (huge_malloc(size, true));
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+ void *ret;
+ size_t offset;
+ arena_chunk_t *chunk;
+
+ assert((size & pagesize_mask) == 0);
+ assert((alignment & pagesize_mask) == 0);
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, NULL, alloc_size, true, false);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & pagesize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0)
+ arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, alloc_size, size, false);
+ else {
+ size_t leadsize, trailsize;
+
+ leadsize = alignment - offset;
+ if (leadsize > 0) {
+ arena_run_trim_head(arena, chunk, (arena_run_t*)ret, alloc_size,
+ alloc_size - leadsize);
+ ret = (void *)((uintptr_t)ret + leadsize);
+ }
+
+ trailsize = alloc_size - leadsize - size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, size + trailsize,
+ size, false);
+ }
+ }
+
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false);
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+#endif
+ return (ret);
+}
+
+static inline void *
+ipalloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t ceil_size;
+
+ /*
+ * Round size up to the nearest multiple of alignment.
+ *
+ * This done, we can take advantage of the fact that for each small
+ * size class, every object is aligned at the smallest power of two
+ * that is non-zero in the base two representation of the size. For
+ * example:
+ *
+ * Size | Base 2 | Minimum alignment
+ * -----+----------+------------------
+ * 96 | 1100000 | 32
+ * 144 | 10100000 | 32
+ * 192 | 11000000 | 64
+ *
+ * Depending on runtime settings, it is possible that arena_malloc()
+ * will further round up to a power of two, but that never causes
+ * correctness issues.
+ */
+ ceil_size = (size + (alignment - 1)) & (-alignment);
+ /*
+ * (ceil_size < size) protects against the combination of maximal
+ * alignment and size greater than maximal alignment.
+ */
+ if (ceil_size < size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ if (ceil_size <= pagesize || (alignment <= pagesize
+ && ceil_size <= arena_maxclass))
+ ret = arena_malloc(choose_arena(), ceil_size, false);
+ else {
+ size_t run_size;
+
+ /*
+ * We can't achieve sub-page alignment, so round up alignment
+ * permanently; it makes later calculations simpler.
+ */
+ alignment = PAGE_CEILING(alignment);
+ ceil_size = PAGE_CEILING(size);
+ /*
+ * (ceil_size < size) protects against very large sizes within
+ * pagesize of SIZE_T_MAX.
+ *
+ * (ceil_size + alignment < ceil_size) protects against the
+ * combination of maximal alignment and ceil_size large enough
+ * to cause overflow. This is similar to the first overflow
+ * check above, but it needs to be repeated due to the new
+ * ceil_size value, which may now be *equal* to maximal
+ * alignment, whereas before we only detected overflow if the
+ * original size was *greater* than maximal alignment.
+ */
+ if (ceil_size < size || ceil_size + alignment < ceil_size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ /*
+ * Calculate the size of the over-size run that arena_palloc()
+ * would need to allocate in order to guarantee the alignment.
+ */
+ if (ceil_size >= alignment)
+ run_size = ceil_size + alignment - pagesize;
+ else {
+ /*
+ * It is possible that (alignment << 1) will cause
+ * overflow, but it doesn't matter because we also
+ * subtract pagesize, which in the case of overflow
+ * leaves us with a very large run_size. That causes
+ * the first conditional below to fail, which means
+ * that the bogus run_size value never gets used for
+ * anything important.
+ */
+ run_size = (alignment << 1) - pagesize;
+ }
+
+ if (run_size <= arena_maxclass) {
+ ret = arena_palloc(choose_arena(), alignment, ceil_size,
+ run_size);
+ } else if (alignment <= chunksize)
+ ret = huge_malloc(ceil_size, false);
+ else
+ ret = huge_palloc(alignment, ceil_size);
+ }
+
+ assert(((uintptr_t)ret & (alignment - 1)) == 0);
+ return (ret);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+ size_t pageind, mapbits;
+
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapbits = chunk->map[pageind].bits;
+ assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapbits & CHUNK_MAP_LARGE) == 0) {
+ arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ ret = run->bin->reg_size;
+ } else {
+ ret = mapbits & ~pagesize_mask;
+ assert(ret != 0);
+ }
+
+ return (ret);
+}
+
+#if (defined(MALLOC_VALIDATE) || defined(MOZ_MEMORY_DARWIN))
+/*
+ * Validate ptr before assuming that it points to an allocation. Currently,
+ * the following validation is performed:
+ *
+ * + Check that ptr is not NULL.
+ *
+ * + Check that ptr lies within a mapped chunk.
+ */
+static inline size_t
+isalloc_validate(const void *ptr)
+{
+ arena_chunk_t *chunk;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk == NULL)
+ return (0);
+
+ if (malloc_rtree_get(chunk_rtree, (uintptr_t)chunk) == NULL)
+ return (0);
+
+ if (chunk != ptr) {
+ assert(chunk->arena->magic == ARENA_MAGIC);
+ return (arena_salloc(ptr));
+ } else {
+ size_t ret;
+ extent_node_t *node;
+ extent_node_t key;
+
+ /* Chunk. */
+ key.addr = (void *)chunk;
+ malloc_mutex_lock(&huge_mtx);
+ node = extent_tree_ad_search(&huge, &key);
+ if (node != NULL)
+ ret = node->size;
+ else
+ ret = 0;
+ malloc_mutex_unlock(&huge_mtx);
+ return (ret);
+ }
+}
+#endif
+
+static inline size_t
+isalloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr) {
+ /* Region. */
+ assert(chunk->arena->magic == ARENA_MAGIC);
+
+ ret = arena_salloc(ptr);
+ } else {
+ extent_node_t *node, key;
+
+ /* Chunk (huge allocation). */
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+
+ ret = node->size;
+
+ malloc_mutex_unlock(&huge_mtx);
+ }
+
+ return (ret);
+}
+
+static inline void
+arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ arena_chunk_map_t *mapelm)
+{
+ arena_run_t *run;
+ arena_bin_t *bin;
+ size_t size;
+
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ size = bin->reg_size;
+
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ptr, 0x5a, size);
+#endif
+
+ arena_run_reg_dalloc(run, bin, ptr, size);
+ run->nfree++;
+
+ if (run->nfree == bin->nregs) {
+ /* Deallocate run. */
+ if (run == bin->runcur)
+ bin->runcur = NULL;
+ else if (bin->nregs != 1) {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+ /*
+ * This block's conditional is necessary because if the
+ * run only contains one region, then it never gets
+ * inserted into the non-full runs tree.
+ */
+ assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
+ run_mapelm);
+ arena_run_tree_remove(&bin->runs, run_mapelm);
+ }
+#ifdef MALLOC_DEBUG
+ run->magic = 0;
+#endif
+ VALGRIND_FREELIKE_BLOCK(run, 0);
+ arena_run_dalloc(arena, run, true);
+#ifdef MALLOC_STATS
+ bin->stats.curruns--;
+#endif
+ } else if (run->nfree == 1 && run != bin->runcur) {
+ /*
+ * Make sure that bin->runcur always refers to the lowest
+ * non-full run, if one exists.
+ */
+ if (bin->runcur == NULL)
+ bin->runcur = run;
+ else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+ /* Switch runcur. */
+ if (bin->runcur->nfree > 0) {
+ arena_chunk_t *runcur_chunk =
+ (arena_chunk_t*)CHUNK_ADDR2BASE(bin->runcur);
+ size_t runcur_pageind =
+ (((uintptr_t)bin->runcur -
+ (uintptr_t)runcur_chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *runcur_mapelm =
+ &runcur_chunk->map[runcur_pageind];
+
+ /* Insert runcur. */
+ assert(arena_run_tree_search(&bin->runs,
+ runcur_mapelm) == NULL);
+ arena_run_tree_insert(&bin->runs,
+ runcur_mapelm);
+ }
+ bin->runcur = run;
+ } else {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+
+ assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
+ NULL);
+ arena_run_tree_insert(&bin->runs, run_mapelm);
+ }
+ }
+#ifdef MALLOC_STATS
+ arena->stats.allocated_small -= size;
+ arena->stats.ndalloc_small++;
+#endif
+}
+
+static void
+arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ /* Large allocation. */
+ malloc_spin_lock(&arena->lock);
+
+#ifdef MALLOC_FILL
+#ifndef MALLOC_STATS
+ if (opt_junk)
+#endif
+#endif
+ {
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
+ pagesize_2pow;
+ size_t size = chunk->map[pageind].bits & ~pagesize_mask;
+
+#ifdef MALLOC_FILL
+#ifdef MALLOC_STATS
+ if (opt_junk)
+#endif
+ memset(ptr, 0x5a, size);
+#endif
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= size;
+#endif
+ }
+#ifdef MALLOC_STATS
+ arena->stats.ndalloc_large++;
+#endif
+
+ arena_run_dalloc(arena, (arena_run_t *)ptr, true);
+ malloc_spin_unlock(&arena->lock);
+}
+
+static inline void
+arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ size_t pageind;
+ arena_chunk_map_t *mapelm;
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(chunk->arena == arena);
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
+ /* Small allocation. */
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ } else
+ arena_dalloc_large(arena, chunk, ptr);
+ VALGRIND_FREELIKE_BLOCK(ptr, 0);
+}
+
+static inline void
+idalloc(void *ptr)
+{
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr)
+ arena_dalloc(chunk->arena, chunk, ptr);
+ else
+ huge_dalloc(ptr);
+}
+
+static void
+arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+
+ assert(size < oldsize);
+
+ /*
+ * Shrink the run, and make trailing pages available for other
+ * allocations.
+ */
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
+ true);
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= oldsize - size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+}
+
+static bool
+arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = oldsize >> pagesize_2pow;
+
+ assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
+
+ /* Try to extend the run. */
+ assert(size > oldsize);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
+ & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
+ ~pagesize_mask) >= size - oldsize) {
+ /*
+ * The next run is available and sufficiently large. Split the
+ * following run, then merge the first part with the existing
+ * allocation.
+ */
+ arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
+ ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
+ false);
+
+ chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large += size - oldsize;
+#endif
+ malloc_spin_unlock(&arena->lock);
+ return (false);
+ }
+ malloc_spin_unlock(&arena->lock);
+
+ return (true);
+}
+
+/*
+ * Try to resize a large allocation, in order to avoid copying. This will
+ * always fail if growing an object, and the following run is already in use.
+ */
+static bool
+arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
+{
+ size_t psize;
+
+ psize = PAGE_CEILING(size);
+ if (psize == oldsize) {
+ /* Same size class. */
+#ifdef MALLOC_FILL
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
+ size);
+ }
+#endif
+ return (false);
+ } else {
+ arena_chunk_t *chunk;
+ arena_t *arena;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ assert(arena->magic == ARENA_MAGIC);
+
+ if (psize < oldsize) {
+#ifdef MALLOC_FILL
+ /* Fill before shrinking in order avoid a race. */
+ if (opt_junk) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a,
+ oldsize - size);
+ }
+#endif
+ arena_ralloc_large_shrink(arena, chunk, ptr, psize,
+ oldsize);
+ return (false);
+ } else {
+ bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
+ psize, oldsize);
+#ifdef MALLOC_FILL
+ if (ret == false && opt_zero) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0,
+ size - oldsize);
+ }
+#endif
+ return (ret);
+ }
+ }
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Try to avoid moving the allocation. */
+ if (size < small_min) {
+ if (oldsize < small_min &&
+ ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
+ == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
+ goto IN_PLACE; /* Same size class. */
+ } else if (size <= small_max) {
+ if (oldsize >= small_min && oldsize <= small_max &&
+ (QUANTUM_CEILING(size) >> opt_quantum_2pow)
+ == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
+ goto IN_PLACE; /* Same size class. */
+ } else if (size <= bin_maxclass) {
+ if (oldsize > small_max && oldsize <= bin_maxclass &&
+ pow2_ceil(size) == pow2_ceil(oldsize))
+ goto IN_PLACE; /* Same size class. */
+ } else if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
+ assert(size > bin_maxclass);
+ if (arena_ralloc_large(ptr, size, oldsize) == false)
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to move the object. In that case, fall back to allocating new
+ * space and copying.
+ */
+ ret = arena_malloc(choose_arena(), size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Junk/zero-filling were already done by arena_malloc(). */
+ copysize = (size < oldsize) ? size : oldsize;
+#ifdef VM_COPY_MIN
+ if (copysize >= VM_COPY_MIN)
+ pages_copy(ret, ptr, copysize);
+ else
+#endif
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+IN_PLACE:
+#ifdef MALLOC_FILL
+ if (opt_junk && size < oldsize)
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
+ else if (opt_zero && size > oldsize)
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+#endif
+ return (ptr);
+}
+
+static inline void *
+iralloc(void *ptr, size_t size)
+{
+ size_t oldsize;
+
+ assert(ptr != NULL);
+ assert(size != 0);
+
+ oldsize = isalloc(ptr);
+
+#ifndef MALLOC_VALGRIND
+ if (size <= arena_maxclass)
+ return (arena_ralloc(ptr, size, oldsize));
+ else
+ return (huge_ralloc(ptr, size, oldsize));
+#else
+ /*
+ * Valgrind does not provide a public interface for modifying an
+ * existing allocation, so use malloc/memcpy/free instead.
+ */
+ {
+ void *ret = imalloc(size);
+ if (ret != NULL) {
+ if (oldsize < size)
+ memcpy(ret, ptr, oldsize);
+ else
+ memcpy(ret, ptr, size);
+ idalloc(ptr);
+ }
+ return (ret);
+ }
+#endif
+}
+
+static bool
+arena_new(arena_t *arena)
+{
+ unsigned i;
+ arena_bin_t *bin;
+ size_t pow2_size, prev_run_size;
+
+ if (malloc_spin_init(&arena->lock))
+ return (true);
+
+#ifdef MALLOC_STATS
+ memset(&arena->stats, 0, sizeof(arena_stats_t));
+#endif
+
+ arena->chunk_seq = 0;
+
+ /* Initialize chunks. */
+ arena_chunk_tree_dirty_new(&arena->chunks_dirty);
+ arena->spare = NULL;
+
+ arena->ndirty = 0;
+
+ arena_avail_tree_new(&arena->runs_avail);
+
+#ifdef MALLOC_BALANCE
+ arena->contention = 0;
+#endif
+
+ /* Initialize bins. */
+ prev_run_size = pagesize;
+
+ /* (2^n)-spaced tiny bins. */
+ for (i = 0; i < ntbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (1U << (TINY_MIN_2POW + i));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Quantum-spaced bins. */
+ for (; i < ntbins + nqbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = quantum * (i - ntbins + 1);
+
+ pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* (2^n)-spaced sub-page bins. */
+ for (; i < ntbins + nqbins + nsbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+#ifdef MALLOC_DEBUG
+ arena->magic = ARENA_MAGIC;
+#endif
+
+ return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+ arena_t *ret;
+
+ /* Allocate enough space for trailing bins. */
+ ret = (arena_t *)base_alloc(sizeof(arena_t)
+ + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
+ if (ret != NULL && arena_new(ret) == false) {
+ arenas[ind] = ret;
+ return (ret);
+ }
+ /* Only reached if there is an OOM error. */
+
+ /*
+ * OOM here is quite inconvenient to propagate, since dealing with it
+ * would require a check for failure in the fast path. Instead, punt
+ * by using arenas[0]. In practice, this is an extremely unlikely
+ * failure.
+ */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error initializing arena\n", "", "");
+ if (opt_abort)
+ abort();
+
+ return (arenas[0]);
+}
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+ void *ret;
+ size_t csize;
+#ifdef MALLOC_DECOMMIT
+ size_t psize;
+#endif
+ extent_node_t *node;
+
+ /* Allocate one or more contiguous chunks for this request. */
+
+ csize = CHUNK_CEILING(size);
+ if (csize == 0) {
+ /* size is large enough to cause size_t wrap-around. */
+ return (NULL);
+ }
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(csize, zero, true);
+ if (ret == NULL) {
+ base_node_dealloc(node);
+ return (NULL);
+ }
+
+ /* Insert node into huge. */
+ node->addr = ret;
+#ifdef MALLOC_DECOMMIT
+ psize = PAGE_CEILING(size);
+ node->size = psize;
+#else
+ node->size = csize;
+#endif
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+# ifdef MALLOC_DECOMMIT
+ huge_allocated += psize;
+# else
+ huge_allocated += csize;
+# endif
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+#ifdef MALLOC_DECOMMIT
+ if (csize - psize > 0)
+ pages_decommit((void *)((uintptr_t)ret + psize), csize - psize);
+#endif
+
+#ifdef MALLOC_DECOMMIT
+ VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, zero);
+#else
+ VALGRIND_MALLOCLIKE_BLOCK(ret, csize, 0, zero);
+#endif
+
+#ifdef MALLOC_FILL
+ if (zero == false) {
+ if (opt_junk)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0xa5, psize);
+# else
+ memset(ret, 0xa5, csize);
+# endif
+ else if (opt_zero)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0, psize);
+# else
+ memset(ret, 0, csize);
+# endif
+ }
+#endif
+
+ return (ret);
+}
+
+/* Only handles large allocations that require more than chunk alignment. */
+static void *
+huge_palloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t alloc_size, chunk_size, offset;
+#ifdef MALLOC_DECOMMIT
+ size_t psize;
+#endif
+ extent_node_t *node;
+ int pfd;
+
+ /*
+ * This allocation requires alignment that is even larger than chunk
+ * alignment. This means that huge_malloc() isn't good enough.
+ *
+ * Allocate almost twice as many chunks as are demanded by the size or
+ * alignment, in order to assure the alignment can be achieved, then
+ * unmap leading and trailing chunks.
+ */
+ assert(alignment >= chunksize);
+
+ chunk_size = CHUNK_CEILING(size);
+
+ if (size >= alignment)
+ alloc_size = chunk_size + alignment - chunksize;
+ else
+ alloc_size = (alignment << 1) - chunksize;
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ /*
+ * Windows requires that there be a 1:1 mapping between VM
+ * allocation/deallocation operations. Therefore, take care here to
+ * acquire the final result via one mapping operation.
+ *
+ * The MALLOC_PAGEFILE code also benefits from this mapping algorithm,
+ * since it reduces the number of page files.
+ */
+#ifdef MALLOC_PAGEFILE
+ if (opt_pagefile) {
+ pfd = pagefile_init(size);
+ if (pfd == -1)
+ return (NULL);
+ } else
+#endif
+ pfd = -1;
+#ifdef JEMALLOC_USES_MAP_ALIGN
+ ret = pages_map_align(chunk_size, pfd, alignment);
+#else
+ do {
+ void *over;
+
+ over = chunk_alloc(alloc_size, false, false);
+ if (over == NULL) {
+ base_node_dealloc(node);
+ ret = NULL;
+ goto RETURN;
+ }
+
+ offset = (uintptr_t)over & (alignment - 1);
+ assert((offset & chunksize_mask) == 0);
+ assert(offset < alloc_size);
+ ret = (void *)((uintptr_t)over + offset);
+ chunk_dealloc(over, alloc_size);
+ ret = pages_map(ret, chunk_size, pfd);
+ /*
+ * Failure here indicates a race with another thread, so try
+ * again.
+ */
+ } while (ret == NULL);
+#endif
+ /* Insert node into huge. */
+ node->addr = ret;
+#ifdef MALLOC_DECOMMIT
+ psize = PAGE_CEILING(size);
+ node->size = psize;
+#else
+ node->size = chunk_size;
+#endif
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+# ifdef MALLOC_DECOMMIT
+ huge_allocated += psize;
+# else
+ huge_allocated += chunk_size;
+# endif
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+#ifdef MALLOC_DECOMMIT
+ if (chunk_size - psize > 0) {
+ pages_decommit((void *)((uintptr_t)ret + psize),
+ chunk_size - psize);
+ }
+#endif
+
+#ifdef MALLOC_DECOMMIT
+ VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, false);
+#else
+ VALGRIND_MALLOCLIKE_BLOCK(ret, chunk_size, 0, false);
+#endif
+
+#ifdef MALLOC_FILL
+ if (opt_junk)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0xa5, psize);
+# else
+ memset(ret, 0xa5, chunk_size);
+# endif
+ else if (opt_zero)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0, psize);
+# else
+ memset(ret, 0, chunk_size);
+# endif
+#endif
+
+RETURN:
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1)
+ pagefile_close(pfd);
+#endif
+ return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Avoid moving the allocation if the size class would not change. */
+
+ if (oldsize > arena_maxclass &&
+ CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+#ifdef MALLOC_DECOMMIT
+ size_t psize = PAGE_CEILING(size);
+#endif
+#ifdef MALLOC_FILL
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
+ - size);
+ }
+#endif
+#ifdef MALLOC_DECOMMIT
+ if (psize < oldsize) {
+ extent_node_t *node, key;
+
+ pages_decommit((void *)((uintptr_t)ptr + psize),
+ oldsize - psize);
+
+ /* Update recorded size. */
+ malloc_mutex_lock(&huge_mtx);
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->size == oldsize);
+# ifdef MALLOC_STATS
+ huge_allocated -= oldsize - psize;
+# endif
+ node->size = psize;
+ malloc_mutex_unlock(&huge_mtx);
+ } else if (psize > oldsize) {
+ extent_node_t *node, key;
+
+ pages_commit((void *)((uintptr_t)ptr + oldsize),
+ psize - oldsize);
+
+ /* Update recorded size. */
+ malloc_mutex_lock(&huge_mtx);
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->size == oldsize);
+# ifdef MALLOC_STATS
+ huge_allocated += psize - oldsize;
+# endif
+ node->size = psize;
+ malloc_mutex_unlock(&huge_mtx);
+ }
+#endif
+#ifdef MALLOC_FILL
+ if (opt_zero && size > oldsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size
+ - oldsize);
+ }
+#endif
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to use a different size class. In that case, fall back to
+ * allocating new space and copying.
+ */
+ ret = huge_malloc(size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ copysize = (size < oldsize) ? size : oldsize;
+#ifdef VM_COPY_MIN
+ if (copysize >= VM_COPY_MIN)
+ pages_copy(ret, ptr, copysize);
+ else
+#endif
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+ extent_node_t *node, key;
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = ptr;
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->addr == ptr);
+ extent_tree_ad_remove(&huge, node);
+
+#ifdef MALLOC_STATS
+ huge_ndalloc++;
+ huge_allocated -= node->size;
+#endif
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ /* Unmap chunk. */
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(node->addr, 0x5a, node->size);
+#endif
+#ifdef MALLOC_DECOMMIT
+ chunk_dealloc(node->addr, CHUNK_CEILING(node->size));
+#else
+ chunk_dealloc(node->addr, node->size);
+#endif
+ VALGRIND_FREELIKE_BLOCK(node->addr, 0);
+
+ base_node_dealloc(node);
+}
+
+#ifdef MOZ_MEMORY_BSD
+static inline unsigned
+malloc_ncpus(void)
+{
+ unsigned ret;
+ int mib[2];
+ size_t len;
+
+ mib[0] = CTL_HW;
+ mib[1] = HW_NCPU;
+ len = sizeof(ret);
+ if (sysctl(mib, 2, &ret, &len, (void *) 0, 0) == -1) {
+ /* Error. */
+ return (1);
+ }
+
+ return (ret);
+}
+#elif (defined(MOZ_MEMORY_LINUX))
+#include <fcntl.h>
+
+static inline unsigned
+malloc_ncpus(void)
+{
+ unsigned ret;
+ int fd, nread, column;
+ char buf[1024];
+ static const char matchstr[] = "processor\t:";
+ int i;
+
+ /*
+ * sysconf(3) would be the preferred method for determining the number
+ * of CPUs, but it uses malloc internally, which causes untennable
+ * recursion during malloc initialization.
+ */
+ fd = open("/proc/cpuinfo", O_RDONLY);
+ if (fd == -1)
+ return (1); /* Error. */
+ /*
+ * Count the number of occurrences of matchstr at the beginnings of
+ * lines. This treats hyperthreaded CPUs as multiple processors.
+ */
+ column = 0;
+ ret = 0;
+ while (true) {
+ nread = read(fd, &buf, sizeof(buf));
+ if (nread <= 0)
+ break; /* EOF or error. */
+ for (i = 0;i < nread;i++) {
+ char c = buf[i];
+ if (c == '\n')
+ column = 0;
+ else if (column != -1) {
+ if (c == matchstr[column]) {
+ column++;
+ if (column == sizeof(matchstr) - 1) {
+ column = -1;
+ ret++;
+ }
+ } else
+ column = -1;
+ }
+ }
+ }
+
+ if (ret == 0)
+ ret = 1; /* Something went wrong in the parser. */
+ close(fd);
+
+ return (ret);
+}
+#elif (defined(MOZ_MEMORY_DARWIN))
+#include <mach/mach_init.h>
+#include <mach/mach_host.h>
+
+static inline unsigned
+malloc_ncpus(void)
+{
+ kern_return_t error;
+ natural_t n;
+ processor_info_array_t pinfo;
+ mach_msg_type_number_t pinfocnt;
+
+ error = host_processor_info(mach_host_self(), PROCESSOR_BASIC_INFO,
+ &n, &pinfo, &pinfocnt);
+ if (error != KERN_SUCCESS)
+ return (1); /* Error. */
+ else
+ return (n);
+}
+#elif (defined(MOZ_MEMORY_SOLARIS))
+
+static inline unsigned
+malloc_ncpus(void)
+{
+ return sysconf(_SC_NPROCESSORS_ONLN);
+}
+#else
+static inline unsigned
+malloc_ncpus(void)
+{
+
+ /*
+ * We lack a way to determine the number of CPUs on this platform, so
+ * assume 1 CPU.
+ */
+ return (1);
+}
+#endif
+
+static void
+malloc_print_stats(void)
+{
+
+ if (opt_print_stats) {
+ char s[UMAX2S_BUFSIZE];
+ _malloc_message("___ Begin malloc statistics ___\n", "", "",
+ "");
+ _malloc_message("Assertions ",
+#ifdef NDEBUG
+ "disabled",
+#else
+ "enabled",
+#endif
+ "\n", "");
+ _malloc_message("Boolean MALLOC_OPTIONS: ",
+ opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_FILL
+ _malloc_message(opt_junk ? "J" : "j", "", "", "");
+#endif
+#ifdef MALLOC_PAGEFILE
+ _malloc_message(opt_pagefile ? "o" : "O", "", "", "");
+#endif
+ _malloc_message("P", "", "", "");
+#ifdef MALLOC_UTRACE
+ _malloc_message(opt_utrace ? "U" : "u", "", "", "");
+#endif
+#ifdef MALLOC_SYSV
+ _malloc_message(opt_sysv ? "V" : "v", "", "", "");
+#endif
+#ifdef MALLOC_XMALLOC
+ _malloc_message(opt_xmalloc ? "X" : "x", "", "", "");
+#endif
+#ifdef MALLOC_FILL
+ _malloc_message(opt_zero ? "Z" : "z", "", "", "");
+#endif
+ _malloc_message("\n", "", "", "");
+
+ _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
+ _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
+#ifdef MALLOC_BALANCE
+ _malloc_message("Arena balance threshold: ",
+ umax2s(opt_balance_threshold, s), "\n", "");
+#endif
+ _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
+ "\n", "");
+ _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
+ _malloc_message("Max small size: ", umax2s(small_max, s), "\n",
+ "");
+ _malloc_message("Max dirty pages per arena: ",
+ umax2s(opt_dirty_max, s), "\n", "");
+
+ _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
+ _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
+
+#ifdef MALLOC_STATS
+ {
+ size_t allocated, mapped;
+#ifdef MALLOC_BALANCE
+ uint64_t nbalance = 0;
+#endif
+ unsigned i;
+ arena_t *arena;
+
+ /* Calculate and print allocated/mapped stats. */
+
+ /* arenas. */
+ for (i = 0, allocated = 0; i < narenas; i++) {
+ if (arenas[i] != NULL) {
+ malloc_spin_lock(&arenas[i]->lock);
+ allocated +=
+ arenas[i]->stats.allocated_small;
+ allocated +=
+ arenas[i]->stats.allocated_large;
+#ifdef MALLOC_BALANCE
+ nbalance += arenas[i]->stats.nbalance;
+#endif
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ }
+
+ /* huge/base. */
+ malloc_mutex_lock(&huge_mtx);
+ allocated += huge_allocated;
+ mapped = stats_chunks.curchunks * chunksize;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_lock(&base_mtx);
+ mapped += base_mapped;
+ malloc_mutex_unlock(&base_mtx);
+
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf("Allocated: %lu, mapped: %lu\n",
+ allocated, mapped);
+#else
+ malloc_printf("Allocated: %zu, mapped: %zu\n",
+ allocated, mapped);
+#endif
+
+ malloc_mutex_lock(&reserve_mtx);
+ malloc_printf("Reserve: min "
+ "cur max\n");
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf(" %12lu %12lu %12lu\n",
+ CHUNK_CEILING(reserve_min) >> opt_chunk_2pow,
+ reserve_cur >> opt_chunk_2pow,
+ reserve_max >> opt_chunk_2pow);
+#else
+ malloc_printf(" %12zu %12zu %12zu\n",
+ CHUNK_CEILING(reserve_min) >> opt_chunk_2pow,
+ reserve_cur >> opt_chunk_2pow,
+ reserve_max >> opt_chunk_2pow);
+#endif
+ malloc_mutex_unlock(&reserve_mtx);
+
+#ifdef MALLOC_BALANCE
+ malloc_printf("Arena balance reassignments: %llu\n",
+ nbalance);
+#endif
+
+ /* Print chunk stats. */
+ {
+ chunk_stats_t chunks_stats;
+
+ malloc_mutex_lock(&huge_mtx);
+ chunks_stats = stats_chunks;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_printf("chunks: nchunks "
+ "highchunks curchunks\n");
+ malloc_printf(" %13llu%13lu%13lu\n",
+ chunks_stats.nchunks,
+ chunks_stats.highchunks,
+ chunks_stats.curchunks);
+ }
+
+ /* Print chunk stats. */
+ malloc_printf(
+ "huge: nmalloc ndalloc allocated\n");
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf(" %12llu %12llu %12lu\n",
+ huge_nmalloc, huge_ndalloc, huge_allocated);
+#else
+ malloc_printf(" %12llu %12llu %12zu\n",
+ huge_nmalloc, huge_ndalloc, huge_allocated);
+#endif
+ /* Print stats for each arena. */
+ for (i = 0; i < narenas; i++) {
+ arena = arenas[i];
+ if (arena != NULL) {
+ malloc_printf(
+ "\narenas[%u]:\n", i);
+ malloc_spin_lock(&arena->lock);
+ stats_print(arena);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+ }
+#endif /* #ifdef MALLOC_STATS */
+ _malloc_message("--- End malloc statistics ---\n", "", "", "");
+ }
+}
+
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+#if (defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_DARWIN)) && !defined(MOZ_MEMORY_WINCE)
+#define malloc_init() false
+#else
+static inline bool
+malloc_init(void)
+{
+
+ if (malloc_initialized == false)
+ return (malloc_init_hard());
+
+ return (false);
+}
+#endif
+
+#if !defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_WINCE)
+static
+#endif
+bool
+je_malloc_init_hard(void)
+{
+ unsigned i;
+ char buf[PATH_MAX + 1];
+ const char *opts;
+ long result;
+#ifndef MOZ_MEMORY_WINDOWS
+ int linklen;
+#endif
+
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_lock(&init_lock);
+#endif
+
+ if (malloc_initialized) {
+ /*
+ * Another thread initialized the allocator before this one
+ * acquired init_lock.
+ */
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (false);
+ }
+
+#ifdef MOZ_MEMORY_WINDOWS
+ /* get a thread local storage index */
+ tlsIndex = TlsAlloc();
+#endif
+
+ /* Get page size and number of CPUs */
+#ifdef MOZ_MEMORY_WINDOWS
+ {
+ SYSTEM_INFO info;
+
+ GetSystemInfo(&info);
+ result = info.dwPageSize;
+
+ pagesize = (unsigned) result;
+
+ ncpus = info.dwNumberOfProcessors;
+ }
+#else
+ ncpus = malloc_ncpus();
+
+ result = sysconf(_SC_PAGESIZE);
+ assert(result != -1);
+
+ pagesize = (unsigned) result;
+#endif
+
+ /*
+ * We assume that pagesize is a power of 2 when calculating
+ * pagesize_mask and pagesize_2pow.
+ */
+ assert(((result - 1) & result) == 0);
+ pagesize_mask = result - 1;
+ pagesize_2pow = ffs((int)result) - 1;
+
+#ifdef MALLOC_PAGEFILE
+ /*
+ * Determine where to create page files. It is insufficient to
+ * unconditionally use P_tmpdir (typically "/tmp"), since for some
+ * operating systems /tmp is a separate filesystem that is rather small.
+ * Therefore prefer, in order, the following locations:
+ *
+ * 1) MALLOC_TMPDIR
+ * 2) TMPDIR
+ * 3) P_tmpdir
+ */
+ {
+ char *s;
+ size_t slen;
+ static const char suffix[] = "/jemalloc.XXXXXX";
+
+ if ((s = getenv("MALLOC_TMPDIR")) == NULL && (s =
+ getenv("TMPDIR")) == NULL)
+ s = P_tmpdir;
+ slen = strlen(s);
+ if (slen + sizeof(suffix) > sizeof(pagefile_templ)) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Page file path too long\n",
+ "", "");
+ abort();
+ }
+ memcpy(pagefile_templ, s, slen);
+ memcpy(&pagefile_templ[slen], suffix, sizeof(suffix));
+ }
+#endif
+
+ for (i = 0; i < 3; i++) {
+ unsigned j;
+
+ /* Get runtime configuration. */
+ switch (i) {
+ case 0:
+#ifndef MOZ_MEMORY_WINDOWS
+ if ((linklen = readlink("/etc/malloc.conf", buf,
+ sizeof(buf) - 1)) != -1) {
+ /*
+ * Use the contents of the "/etc/malloc.conf"
+ * symbolic link's name.
+ */
+ buf[linklen] = '\0';
+ opts = buf;
+ } else
+#endif
+ {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 1:
+ if (issetugid() == 0 && (opts =
+ getenv("MALLOC_OPTIONS")) != NULL) {
+ /*
+ * Do nothing; opts is already initialized to
+ * the value of the MALLOC_OPTIONS environment
+ * variable.
+ */
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 2:
+ if (_malloc_options != NULL) {
+ /*
+ * Use options that were compiled into the
+ * program.
+ */
+ opts = _malloc_options;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ default:
+ /* NOTREACHED */
+ buf[0] = '\0';
+ opts = buf;
+ assert(false);
+ }
+
+ for (j = 0; opts[j] != '\0'; j++) {
+ unsigned k, nreps;
+ bool nseen;
+
+ /* Parse repetition count, if any. */
+ for (nreps = 0, nseen = false;; j++, nseen = true) {
+ switch (opts[j]) {
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7':
+ case '8': case '9':
+ nreps *= 10;
+ nreps += opts[j] - '0';
+ break;
+ default:
+ goto MALLOC_OUT;
+ }
+ }
+MALLOC_OUT:
+ if (nseen == false)
+ nreps = 1;
+
+ for (k = 0; k < nreps; k++) {
+ switch (opts[j]) {
+ case 'a':
+ opt_abort = false;
+ break;
+ case 'A':
+ opt_abort = true;
+ break;
+ case 'b':
+#ifdef MALLOC_BALANCE
+ opt_balance_threshold >>= 1;
+#endif
+ break;
+ case 'B':
+#ifdef MALLOC_BALANCE
+ if (opt_balance_threshold == 0)
+ opt_balance_threshold = 1;
+ else if ((opt_balance_threshold << 1)
+ > opt_balance_threshold)
+ opt_balance_threshold <<= 1;
+#endif
+ break;
+ case 'f':
+ opt_dirty_max >>= 1;
+ break;
+ case 'F':
+ if (opt_dirty_max == 0)
+ opt_dirty_max = 1;
+ else if ((opt_dirty_max << 1) != 0)
+ opt_dirty_max <<= 1;
+ break;
+ case 'g':
+ opt_reserve_range_lshift--;
+ break;
+ case 'G':
+ opt_reserve_range_lshift++;
+ break;
+#ifdef MALLOC_FILL
+ case 'j':
+ opt_junk = false;
+ break;
+ case 'J':
+ opt_junk = true;
+ break;
+#endif
+ case 'k':
+ /*
+ * Chunks always require at least one
+ * header page, so chunks can never be
+ * smaller than two pages.
+ */
+ if (opt_chunk_2pow > pagesize_2pow + 1)
+ opt_chunk_2pow--;
+ break;
+ case 'K':
+ if (opt_chunk_2pow + 1 <
+ (sizeof(size_t) << 3))
+ opt_chunk_2pow++;
+ break;
+ case 'n':
+ opt_narenas_lshift--;
+ break;
+ case 'N':
+ opt_narenas_lshift++;
+ break;
+#ifdef MALLOC_PAGEFILE
+ case 'o':
+ /* Do not over-commit. */
+ opt_pagefile = true;
+ break;
+ case 'O':
+ /* Allow over-commit. */
+ opt_pagefile = false;
+ break;
+#endif
+ case 'p':
+ opt_print_stats = false;
+ break;
+ case 'P':
+ opt_print_stats = true;
+ break;
+ case 'q':
+ if (opt_quantum_2pow > QUANTUM_2POW_MIN)
+ opt_quantum_2pow--;
+ break;
+ case 'Q':
+ if (opt_quantum_2pow < pagesize_2pow -
+ 1)
+ opt_quantum_2pow++;
+ break;
+ case 'r':
+ opt_reserve_min_lshift--;
+ break;
+ case 'R':
+ opt_reserve_min_lshift++;
+ break;
+ case 's':
+ if (opt_small_max_2pow >
+ QUANTUM_2POW_MIN)
+ opt_small_max_2pow--;
+ break;
+ case 'S':
+ if (opt_small_max_2pow < pagesize_2pow
+ - 1)
+ opt_small_max_2pow++;
+ break;
+#ifdef MALLOC_UTRACE
+ case 'u':
+ opt_utrace = false;
+ break;
+ case 'U':
+ opt_utrace = true;
+ break;
+#endif
+#ifdef MALLOC_SYSV
+ case 'v':
+ opt_sysv = false;
+ break;
+ case 'V':
+ opt_sysv = true;
+ break;
+#endif
+#ifdef MALLOC_XMALLOC
+ case 'x':
+ opt_xmalloc = false;
+ break;
+ case 'X':
+ opt_xmalloc = true;
+ break;
+#endif
+#ifdef MALLOC_FILL
+ case 'z':
+ opt_zero = false;
+ break;
+ case 'Z':
+ opt_zero = true;
+ break;
+#endif
+ default: {
+ char cbuf[2];
+
+ cbuf[0] = opts[j];
+ cbuf[1] = '\0';
+ _malloc_message(_getprogname(),
+ ": (malloc) Unsupported character "
+ "in malloc options: '", cbuf,
+ "'\n");
+ }
+ }
+ }
+ }
+ }
+
+ /* Take care to call atexit() only once. */
+ if (opt_print_stats) {
+#ifndef MOZ_MEMORY_WINDOWS
+ /* Print statistics at exit. */
+ atexit(malloc_print_stats);
+#endif
+ }
+
+#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN))
+ /* Prevent potential deadlock on malloc locks after fork. */
+ pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork);
+#endif
+
+ /* Set variables according to the value of opt_small_max_2pow. */
+ if (opt_small_max_2pow < opt_quantum_2pow)
+ opt_small_max_2pow = opt_quantum_2pow;
+ small_max = (1U << opt_small_max_2pow);
+
+ /* Set bin-related variables. */
+ bin_maxclass = (pagesize >> 1);
+ assert(opt_quantum_2pow >= TINY_MIN_2POW);
+ ntbins = opt_quantum_2pow - TINY_MIN_2POW;
+ assert(ntbins <= opt_quantum_2pow);
+ nqbins = (small_max >> opt_quantum_2pow);
+ nsbins = pagesize_2pow - opt_small_max_2pow - 1;
+
+ /* Set variables according to the value of opt_quantum_2pow. */
+ quantum = (1U << opt_quantum_2pow);
+ quantum_mask = quantum - 1;
+ if (ntbins > 0)
+ small_min = (quantum >> 1) + 1;
+ else
+ small_min = 1;
+ assert(small_min <= quantum);
+
+ /* Set variables according to the value of opt_chunk_2pow. */
+ chunksize = (1LU << opt_chunk_2pow);
+ chunksize_mask = chunksize - 1;
+ chunk_npages = (chunksize >> pagesize_2pow);
+ {
+ size_t header_size;
+
+ /*
+ * Compute the header size such that it is large
+ * enough to contain the page map and enough nodes for the
+ * worst case: one node per non-header page plus one extra for
+ * situations where we briefly have one more node allocated
+ * than we will need.
+ */
+ header_size = sizeof(arena_chunk_t) +
+ (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
+ arena_chunk_header_npages = (header_size >> pagesize_2pow) +
+ ((header_size & pagesize_mask) != 0);
+ }
+ arena_maxclass = chunksize - (arena_chunk_header_npages <<
+ pagesize_2pow);
+
+#ifdef JEMALLOC_USES_MAP_ALIGN
+ /*
+ * When using MAP_ALIGN, the alignment parameter must be a power of two
+ * multiple of the system pagesize, or mmap will fail.
+ */
+ assert((chunksize % pagesize) == 0);
+ assert((1 << (ffs(chunksize / pagesize) - 1)) == (chunksize/pagesize));
+#endif
+
+ UTRACE(0, 0, 0);
+
+#ifdef MALLOC_STATS
+ memset(&stats_chunks, 0, sizeof(chunk_stats_t));
+#endif
+
+ /* Various sanity checks that regard configuration. */
+ assert(quantum >= sizeof(void *));
+ assert(quantum <= pagesize);
+ assert(chunksize >= pagesize);
+ assert(quantum * 4 <= chunksize);
+
+ /* Initialize chunks data. */
+ malloc_mutex_init(&huge_mtx);
+ extent_tree_ad_new(&huge);
+#ifdef MALLOC_STATS
+ huge_nmalloc = 0;
+ huge_ndalloc = 0;
+ huge_allocated = 0;
+#endif
+
+ /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+ base_mapped = 0;
+#endif
+ base_nodes = NULL;
+ base_reserve_regs = NULL;
+ malloc_mutex_init(&base_mtx);
+
+#ifdef MOZ_MEMORY_NARENAS_DEFAULT_ONE
+ narenas = 1;
+#else
+ if (ncpus > 1) {
+ /*
+ * For SMP systems, create four times as many arenas as there
+ * are CPUs by default.
+ */
+ opt_narenas_lshift += 2;
+ }
+
+ /* Determine how many arenas to use. */
+ narenas = ncpus;
+#endif
+ if (opt_narenas_lshift > 0) {
+ if ((narenas << opt_narenas_lshift) > narenas)
+ narenas <<= opt_narenas_lshift;
+ /*
+ * Make sure not to exceed the limits of what base_alloc() can
+ * handle.
+ */
+ if (narenas * sizeof(arena_t *) > chunksize)
+ narenas = chunksize / sizeof(arena_t *);
+ } else if (opt_narenas_lshift < 0) {
+ if ((narenas >> -opt_narenas_lshift) < narenas)
+ narenas >>= -opt_narenas_lshift;
+ /* Make sure there is at least one arena. */
+ if (narenas == 0)
+ narenas = 1;
+ }
+#ifdef MALLOC_BALANCE
+ assert(narenas != 0);
+ for (narenas_2pow = 0;
+ (narenas >> (narenas_2pow + 1)) != 0;
+ narenas_2pow++);
+#endif
+
+#ifdef NO_TLS
+ if (narenas > 1) {
+ static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+ 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+ 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+ 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+ 223, 227, 229, 233, 239, 241, 251, 257, 263};
+ unsigned nprimes, parenas;
+
+ /*
+ * Pick a prime number of hash arenas that is more than narenas
+ * so that direct hashing of pthread_self() pointers tends to
+ * spread allocations evenly among the arenas.
+ */
+ assert((narenas & 1) == 0); /* narenas must be even. */
+ nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
+ parenas = primes[nprimes - 1]; /* In case not enough primes. */
+ for (i = 1; i < nprimes; i++) {
+ if (primes[i] > narenas) {
+ parenas = primes[i];
+ break;
+ }
+ }
+ narenas = parenas;
+ }
+#endif
+
+#ifndef NO_TLS
+# ifndef MALLOC_BALANCE
+ next_arena = 0;
+# endif
+#endif
+
+ /* Allocate and initialize arenas. */
+ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+ if (arenas == NULL) {
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (true);
+ }
+ /*
+ * Zero the array. In practice, this should always be pre-zeroed,
+ * since it was just mmap()ed, but let's be sure.
+ */
+ memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+ /*
+ * Initialize one arena here. The rest are lazily created in
+ * choose_arena_hard().
+ */
+ arenas_extend(0);
+ if (arenas[0] == NULL) {
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (true);
+ }
+#ifndef NO_TLS
+ /*
+ * Assign the initial arena to the initial thread, in order to avoid
+ * spurious creation of an extra arena if the application switches to
+ * threaded mode.
+ */
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas[0]);
+#else
+ arenas_map = arenas[0];
+#endif
+#endif
+
+ /*
+ * Seed here for the initial thread, since choose_arena_hard() is only
+ * called for other threads. The seed value doesn't really matter.
+ */
+#ifdef MALLOC_BALANCE
+ SPRN(balance, 42);
+#endif
+
+ malloc_spin_init(&arenas_lock);
+
+#ifdef MALLOC_VALIDATE
+ chunk_rtree = malloc_rtree_new((SIZEOF_PTR << 3) - opt_chunk_2pow);
+ if (chunk_rtree == NULL)
+ return (true);
+#endif
+
+ /*
+ * Configure and initialize the memory reserve. This needs to happen
+ * late during initialization, since chunks are allocated.
+ */
+ malloc_mutex_init(&reserve_mtx);
+ reserve_min = 0;
+ reserve_cur = 0;
+ reserve_max = 0;
+ if (RESERVE_RANGE_2POW_DEFAULT + opt_reserve_range_lshift >= 0) {
+ reserve_max += chunksize << (RESERVE_RANGE_2POW_DEFAULT +
+ opt_reserve_range_lshift);
+ }
+ ql_new(&reserve_regs);
+ reserve_seq = 0;
+ extent_tree_szad_new(&reserve_chunks_szad);
+ extent_tree_ad_new(&reserve_chunks_ad);
+ if (RESERVE_MIN_2POW_DEFAULT + opt_reserve_min_lshift >= 0) {
+ reserve_min_set(chunksize << (RESERVE_MIN_2POW_DEFAULT +
+ opt_reserve_min_lshift));
+ }
+
+ malloc_initialized = true;
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (false);
+}
+
+/* XXX Why not just expose malloc_print_stats()? */
+#ifdef MOZ_MEMORY_WINDOWS
+void
+malloc_shutdown()
+{
+
+ malloc_print_stats();
+}
+#endif
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+/*
+ * Inline the standard malloc functions if they are being subsumed by Darwin's
+ * zone infrastructure.
+ */
+#ifdef MOZ_MEMORY_DARWIN
+# define ZONE_INLINE inline
+#else
+# define ZONE_INLINE
+#endif
+
+/* Mangle standard interfaces on Darwin and Windows CE,
+ in order to avoid linking problems. */
+#ifdef MOZ_MEMORY_DARWIN
+#define DONT_OVERRIDE_LIBC
+#endif
+
+#if defined(DONT_OVERRIDE_LIBC)
+#define malloc(a) je_malloc(a)
+#define valloc(a) je_valloc(a)
+#define calloc(a, b) je_calloc(a, b)
+#define realloc(a, b) je_realloc(a, b)
+#define free(a) je_free(a)
+#define _msize(p) je_msize(p)
+#define _recalloc(p, n, s) je_recalloc(p, n, s)
+#endif
+
+ZONE_INLINE
+void *
+malloc(size_t size)
+{
+ void *ret;
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto RETURN;
+ }
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ }
+
+ ret = imalloc(size);
+
+RETURN:
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in malloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+#ifdef MOZ_MEMORY_SOLARIS
+# ifdef __SUNPRO_C
+void *
+memalign(size_t alignment, size_t size);
+#pragma no_inline(memalign)
+# elif (defined(__GNU_C__))
+__attribute__((noinline))
+# endif
+#else
+inline
+#endif
+void *
+memalign(size_t alignment, size_t size)
+{
+ void *ret;
+
+ assert(((alignment - 1) & alignment) == 0 && alignment >=
+ sizeof(void *));
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto RETURN;
+ }
+
+ ret = ipalloc(alignment, size);
+
+RETURN:
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc && ret == NULL) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in memalign(): out of memory\n", "", "");
+ abort();
+ }
+#endif
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+ZONE_INLINE
+int
+posix_memalign(void **memptr, size_t alignment, size_t size)
+{
+ void *result;
+
+ /* Make sure that alignment is a large enough power of 2. */
+ if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): "
+ "invalid alignment\n", "", "");
+ abort();
+ }
+#endif
+ return (EINVAL);
+ }
+
+#ifdef MOZ_MEMORY_DARWIN
+ result = moz_memalign(alignment, size);
+#else
+ result = memalign(alignment, size);
+#endif
+ if (result == NULL)
+ return (ENOMEM);
+
+ *memptr = result;
+ return (0);
+}
+
+ZONE_INLINE
+void *
+valloc(size_t size)
+{
+#ifdef MOZ_MEMORY_DARWIN
+ return (moz_memalign(pagesize, size));
+#else
+ return (memalign(pagesize, size));
+#endif
+}
+
+ZONE_INLINE
+void *
+calloc(size_t num, size_t size)
+{
+ void *ret;
+ size_t num_size;
+
+ if (malloc_init()) {
+ num_size = 0;
+ ret = NULL;
+ goto RETURN;
+ }
+
+ num_size = num * size;
+ if (num_size == 0) {
+#ifdef MALLOC_SYSV
+ if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+#endif
+ num_size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ /*
+ * Try to avoid division here. We know that it isn't possible to
+ * overflow during multiplication if neither operand uses any of the
+ * most significant half of the bits in a size_t.
+ */
+ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+ && (num_size / size != num)) {
+ /* size_t overflow. */
+ ret = NULL;
+ goto RETURN;
+ }
+
+ ret = icalloc(num_size);
+
+RETURN:
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in calloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, num_size, ret);
+ return (ret);
+}
+
+ZONE_INLINE
+void *
+realloc(void *ptr, size_t size)
+{
+ void *ret;
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ if (ptr != NULL)
+ idalloc(ptr);
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ }
+
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ ret = iralloc(ptr, size);
+
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+ } else {
+ if (malloc_init())
+ ret = NULL;
+ else
+ ret = imalloc(size);
+
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+ }
+
+#ifdef MALLOC_SYSV
+RETURN:
+#endif
+ UTRACE(ptr, size, ret);
+ return (ret);
+}
+
+ZONE_INLINE
+void
+free(void *ptr)
+{
+
+ UTRACE(ptr, 0, 0);
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ idalloc(ptr);
+ }
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+size_t
+malloc_usable_size(const void *ptr)
+{
+
+#ifdef MALLOC_VALIDATE
+ return (isalloc_validate(ptr));
+#else
+ assert(ptr != NULL);
+
+ return (isalloc(ptr));
+#endif
+}
+
+void
+jemalloc_stats(jemalloc_stats_t *stats)
+{
+ size_t i;
+
+ assert(stats != NULL);
+
+ /*
+ * Gather runtime settings.
+ */
+ stats->opt_abort = opt_abort;
+ stats->opt_junk =
+#ifdef MALLOC_FILL
+ opt_junk ? true :
+#endif
+ false;
+ stats->opt_utrace =
+#ifdef MALLOC_UTRACE
+ opt_utrace ? true :
+#endif
+ false;
+ stats->opt_sysv =
+#ifdef MALLOC_SYSV
+ opt_sysv ? true :
+#endif
+ false;
+ stats->opt_xmalloc =
+#ifdef MALLOC_XMALLOC
+ opt_xmalloc ? true :
+#endif
+ false;
+ stats->opt_zero =
+#ifdef MALLOC_FILL
+ opt_zero ? true :
+#endif
+ false;
+ stats->narenas = narenas;
+ stats->balance_threshold =
+#ifdef MALLOC_BALANCE
+ opt_balance_threshold
+#else
+ SIZE_T_MAX
+#endif
+ ;
+ stats->quantum = quantum;
+ stats->small_max = small_max;
+ stats->large_max = arena_maxclass;
+ stats->chunksize = chunksize;
+ stats->dirty_max = opt_dirty_max;
+
+ malloc_mutex_lock(&reserve_mtx);
+ stats->reserve_min = reserve_min;
+ stats->reserve_max = reserve_max;
+ stats->reserve_cur = reserve_cur;
+ malloc_mutex_unlock(&reserve_mtx);
+
+ /*
+ * Gather current memory usage statistics.
+ */
+ stats->mapped = 0;
+ stats->committed = 0;
+ stats->allocated = 0;
+ stats->dirty = 0;
+
+ /* Get huge mapped/allocated. */
+ malloc_mutex_lock(&huge_mtx);
+ stats->mapped += stats_chunks.curchunks * chunksize;
+#ifdef MALLOC_DECOMMIT
+ stats->committed += huge_allocated;
+#endif
+ stats->allocated += huge_allocated;
+ malloc_mutex_unlock(&huge_mtx);
+
+ /* Get base mapped. */
+ malloc_mutex_lock(&base_mtx);
+ stats->mapped += base_mapped;
+#ifdef MALLOC_DECOMMIT
+ stats->committed += base_mapped;
+#endif
+ malloc_mutex_unlock(&base_mtx);
+
+ /* Iterate over arenas and their chunks. */
+ for (i = 0; i < narenas; i++) {
+ arena_t *arena = arenas[i];
+ if (arena != NULL) {
+ arena_chunk_t *chunk;
+
+ malloc_spin_lock(&arena->lock);
+ stats->allocated += arena->stats.allocated_small;
+ stats->allocated += arena->stats.allocated_large;
+#ifdef MALLOC_DECOMMIT
+ rb_foreach_begin(arena_chunk_t, link_dirty,
+ &arena->chunks_dirty, chunk) {
+ size_t j;
+
+ for (j = 0; j < chunk_npages; j++) {
+ if ((chunk->map[j].bits &
+ CHUNK_MAP_DECOMMITTED) == 0)
+ stats->committed += pagesize;
+ }
+ } rb_foreach_end(arena_chunk_t, link_dirty,
+ &arena->chunks_dirty, chunk)
+#endif
+ stats->dirty += (arena->ndirty << pagesize_2pow);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+
+#ifndef MALLOC_DECOMMIT
+ stats->committed = stats->mapped;
+#endif
+}
+
+void *
+xmalloc(size_t size)
+{
+ void *ret;
+
+ if (malloc_init())
+ reserve_fail(size, "xmalloc");
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in xmalloc(): ",
+ "invalid size 0", "\n");
+ abort();
+ }
+#endif
+ }
+
+ ret = imalloc(size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(size, "xmalloc", seq);
+ ret = imalloc(size);
+ } while (ret == NULL);
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+void *
+xcalloc(size_t num, size_t size)
+{
+ void *ret;
+ size_t num_size;
+
+ num_size = num * size;
+ if (malloc_init())
+ reserve_fail(num_size, "xcalloc");
+
+ if (num_size == 0) {
+#ifdef MALLOC_SYSV
+ if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+#endif
+ num_size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in xcalloc(): ",
+ "invalid size 0", "\n");
+ abort();
+ }
+#endif
+ /*
+ * Try to avoid division here. We know that it isn't possible to
+ * overflow during multiplication if neither operand uses any of the
+ * most significant half of the bits in a size_t.
+ */
+ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+ && (num_size / size != num)) {
+ /* size_t overflow. */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in xcalloc(): ",
+ "size overflow", "\n");
+ abort();
+ }
+
+ ret = icalloc(num_size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(num_size, "xcalloc", seq);
+ ret = icalloc(num_size);
+ } while (ret == NULL);
+ }
+
+ UTRACE(0, num_size, ret);
+ return (ret);
+}
+
+void *
+xrealloc(void *ptr, size_t size)
+{
+ void *ret;
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ if (ptr != NULL)
+ idalloc(ptr);
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in xrealloc(): ",
+ "invalid size 0", "\n");
+ abort();
+ }
+#endif
+ }
+
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ ret = iralloc(ptr, size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(size, "xrealloc", seq);
+ ret = iralloc(ptr, size);
+ } while (ret == NULL);
+ }
+ } else {
+ if (malloc_init())
+ reserve_fail(size, "xrealloc");
+
+ ret = imalloc(size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(size, "xrealloc", seq);
+ ret = imalloc(size);
+ } while (ret == NULL);
+ }
+ }
+
+ UTRACE(ptr, size, ret);
+ return (ret);
+}
+
+void *
+xmemalign(size_t alignment, size_t size)
+{
+ void *ret;
+
+ assert(((alignment - 1) & alignment) == 0 && alignment >=
+ sizeof(void *));
+
+ if (malloc_init())
+ reserve_fail(size, "xmemalign");
+
+ ret = ipalloc(alignment, size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(size, "xmemalign", seq);
+ ret = ipalloc(alignment, size);
+ } while (ret == NULL);
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+static void
+reserve_shrink(void)
+{
+ extent_node_t *node;
+
+ assert(reserve_cur > reserve_max);
+#ifdef MALLOC_DEBUG
+ {
+ extent_node_t *node;
+ size_t reserve_size;
+
+ reserve_size = 0;
+ rb_foreach_begin(extent_node_t, link_szad, &reserve_chunks_szad,
+ node) {
+ reserve_size += node->size;
+ } rb_foreach_end(extent_node_t, link_szad, &reserve_chunks_szad,
+ node)
+ assert(reserve_size == reserve_cur);
+
+ reserve_size = 0;
+ rb_foreach_begin(extent_node_t, link_ad, &reserve_chunks_ad,
+ node) {
+ reserve_size += node->size;
+ } rb_foreach_end(extent_node_t, link_ad, &reserve_chunks_ad,
+ node)
+ assert(reserve_size == reserve_cur);
+ }
+#endif
+
+ /* Discard chunks until the the reserve is below the size limit. */
+ rb_foreach_reverse_begin(extent_node_t, link_ad, &reserve_chunks_ad,
+ node) {
+#ifndef MALLOC_DECOMMIT
+ if (node->size <= reserve_cur - reserve_max) {
+#endif
+ extent_node_t *tnode = extent_tree_ad_prev(
+ &reserve_chunks_ad, node);
+
+#ifdef MALLOC_DECOMMIT
+ assert(node->size <= reserve_cur - reserve_max);
+#endif
+
+ /* Discard the entire [multi-]chunk. */
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+ extent_tree_ad_remove(&reserve_chunks_ad, node);
+ reserve_cur -= node->size;
+ pages_unmap(node->addr, node->size);
+#ifdef MALLOC_STATS
+ stats_chunks.curchunks -= (node->size / chunksize);
+#endif
+ base_node_dealloc(node);
+ if (reserve_cur == reserve_max)
+ break;
+
+ rb_foreach_reverse_prev(extent_node_t, link_ad,
+ extent_ad_comp, &reserve_chunks_ad, tnode);
+#ifndef MALLOC_DECOMMIT
+ } else {
+ /* Discard the end of the multi-chunk. */
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+ node->size -= reserve_cur - reserve_max;
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+ pages_unmap((void *)((uintptr_t)node->addr +
+ node->size), reserve_cur - reserve_max);
+#ifdef MALLOC_STATS
+ stats_chunks.curchunks -= ((reserve_cur - reserve_max) /
+ chunksize);
+#endif
+ reserve_cur = reserve_max;
+ break;
+ }
+#endif
+ assert(reserve_cur > reserve_max);
+ } rb_foreach_reverse_end(extent_node_t, link_ad, &reserve_chunks_ad,
+ node)
+}
+
+/* Send a condition notification. */
+static uint64_t
+reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq)
+{
+ reserve_reg_t *reg;
+
+ /* seq is used to keep track of distinct condition-causing events. */
+ if (seq == 0) {
+ /* Allocate new sequence number. */
+ reserve_seq++;
+ seq = reserve_seq;
+ }
+
+ /*
+ * Advance to the next callback registration and send a notification,
+ * unless one has already been sent for this condition-causing event.
+ */
+ reg = ql_first(&reserve_regs);
+ if (reg == NULL)
+ return (0);
+ ql_first(&reserve_regs) = ql_next(&reserve_regs, reg, link);
+ if (reg->seq == seq)
+ return (0);
+ reg->seq = seq;
+ malloc_mutex_unlock(&reserve_mtx);
+ reg->cb(reg->ctx, cnd, size);
+ malloc_mutex_lock(&reserve_mtx);
+
+ return (seq);
+}
+
+/* Allocation failure due to OOM. Try to free some memory via callbacks. */
+static uint64_t
+reserve_crit(size_t size, const char *fname, uint64_t seq)
+{
+
+ /*
+ * Send one condition notification. Iteration is handled by the
+ * caller of this function.
+ */
+ malloc_mutex_lock(&reserve_mtx);
+ seq = reserve_notify(RESERVE_CND_CRIT, size, seq);
+ malloc_mutex_unlock(&reserve_mtx);
+
+ /* If no notification could be sent, then no further recourse exists. */
+ if (seq == 0)
+ reserve_fail(size, fname);
+
+ return (seq);
+}
+
+/* Permanent allocation failure due to OOM. */
+static void
+reserve_fail(size_t size, const char *fname)
+{
+ uint64_t seq = 0;
+
+ /* Send fail notifications. */
+ malloc_mutex_lock(&reserve_mtx);
+ do {
+ seq = reserve_notify(RESERVE_CND_FAIL, size, seq);
+ } while (seq != 0);
+ malloc_mutex_unlock(&reserve_mtx);
+
+ /* Terminate the application. */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in ", fname, "(): out of memory\n");
+ abort();
+}
+
+bool
+reserve_cb_register(reserve_cb_t *cb, void *ctx)
+{
+ reserve_reg_t *reg = base_reserve_reg_alloc();
+ if (reg == NULL)
+ return (true);
+
+ ql_elm_new(reg, link);
+ reg->cb = cb;
+ reg->ctx = ctx;
+ reg->seq = 0;
+
+ malloc_mutex_lock(&reserve_mtx);
+ ql_head_insert(&reserve_regs, reg, link);
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (false);
+}
+
+bool
+reserve_cb_unregister(reserve_cb_t *cb, void *ctx)
+{
+ reserve_reg_t *reg = NULL;
+
+ malloc_mutex_lock(&reserve_mtx);
+ ql_foreach(reg, &reserve_regs, link) {
+ if (reg->cb == cb && reg->ctx == ctx) {
+ ql_remove(&reserve_regs, reg, link);
+ break;
+ }
+ }
+ malloc_mutex_unlock(&reserve_mtx);
+
+ if (reg != NULL)
+ base_reserve_reg_dealloc(reg);
+ return (false);
+ return (true);
+}
+
+size_t
+reserve_cur_get(void)
+{
+ size_t ret;
+
+ malloc_mutex_lock(&reserve_mtx);
+ ret = reserve_cur;
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (ret);
+}
+
+size_t
+reserve_min_get(void)
+{
+ size_t ret;
+
+ malloc_mutex_lock(&reserve_mtx);
+ ret = reserve_min;
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (ret);
+}
+
+bool
+reserve_min_set(size_t min)
+{
+
+ min = CHUNK_CEILING(min);
+
+ malloc_mutex_lock(&reserve_mtx);
+ /* Keep |reserve_max - reserve_min| the same. */
+ if (min < reserve_min) {
+ reserve_max -= reserve_min - min;
+ reserve_min = min;
+ } else {
+ /* Protect against wrap-around. */
+ if (reserve_max + min - reserve_min < reserve_max) {
+ reserve_min = SIZE_T_MAX - (reserve_max - reserve_min)
+ - chunksize + 1;
+ reserve_max = SIZE_T_MAX - chunksize + 1;
+ } else {
+ reserve_max += min - reserve_min;
+ reserve_min = min;
+ }
+ }
+
+ /* Resize the reserve if necessary. */
+ if (reserve_cur < reserve_min) {
+ size_t size = reserve_min - reserve_cur;
+
+ /* Force the reserve to grow by allocating/deallocating. */
+ malloc_mutex_unlock(&reserve_mtx);
+#ifdef MALLOC_DECOMMIT
+ {
+ void **chunks;
+ size_t i, n;
+
+ n = size >> opt_chunk_2pow;
+ chunks = (void**)imalloc(n * sizeof(void *));
+ if (chunks == NULL)
+ return (true);
+ for (i = 0; i < n; i++) {
+ chunks[i] = huge_malloc(chunksize, false);
+ if (chunks[i] == NULL) {
+ size_t j;
+
+ for (j = 0; j < i; j++) {
+ huge_dalloc(chunks[j]);
+ }
+ idalloc(chunks);
+ return (true);
+ }
+ }
+ for (i = 0; i < n; i++)
+ huge_dalloc(chunks[i]);
+ idalloc(chunks);
+ }
+#else
+ {
+ void *x = huge_malloc(size, false);
+ if (x == NULL) {
+ return (true);
+ }
+ huge_dalloc(x);
+ }
+#endif
+ } else if (reserve_cur > reserve_max) {
+ reserve_shrink();
+ malloc_mutex_unlock(&reserve_mtx);
+ } else
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (false);
+}
+
+#ifdef MOZ_MEMORY_WINDOWS
+void*
+_recalloc(void *ptr, size_t count, size_t size)
+{
+ size_t oldsize = (ptr != NULL) ? isalloc(ptr) : 0;
+ size_t newsize = count * size;
+
+ /*
+ * In order for all trailing bytes to be zeroed, the caller needs to
+ * use calloc(), followed by recalloc(). However, the current calloc()
+ * implementation only zeros the bytes requested, so if recalloc() is
+ * to work 100% correctly, calloc() will need to change to zero
+ * trailing bytes.
+ */
+
+ ptr = realloc(ptr, newsize);
+ if (ptr != NULL && oldsize < newsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, newsize -
+ oldsize);
+ }
+
+ return ptr;
+}
+
+/*
+ * This impl of _expand doesn't ever actually expand or shrink blocks: it
+ * simply replies that you may continue using a shrunk block.
+ */
+void*
+_expand(void *ptr, size_t newsize)
+{
+ if (isalloc(ptr) >= newsize)
+ return ptr;
+
+ return NULL;
+}
+
+size_t
+_msize(const void *ptr)
+{
+ return malloc_usable_size(ptr);
+}
+#endif
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions, used by threading libraries for protection
+ * of malloc during fork(). These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+void
+_malloc_prefork(void)
+{
+ unsigned i;
+
+ /* Acquire all mutexes in a safe order. */
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_lock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+
+ malloc_mutex_lock(&base_mtx);
+
+ malloc_mutex_lock(&huge_mtx);
+}
+
+void
+_malloc_postfork(void)
+{
+ unsigned i;
+
+ /* Release all mutexes, now that fork() has completed. */
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_unlock(&base_mtx);
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
+
+#ifdef HAVE_LIBDL
+# include <dlfcn.h>
+#endif
+
+#ifdef MOZ_MEMORY_DARWIN
+static malloc_zone_t zone;
+static struct malloc_introspection_t zone_introspect;
+
+static size_t
+zone_size(malloc_zone_t *zone, void *ptr)
+{
+
+ /*
+ * There appear to be places within Darwin (such as setenv(3)) that
+ * cause calls to this function with pointers that *no* zone owns. If
+ * we knew that all pointers were owned by *some* zone, we could split
+ * our zone into two parts, and use one as the default allocator and
+ * the other as the default deallocator/reallocator. Since that will
+ * not work in practice, we must check all pointers to assure that they
+ * reside within a mapped chunk before determining size.
+ */
+ return (isalloc_validate(ptr));
+}
+
+static void *
+zone_malloc(malloc_zone_t *zone, size_t size)
+{
+
+ return (malloc(size));
+}
+
+static void *
+zone_calloc(malloc_zone_t *zone, size_t num, size_t size)
+{
+
+ return (calloc(num, size));
+}
+
+static void *
+zone_valloc(malloc_zone_t *zone, size_t size)
+{
+ void *ret = NULL; /* Assignment avoids useless compiler warning. */
+
+ posix_memalign(&ret, pagesize, size);
+
+ return (ret);
+}
+
+static void
+zone_free(malloc_zone_t *zone, void *ptr)
+{
+
+ free(ptr);
+}
+
+static void *
+zone_realloc(malloc_zone_t *zone, void *ptr, size_t size)
+{
+
+ return (realloc(ptr, size));
+}
+
+static void *
+zone_destroy(malloc_zone_t *zone)
+{
+
+ /* This function should never be called. */
+ assert(false);
+ return (NULL);
+}
+
+static size_t
+zone_good_size(malloc_zone_t *zone, size_t size)
+{
+ size_t ret;
+ void *p;
+
+ /*
+ * Actually create an object of the appropriate size, then find out
+ * how large it could have been without moving up to the next size
+ * class.
+ */
+ p = malloc(size);
+ if (p != NULL) {
+ ret = isalloc(p);
+ free(p);
+ } else
+ ret = size;
+
+ return (ret);
+}
+
+static void
+zone_force_lock(malloc_zone_t *zone)
+{
+
+ _malloc_prefork();
+}
+
+static void
+zone_force_unlock(malloc_zone_t *zone)
+{
+
+ _malloc_postfork();
+}
+
+static malloc_zone_t *
+create_zone(void)
+{
+
+ assert(malloc_initialized);
+
+ zone.size = (void *)zone_size;
+ zone.malloc = (void *)zone_malloc;
+ zone.calloc = (void *)zone_calloc;
+ zone.valloc = (void *)zone_valloc;
+ zone.free = (void *)zone_free;
+ zone.realloc = (void *)zone_realloc;
+ zone.destroy = (void *)zone_destroy;
+ zone.zone_name = "jemalloc_zone";
+ zone.batch_malloc = NULL;
+ zone.batch_free = NULL;
+ zone.introspect = &zone_introspect;
+
+ zone_introspect.enumerator = NULL;
+ zone_introspect.good_size = (void *)zone_good_size;
+ zone_introspect.check = NULL;
+ zone_introspect.print = NULL;
+ zone_introspect.log = NULL;
+ zone_introspect.force_lock = (void *)zone_force_lock;
+ zone_introspect.force_unlock = (void *)zone_force_unlock;
+ zone_introspect.statistics = NULL;
+
+ return (&zone);
+}
+
+__attribute__((constructor))
+void
+jemalloc_darwin_init(void)
+{
+ extern unsigned malloc_num_zones;
+ extern malloc_zone_t **malloc_zones;
+
+ if (malloc_init_hard())
+ abort();
+
+ /*
+ * The following code is *not* thread-safe, so it's critical that
+ * initialization be manually triggered.
+ */
+
+ /* Register the custom zones. */
+ malloc_zone_register(create_zone());
+ assert(malloc_zones[malloc_num_zones - 1] == &zone);
+
+ /*
+ * Shift malloc_zones around so that zone is first, which makes it the
+ * default zone.
+ */
+ assert(malloc_num_zones > 1);
+ memmove(&malloc_zones[1], &malloc_zones[0],
+ sizeof(malloc_zone_t *) * (malloc_num_zones - 1));
+ malloc_zones[0] = &zone;
+}
+
+#elif defined(__GLIBC__) && !defined(__UCLIBC__)
+/*
+ * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
+ * to inconsistently reference libc's malloc(3)-compatible functions
+ * (bug 493541).
+ *
+ * These definitions interpose hooks in glibc. The functions are actually
+ * passed an extra argument for the caller return address, which will be
+ * ignored.
+ */
+void (*__free_hook)(void *ptr) = free;
+void *(*__malloc_hook)(size_t size) = malloc;
+void *(*__realloc_hook)(void *ptr, size_t size) = realloc;
+void *(*__memalign_hook)(size_t alignment, size_t size) = memalign;
+
+#elif defined(RTLD_DEEPBIND)
+/*
+ * XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their
+ * implementations permit similar inconsistencies? Should STV_SINGLETON
+ * visibility be used for interposition where available?
+ */
+# error "Interposing malloc is unsafe on this system without libc malloc hooks."
+#endif
+
diff --git a/third_party/tcmalloc/jemalloc/jemalloc.h b/third_party/tcmalloc/jemalloc/jemalloc.h
new file mode 100644
index 0000000..46dc768
--- /dev/null
+++ b/third_party/tcmalloc/jemalloc/jemalloc.h
@@ -0,0 +1,222 @@
+/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */
+/* vim:set softtabstop=8 shiftwidth=8: */
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _JEMALLOC_H_
+#define _JEMALLOC_H_
+
+/* grab size_t */
+#ifdef _MSC_VER
+#include <crtdefs.h>
+#else
+#include <stddef.h>
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef unsigned char jemalloc_bool;
+
+extern const char *_malloc_options;
+
+/*
+ * jemalloc_stats() is not a stable interface. When using jemalloc_stats_t, be
+ * sure that the compiled results of jemalloc.c are in sync with this header
+ * file.
+ */
+typedef struct {
+ /*
+ * Run-time configuration settings.
+ */
+ jemalloc_bool opt_abort; /* abort(3) on error? */
+ jemalloc_bool opt_junk; /* Fill allocated/free memory with 0xa5/0x5a? */
+ jemalloc_bool opt_utrace; /* Trace all allocation events? */
+ jemalloc_bool opt_sysv; /* SysV semantics? */
+ jemalloc_bool opt_xmalloc; /* abort(3) on OOM? */
+ jemalloc_bool opt_zero; /* Fill allocated memory with 0x0? */
+ size_t narenas; /* Number of arenas. */
+ size_t balance_threshold; /* Arena contention rebalance threshold. */
+ size_t quantum; /* Allocation quantum. */
+ size_t small_max; /* Max quantum-spaced allocation size. */
+ size_t large_max; /* Max sub-chunksize allocation size. */
+ size_t chunksize; /* Size of each virtual memory mapping. */
+ size_t dirty_max; /* Max dirty pages per arena. */
+ size_t reserve_min; /* reserve_low callback threshold. */
+ size_t reserve_max; /* Maximum reserve size before unmapping. */
+
+ /*
+ * Current memory usage statistics.
+ */
+ size_t mapped; /* Bytes mapped (not necessarily committed). */
+ size_t committed; /* Bytes committed (readable/writable). */
+ size_t allocated; /* Bytes allocted (in use by application). */
+ size_t dirty; /* Bytes dirty (committed unused pages). */
+ size_t reserve_cur; /* Current memory reserve. */
+} jemalloc_stats_t;
+
+#ifndef MOZ_MEMORY_DARWIN
+void *malloc(size_t size);
+void *valloc(size_t size);
+void *calloc(size_t num, size_t size);
+void *realloc(void *ptr, size_t size);
+void free(void *ptr);
+#endif
+
+int posix_memalign(void **memptr, size_t alignment, size_t size);
+void *memalign(size_t alignment, size_t size);
+size_t malloc_usable_size(const void *ptr);
+void jemalloc_stats(jemalloc_stats_t *stats);
+
+/* The x*() functions never return NULL. */
+void *xmalloc(size_t size);
+void *xcalloc(size_t num, size_t size);
+void *xrealloc(void *ptr, size_t size);
+void *xmemalign(size_t alignment, size_t size);
+
+/*
+ * The allocator maintains a memory reserve that is used to satisfy allocation
+ * requests when no additional memory can be acquired from the operating
+ * system. Under normal operating conditions, the reserve size is at least
+ * reserve_min bytes. If the reserve is depleted or insufficient to satisfy an
+ * allocation request, then condition notifications are sent to one or more of
+ * the registered callback functions:
+ *
+ * RESERVE_CND_LOW: The reserve had to be used to satisfy an allocation
+ * request, which dropped the reserve size below the
+ * minimum. The callee should try to free memory in order
+ * to restore the reserve.
+ *
+ * RESERVE_CND_CRIT: The reserve was not large enough to satisfy a pending
+ * allocation request. Some callee must free adequate
+ * memory in order to prevent application failure (unless
+ * the condition spontaneously desists due to concurrent
+ * deallocation).
+ *
+ * RESERVE_CND_FAIL: An allocation request could not be satisfied, despite all
+ * attempts. The allocator is about to terminate the
+ * application.
+ *
+ * The order in which the callback functions are called is only loosely
+ * specified: in the absence of interposing callback
+ * registrations/unregistrations, enabled callbacks will be called in an
+ * arbitrary round-robin order.
+ *
+ * Condition notifications are sent to callbacks only while conditions exist.
+ * For example, just before the allocator sends a RESERVE_CND_LOW condition
+ * notification to a callback, the reserve is in fact depleted. However, due
+ * to allocator concurrency, the reserve may have been restored by the time the
+ * callback function executes. Furthermore, if the reserve is restored at some
+ * point during the delivery of condition notifications to callbacks, no
+ * further deliveries will occur, since the condition no longer exists.
+ *
+ * Callback functions can freely call back into the allocator (i.e. the
+ * allocator releases all internal resources before calling each callback
+ * function), though allocation is discouraged, since recursive callbacks are
+ * likely to result, which places extra burden on the application to avoid
+ * deadlock.
+ *
+ * Callback functions must be thread-safe, since it is possible that multiple
+ * threads will call into the same callback function concurrently.
+ */
+
+/* Memory reserve condition types. */
+typedef enum {
+ RESERVE_CND_LOW,
+ RESERVE_CND_CRIT,
+ RESERVE_CND_FAIL
+} reserve_cnd_t;
+
+/*
+ * Reserve condition notification callback function type definition.
+ *
+ * Inputs:
+ * ctx: Opaque application data, as passed to reserve_cb_register().
+ * cnd: Condition type being delivered.
+ * size: Allocation request size for the allocation that caused the condition.
+ */
+typedef void reserve_cb_t(void *ctx, reserve_cnd_t cnd, size_t size);
+
+/*
+ * Register a callback function.
+ *
+ * Inputs:
+ * cb: Callback function pointer.
+ * ctx: Opaque application data, passed to cb().
+ *
+ * Output:
+ * ret: If true, failure due to OOM; success otherwise.
+ */
+jemalloc_bool reserve_cb_register(reserve_cb_t *cb, void *ctx);
+
+/*
+ * Unregister a callback function.
+ *
+ * Inputs:
+ * cb: Callback function pointer.
+ * ctx: Opaque application data, same as that passed to reserve_cb_register().
+ *
+ * Output:
+ * ret: False upon success, true if the {cb,ctx} registration could not be
+ * found.
+ */
+jemalloc_bool reserve_cb_unregister(reserve_cb_t *cb, void *ctx);
+
+/*
+ * Get the current reserve size.
+ *
+ * ret: Current reserve size.
+ */
+size_t reserve_cur_get(void);
+
+/*
+ * Get the minimum acceptable reserve size. If the reserve drops below this
+ * value, the RESERVE_CND_LOW condition notification is sent to the callbacks.
+ *
+ * ret: Minimum acceptable reserve size.
+ */
+size_t reserve_min_get(void);
+
+/*
+ * Set the minimum acceptable reserve size.
+ *
+ * min: Reserve threshold. This value may be internally rounded up.
+ * ret: False if the reserve was successfully resized; true otherwise. Note
+ * that failure to resize the reserve also results in a RESERVE_CND_LOW
+ * condition.
+ */
+jemalloc_bool reserve_min_set(size_t min);
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif
+
+#endif /* _JEMALLOC_H_ */
+
diff --git a/third_party/tcmalloc/jemalloc/ql.h b/third_party/tcmalloc/jemalloc/ql.h
new file mode 100644
index 0000000..593438c
--- /dev/null
+++ b/third_party/tcmalloc/jemalloc/ql.h
@@ -0,0 +1,115 @@
+/******************************************************************************
+ *
+ * Copyright (C) 2002 Jason Evans <jasone@canonware.com>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************/
+
+/*
+ * List definitions.
+ */
+#define ql_head(a_type) \
+struct { \
+ a_type *qlh_first; \
+}
+
+#define ql_head_initializer(a_head) {NULL}
+
+#define ql_elm(a_type) qr(a_type)
+
+/* List functions. */
+#define ql_new(a_head) do { \
+ (a_head)->qlh_first = NULL; \
+} while (0)
+
+#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field)
+
+#define ql_first(a_head) ((a_head)->qlh_first)
+
+#define ql_last(a_head, a_field) \
+ ((ql_first(a_head) != NULL) \
+ ? qr_prev(ql_first(a_head), a_field) : NULL)
+
+#define ql_next(a_head, a_elm, a_field) \
+ ((ql_last(a_head, a_field) != (a_elm)) \
+ ? qr_next((a_elm), a_field) : NULL)
+
+#define ql_prev(a_head, a_elm, a_field) \
+ ((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \
+ : NULL)
+
+#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \
+ qr_before_insert((a_qlelm), (a_elm), a_field); \
+ if (ql_first(a_head) == (a_qlelm)) { \
+ ql_first(a_head) = (a_elm); \
+ } \
+} while (0)
+
+#define ql_after_insert(a_qlelm, a_elm, a_field) \
+ qr_after_insert((a_qlelm), (a_elm), a_field)
+
+#define ql_head_insert(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) != NULL) { \
+ qr_before_insert(ql_first(a_head), (a_elm), a_field); \
+ } \
+ ql_first(a_head) = (a_elm); \
+} while (0)
+
+#define ql_tail_insert(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) != NULL) { \
+ qr_before_insert(ql_first(a_head), (a_elm), a_field); \
+ } \
+ ql_first(a_head) = qr_next((a_elm), a_field); \
+} while (0)
+
+#define ql_remove(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) == (a_elm)) { \
+ ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
+ } \
+ if (ql_first(a_head) != (a_elm)) { \
+ qr_remove((a_elm), a_field); \
+ } else { \
+ ql_first(a_head) = NULL; \
+ } \
+} while (0)
+
+#define ql_head_remove(a_head, a_type, a_field) do { \
+ a_type *t = ql_first(a_head); \
+ ql_remove((a_head), t, a_field); \
+} while (0)
+
+#define ql_tail_remove(a_head, a_type, a_field) do { \
+ a_type *t = ql_last(a_head, a_field); \
+ ql_remove((a_head), t, a_field); \
+} while (0)
+
+#define ql_foreach(a_var, a_head, a_field) \
+ qr_foreach((a_var), ql_first(a_head), a_field)
+
+#define ql_reverse_foreach(a_var, a_head, a_field) \
+ qr_reverse_foreach((a_var), ql_first(a_head), a_field)
+
diff --git a/third_party/tcmalloc/jemalloc/qr.h b/third_party/tcmalloc/jemalloc/qr.h
new file mode 100644
index 0000000..5f2bc0a
--- /dev/null
+++ b/third_party/tcmalloc/jemalloc/qr.h
@@ -0,0 +1,99 @@
+/******************************************************************************
+ *
+ * Copyright (C) 2002 Jason Evans <jasone@canonware.com>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************/
+
+/* Ring definitions. */
+#define qr(a_type) \
+struct { \
+ a_type *qre_next; \
+ a_type *qre_prev; \
+}
+
+/* Ring functions. */
+#define qr_new(a_qr, a_field) do { \
+ (a_qr)->a_field.qre_next = (a_qr); \
+ (a_qr)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
+
+#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
+
+#define qr_before_insert(a_qrelm, a_qr, a_field) do { \
+ (a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \
+ (a_qr)->a_field.qre_next = (a_qrelm); \
+ (a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \
+ (a_qrelm)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+#define qr_after_insert(a_qrelm, a_qr, a_field) \
+ do \
+ { \
+ (a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \
+ (a_qr)->a_field.qre_prev = (a_qrelm); \
+ (a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \
+ (a_qrelm)->a_field.qre_next = (a_qr); \
+ } while (0)
+
+#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
+ void *t; \
+ (a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
+ (a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
+ t = (a_qr_a)->a_field.qre_prev; \
+ (a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
+ (a_qr_b)->a_field.qre_prev = t; \
+} while (0)
+
+/* qr_meld() and qr_split() are functionally equivalent, so there's no need to
+ * have two copies of the code. */
+#define qr_split(a_qr_a, a_qr_b, a_field) \
+ qr_meld((a_qr_a), (a_qr_b), a_field)
+
+#define qr_remove(a_qr, a_field) do { \
+ (a_qr)->a_field.qre_prev->a_field.qre_next \
+ = (a_qr)->a_field.qre_next; \
+ (a_qr)->a_field.qre_next->a_field.qre_prev \
+ = (a_qr)->a_field.qre_prev; \
+ (a_qr)->a_field.qre_next = (a_qr); \
+ (a_qr)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+#define qr_foreach(var, a_qr, a_field) \
+ for ((var) = (a_qr); \
+ (var) != NULL; \
+ (var) = (((var)->a_field.qre_next != (a_qr)) \
+ ? (var)->a_field.qre_next : NULL))
+
+#define qr_reverse_foreach(var, a_qr, a_field) \
+ for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
+ (var) != NULL; \
+ (var) = (((var) != (a_qr)) \
+ ? (var)->a_field.qre_prev : NULL))
+
diff --git a/third_party/tcmalloc/jemalloc/rb.h b/third_party/tcmalloc/jemalloc/rb.h
new file mode 100644
index 0000000..05fb4fe
--- /dev/null
+++ b/third_party/tcmalloc/jemalloc/rb.h
@@ -0,0 +1,983 @@
+/******************************************************************************
+ *
+ * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+ *
+ * cpp macro implementation of left-leaning red-black trees.
+ *
+ * Usage:
+ *
+ * (Optional.)
+ * #define SIZEOF_PTR ...
+ * #define SIZEOF_PTR_2POW ...
+ * #define RB_NO_C99_VARARRAYS
+ *
+ * (Optional, see assert(3).)
+ * #define NDEBUG
+ *
+ * (Required.)
+ * #include <assert.h>
+ * #include <rb.h>
+ * ...
+ *
+ * All operations are done non-recursively. Parent pointers are not used, and
+ * color bits are stored in the least significant bit of right-child pointers,
+ * thus making node linkage as compact as is possible for red-black trees.
+ *
+ * Some macros use a comparison function pointer, which is expected to have the
+ * following prototype:
+ *
+ * int (a_cmp *)(a_type *a_node, a_type *a_other);
+ * ^^^^^^
+ * or a_key
+ *
+ * Interpretation of comparision function return values:
+ *
+ * -1 : a_node < a_other
+ * 0 : a_node == a_other
+ * 1 : a_node > a_other
+ *
+ * In all cases, the a_node or a_key macro argument is the first argument to the
+ * comparison function, which makes it possible to write comparison functions
+ * that treat the first argument specially.
+ *
+ ******************************************************************************/
+
+#ifndef RB_H_
+#define RB_H_
+
+#if 0
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
+#endif
+
+/* Node structure. */
+#define rb_node(a_type) \
+struct { \
+ a_type *rbn_left; \
+ a_type *rbn_right_red; \
+}
+
+/* Root structure. */
+#define rb_tree(a_type) \
+struct { \
+ a_type *rbt_root; \
+ a_type rbt_nil; \
+}
+
+/* Left accessors. */
+#define rbp_left_get(a_type, a_field, a_node) \
+ ((a_node)->a_field.rbn_left)
+#define rbp_left_set(a_type, a_field, a_node, a_left) do { \
+ (a_node)->a_field.rbn_left = a_left; \
+} while (0)
+
+/* Right accessors. */
+#define rbp_right_get(a_type, a_field, a_node) \
+ ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((ssize_t)-2)))
+#define rbp_right_set(a_type, a_field, a_node, a_right) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
+ | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
+} while (0)
+
+/* Color accessors. */
+#define rbp_red_get(a_type, a_field, a_node) \
+ ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((size_t)1)))
+#define rbp_color_set(a_type, a_field, a_node, a_red) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
+ | ((ssize_t)a_red)); \
+} while (0)
+#define rbp_red_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
+ (a_node)->a_field.rbn_right_red) | ((size_t)1)); \
+} while (0)
+#define rbp_black_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
+} while (0)
+
+/* Node initializer. */
+#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \
+ rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
+ rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+/* Tree initializer. */
+#define rb_new(a_type, a_field, a_tree) do { \
+ (a_tree)->rbt_root = &(a_tree)->rbt_nil; \
+ rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \
+} while (0)
+
+/* Tree operations. */
+#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \
+ a_type *rbp_bh_t; \
+ for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \
+ rbp_bh_t != &(a_tree)->rbt_nil; \
+ rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \
+ if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \
+ (r_height)++; \
+ } \
+ } \
+} while (0)
+
+#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \
+ for ((r_node) = (a_root); \
+ rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
+ (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \
+ } \
+} while (0)
+
+#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \
+ for ((r_node) = (a_root); \
+ rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
+ (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \
+ } \
+} while (0)
+
+#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ if (rbp_right_get(a_type, a_field, (a_node)) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \
+ a_field, (a_node)), (r_node)); \
+ } else { \
+ a_type *rbp_n_t = (a_tree)->rbt_root; \
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \
+ (r_node) = &(a_tree)->rbt_nil; \
+ while (true) { \
+ int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \
+ if (rbp_n_cmp < 0) { \
+ (r_node) = rbp_n_t; \
+ rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \
+ } else if (rbp_n_cmp > 0) { \
+ rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \
+ } \
+ } \
+} while (0)
+
+#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
+ rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \
+ a_field, (a_node)), (r_node)); \
+ } else { \
+ a_type *rbp_p_t = (a_tree)->rbt_root; \
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \
+ (r_node) = &(a_tree)->rbt_nil; \
+ while (true) { \
+ int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \
+ if (rbp_p_cmp < 0) { \
+ rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \
+ } else if (rbp_p_cmp > 0) { \
+ (r_node) = rbp_p_t; \
+ rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \
+ } \
+ } \
+} while (0)
+
+#define rb_first(a_type, a_field, a_tree, r_node) do { \
+ rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_last(a_type, a_field, a_tree, r_node) do { \
+ rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ int rbp_se_cmp; \
+ (r_node) = (a_tree)->rbt_root; \
+ while ((r_node) != &(a_tree)->rbt_nil \
+ && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \
+ if (rbp_se_cmp < 0) { \
+ (r_node) = rbp_left_get(a_type, a_field, (r_node)); \
+ } else { \
+ (r_node) = rbp_right_get(a_type, a_field, (r_node)); \
+ } \
+ } \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+/*
+ * Find a match if it exists. Otherwise, find the next greater node, if one
+ * exists.
+ */
+#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ a_type *rbp_ns_t = (a_tree)->rbt_root; \
+ (r_node) = NULL; \
+ while (rbp_ns_t != &(a_tree)->rbt_nil) { \
+ int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \
+ if (rbp_ns_cmp < 0) { \
+ (r_node) = rbp_ns_t; \
+ rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \
+ } else if (rbp_ns_cmp > 0) { \
+ rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \
+ } else { \
+ (r_node) = rbp_ns_t; \
+ break; \
+ } \
+ } \
+} while (0)
+
+/*
+ * Find a match if it exists. Otherwise, find the previous lesser node, if one
+ * exists.
+ */
+#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ a_type *rbp_ps_t = (a_tree)->rbt_root; \
+ (r_node) = NULL; \
+ while (rbp_ps_t != &(a_tree)->rbt_nil) { \
+ int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \
+ if (rbp_ps_cmp < 0) { \
+ rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \
+ } else if (rbp_ps_cmp > 0) { \
+ (r_node) = rbp_ps_t; \
+ rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \
+ } else { \
+ (r_node) = rbp_ps_t; \
+ break; \
+ } \
+ } \
+} while (0)
+
+#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbp_right_get(a_type, a_field, (a_node)); \
+ rbp_right_set(a_type, a_field, (a_node), \
+ rbp_left_get(a_type, a_field, (r_node))); \
+ rbp_left_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbp_left_get(a_type, a_field, (a_node)); \
+ rbp_left_set(a_type, a_field, (a_node), \
+ rbp_right_get(a_type, a_field, (r_node))); \
+ rbp_right_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \
+ bool rbp_ll_red; \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \
+ rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \
+ bool rbp_lr_red; \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \
+ rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \
+ a_type *rbp_mrl_t, *rbp_mrl_u; \
+ rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \
+ rbp_red_set(a_type, a_field, rbp_mrl_t); \
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
+ rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \
+ if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \
+ rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \
+ rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
+ if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \
+ rbp_black_set(a_type, a_field, rbp_mrl_t); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \
+ rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \
+ } else { \
+ rbp_black_set(a_type, a_field, (a_node)); \
+ } \
+ } else { \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ } \
+} while (0)
+
+#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \
+ a_type *rbp_mrr_t; \
+ rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
+ a_type *rbp_mrr_u, *rbp_mrr_v; \
+ rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \
+ rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \
+ rbp_color_set(a_type, a_field, rbp_mrr_u, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ rbp_black_set(a_type, a_field, rbp_mrr_v); \
+ rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \
+ rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } else { \
+ rbp_color_set(a_type, a_field, rbp_mrr_t, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ rbp_red_set(a_type, a_field, rbp_mrr_u); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ } else { \
+ rbp_red_set(a_type, a_field, rbp_mrr_t); \
+ rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
+ rbp_black_set(a_type, a_field, rbp_mrr_t); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } else { \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ } \
+ } \
+} while (0)
+
+#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \
+ a_type rbp_i_s; \
+ a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \
+ int rbp_i_cmp = 0; \
+ rbp_i_g = &(a_tree)->rbt_nil; \
+ rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \
+ rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &rbp_i_s); \
+ rbp_i_p = &rbp_i_s; \
+ rbp_i_c = (a_tree)->rbt_root; \
+ /* Iteratively search down the tree for the insertion point, */\
+ /* splitting 4-nodes as they are encountered. At the end of each */\
+ /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\
+ /* the tree, assuming a sufficiently deep tree. */\
+ while (rbp_i_c != &(a_tree)->rbt_nil) { \
+ rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
+ if (rbp_red_get(a_type, a_field, rbp_i_t) \
+ && rbp_red_get(a_type, a_field, rbp_i_u)) { \
+ /* rbp_i_c is the top of a logical 4-node, so split it. */\
+ /* This iteration does not move down the tree, due to the */\
+ /* disruptiveness of node splitting. */\
+ /* */\
+ /* Rotate right. */\
+ rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \
+ /* Pass red links up one level. */\
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
+ rbp_black_set(a_type, a_field, rbp_i_u); \
+ if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \
+ rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \
+ rbp_i_c = rbp_i_t; \
+ } else { \
+ /* rbp_i_c was the right child of rbp_i_p, so rotate */\
+ /* left in order to maintain the left-leaning */\
+ /* invariant. */\
+ assert(rbp_right_get(a_type, a_field, rbp_i_p) \
+ == rbp_i_c); \
+ rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, rbp_i_g) \
+ == rbp_i_p); \
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \
+ } \
+ rbp_i_p = rbp_i_u; \
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \
+ if (rbp_i_cmp < 0) { \
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \
+ } else { \
+ assert(rbp_i_cmp > 0); \
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \
+ } \
+ continue; \
+ } \
+ } \
+ rbp_i_g = rbp_i_p; \
+ rbp_i_p = rbp_i_c; \
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \
+ if (rbp_i_cmp < 0) { \
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \
+ } else { \
+ assert(rbp_i_cmp > 0); \
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \
+ } \
+ } \
+ /* rbp_i_p now refers to the node under which to insert. */\
+ rbp_node_new(a_type, a_field, a_tree, (a_node)); \
+ if (rbp_i_cmp > 0) { \
+ rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \
+ } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \
+ } \
+ } else { \
+ rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \
+ } \
+ /* Update the root and make sure that it is black. */\
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \
+ rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \
+} while (0)
+
+#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \
+ a_type rbp_r_s; \
+ a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \
+ int rbp_r_cmp; \
+ rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \
+ rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &rbp_r_s); \
+ rbp_r_p = &rbp_r_s; \
+ rbp_r_c = (a_tree)->rbt_root; \
+ rbp_r_xp = &(a_tree)->rbt_nil; \
+ /* Iterate down the tree, but always transform 2-nodes to 3- or */\
+ /* 4-nodes in order to maintain the invariant that the current */\
+ /* node is not a 2-node. This allows simple deletion once a leaf */\
+ /* is reached. Handle the root specially though, since there may */\
+ /* be no way to convert it from a 2-node to a 3-node. */\
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
+ if (rbp_r_cmp < 0) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ /* Apply standard transform to prepare for left move. */\
+ rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \
+ rbp_black_set(a_type, a_field, rbp_r_t); \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ /* Move left. */\
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
+ } \
+ } else { \
+ if (rbp_r_cmp == 0) { \
+ assert((a_node) == rbp_r_c); \
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \
+ == &(a_tree)->rbt_nil) { \
+ /* Delete root node (which is also a leaf node). */\
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ rbp_r_t = &(a_tree)->rbt_nil; \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ } else { \
+ /* This is the node we want to delete, but we will */\
+ /* instead swap it with its successor and delete the */\
+ /* successor. Record enough information to do the */\
+ /* swap later. rbp_r_xp is the a_node's parent. */\
+ rbp_r_xp = rbp_r_p; \
+ rbp_r_cmp = 1; /* Note that deletion is incomplete. */\
+ } \
+ } \
+ if (rbp_r_cmp == 1) { \
+ if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \
+ a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \
+ == false) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t)) { \
+ /* Standard transform. */\
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ } else { \
+ /* Root-specific transform. */\
+ rbp_red_set(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_u)) { \
+ rbp_black_set(a_type, a_field, rbp_r_u); \
+ rbp_rotate_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \
+ rbp_r_u); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ rbp_r_u); \
+ } else { \
+ rbp_red_set(a_type, a_field, rbp_r_t); \
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ } \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ /* Move right. */\
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
+ } \
+ } \
+ } \
+ if (rbp_r_cmp != 0) { \
+ while (true) { \
+ assert(rbp_r_p != &(a_tree)->rbt_nil); \
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
+ if (rbp_r_cmp < 0) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ if (rbp_r_t == &(a_tree)->rbt_nil) { \
+ /* rbp_r_c now refers to the successor node to */\
+ /* relocate, and rbp_r_xp/a_node refer to the */\
+ /* context for the relocation. */\
+ if (rbp_left_get(a_type, a_field, rbp_r_xp) \
+ == (a_node)) { \
+ rbp_left_set(a_type, a_field, rbp_r_xp, \
+ rbp_r_c); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, \
+ rbp_r_xp) == (a_node)); \
+ rbp_right_set(a_type, a_field, rbp_r_xp, \
+ rbp_r_c); \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_c, \
+ rbp_left_get(a_type, a_field, (a_node))); \
+ rbp_right_set(a_type, a_field, rbp_r_c, \
+ rbp_right_get(a_type, a_field, (a_node))); \
+ rbp_color_set(a_type, a_field, rbp_r_c, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c); \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ &(a_tree)->rbt_nil); \
+ } \
+ break; \
+ } \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ rbp_move_red_left(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
+ } \
+ } else { \
+ /* Check whether to delete this node (it has to be */\
+ /* the correct node and a leaf node). */\
+ if (rbp_r_cmp == 0) { \
+ assert((a_node) == rbp_r_c); \
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \
+ == &(a_tree)->rbt_nil) { \
+ /* Delete leaf node. */\
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_lean_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ rbp_r_t = &(a_tree)->rbt_nil; \
+ } \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ break; \
+ } else { \
+ /* This is the node we want to delete, but we */\
+ /* will instead swap it with its successor */\
+ /* and delete the successor. Record enough */\
+ /* information to do the swap later. */\
+ /* rbp_r_xp is a_node's parent. */\
+ rbp_r_xp = rbp_r_p; \
+ } \
+ } \
+ rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
+ } \
+ } \
+ } \
+ } \
+ /* Update root. */\
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
+} while (0)
+
+/*
+ * The rb_wrap() macro provides a convenient way to wrap functions around the
+ * cpp macros. The main benefits of wrapping are that 1) repeated macro
+ * expansion can cause code bloat, especially for rb_{insert,remove)(), and
+ * 2) type, linkage, comparison functions, etc. need not be specified at every
+ * call point.
+ */
+
+#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \
+a_attr void \
+a_prefix##new(a_tree_type *tree) { \
+ rb_new(a_type, a_field, tree); \
+} \
+a_attr a_type * \
+a_prefix##first(a_tree_type *tree) { \
+ a_type *ret; \
+ rb_first(a_type, a_field, tree, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##last(a_tree_type *tree) { \
+ a_type *ret; \
+ rb_last(a_type, a_field, tree, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##next(a_tree_type *tree, a_type *node) { \
+ a_type *ret; \
+ rb_next(a_type, a_field, a_cmp, tree, node, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##prev(a_tree_type *tree, a_type *node) { \
+ a_type *ret; \
+ rb_prev(a_type, a_field, a_cmp, tree, node, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##search(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_search(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##nsearch(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##psearch(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr void \
+a_prefix##insert(a_tree_type *tree, a_type *node) { \
+ rb_insert(a_type, a_field, a_cmp, tree, node); \
+} \
+a_attr void \
+a_prefix##remove(a_tree_type *tree, a_type *node) { \
+ rb_remove(a_type, a_field, a_cmp, tree, node); \
+}
+
+/*
+ * The iterators simulate recursion via an array of pointers that store the
+ * current path. This is critical to performance, since a series of calls to
+ * rb_{next,prev}() would require time proportional to (n lg n), whereas this
+ * implementation only requires time proportional to (n).
+ *
+ * Since the iterators cache a path down the tree, any tree modification may
+ * cause the cached path to become invalid. In order to continue iteration,
+ * use something like the following sequence:
+ *
+ * {
+ * a_type *node, *tnode;
+ *
+ * rb_foreach_begin(a_type, a_field, a_tree, node) {
+ * ...
+ * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
+ * rb_remove(a_type, a_field, a_cmp, a_tree, node);
+ * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
+ * ...
+ * } rb_foreach_end(a_type, a_field, a_tree, node)
+ * }
+ *
+ * Note that this idiom is not advised if every iteration modifies the tree,
+ * since in that case there is no algorithmic complexity improvement over a
+ * series of rb_{next,prev}() calls, thus making the setup overhead wasted
+ * effort.
+ */
+
+#ifdef RB_NO_C99_VARARRAYS
+ /*
+ * Avoid using variable-length arrays, at the cost of using more stack space.
+ * Size the path arrays such that they are always large enough, even if a
+ * tree consumes all of memory. Since each node must contain a minimum of
+ * two pointers, there can never be more nodes than:
+ *
+ * 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))
+ *
+ * Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
+ * is:
+ *
+ * (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
+ *
+ * This works out to a maximum depth of 87 and 180 for 32- and 64-bit
+ * systems, respectively (approximatly 348 and 1440 bytes, respectively).
+ */
+# define rbp_compute_f_height(a_type, a_field, a_tree)
+# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
+# define rbp_compute_fr_height(a_type, a_field, a_tree)
+# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
+#else
+# define rbp_compute_f_height(a_type, a_field, a_tree) \
+ /* Compute the maximum possible tree depth (3X the black height). */\
+ unsigned rbp_f_height; \
+ rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \
+ rbp_f_height *= 3;
+# define rbp_compute_fr_height(a_type, a_field, a_tree) \
+ /* Compute the maximum possible tree depth (3X the black height). */\
+ unsigned rbp_fr_height; \
+ rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \
+ rbp_fr_height *= 3;
+#endif
+
+#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \
+ rbp_compute_f_height(a_type, a_field, a_tree) \
+ { \
+ /* Initialize the path to contain the left spine. */\
+ a_type *rbp_f_path[rbp_f_height]; \
+ a_type *rbp_f_node; \
+ bool rbp_f_synced = false; \
+ unsigned rbp_f_depth = 0; \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
+ rbp_f_depth++; \
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } \
+ /* While the path is non-empty, iterate. */\
+ while (rbp_f_depth > 0) { \
+ (a_var) = rbp_f_path[rbp_f_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \
+ /* Re-initialize the path to contain the path to a_node. */\
+ rbp_f_depth = 0; \
+ if (a_node != NULL) { \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
+ rbp_f_depth++; \
+ rbp_f_node = rbp_f_path[0]; \
+ while (true) { \
+ int rbp_f_cmp = (a_cmp)((a_node), \
+ rbp_f_path[rbp_f_depth-1]); \
+ if (rbp_f_cmp < 0) { \
+ rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]); \
+ } else if (rbp_f_cmp > 0) { \
+ rbp_f_node = rbp_right_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_f_node != &(a_tree)->rbt_nil); \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } \
+ } \
+ rbp_f_synced = true;
+
+#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
+ if (rbp_f_synced) { \
+ rbp_f_synced = false; \
+ continue; \
+ } \
+ /* Find the successor. */\
+ if ((rbp_f_node = rbp_right_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ /* The successor is the left-most node in the right */\
+ /* subtree. */\
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } else { \
+ /* The successor is above the current node. Unwind */\
+ /* until a left-leaning edge is removed from the */\
+ /* path, or the path is empty. */\
+ for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
+ if (rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]) \
+ == rbp_f_path[rbp_f_depth]) { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ } \
+}
+
+#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \
+ rbp_compute_fr_height(a_type, a_field, a_tree) \
+ { \
+ /* Initialize the path to contain the right spine. */\
+ a_type *rbp_fr_path[rbp_fr_height]; \
+ a_type *rbp_fr_node; \
+ bool rbp_fr_synced = false; \
+ unsigned rbp_fr_depth = 0; \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
+ rbp_fr_depth++; \
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } \
+ /* While the path is non-empty, iterate. */\
+ while (rbp_fr_depth > 0) { \
+ (a_var) = rbp_fr_path[rbp_fr_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
+ /* Re-initialize the path to contain the path to a_node. */\
+ rbp_fr_depth = 0; \
+ if (a_node != NULL) { \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
+ rbp_fr_depth++; \
+ rbp_fr_node = rbp_fr_path[0]; \
+ while (true) { \
+ int rbp_fr_cmp = (a_cmp)((a_node), \
+ rbp_fr_path[rbp_fr_depth-1]); \
+ if (rbp_fr_cmp < 0) { \
+ rbp_fr_node = rbp_left_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1]); \
+ } else if (rbp_fr_cmp > 0) { \
+ rbp_fr_node = rbp_right_get(a_type, a_field,\
+ rbp_fr_path[rbp_fr_depth-1]); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_fr_node != &(a_tree)->rbt_nil); \
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } \
+ } \
+ rbp_fr_synced = true;
+
+#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \
+ if (rbp_fr_synced) { \
+ rbp_fr_synced = false; \
+ continue; \
+ } \
+ if (rbp_fr_depth == 0) { \
+ /* rb_foreach_reverse_sync() was called with a NULL */\
+ /* a_node. */\
+ break; \
+ } \
+ /* Find the predecessor. */\
+ if ((rbp_fr_node = rbp_left_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
+ /* The predecessor is the right-most node in the left */\
+ /* subtree. */\
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } else { \
+ /* The predecessor is above the current node. Unwind */\
+ /* until a right-leaning edge is removed from the */\
+ /* path, or the path is empty. */\
+ for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
+ if (rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1]) \
+ == rbp_fr_path[rbp_fr_depth]) { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ } \
+}
+
+#endif /* RB_H_ */
+
diff --git a/third_party/tcmalloc/page_heap.cc b/third_party/tcmalloc/page_heap.cc
new file mode 100644
index 0000000..afe9e34
--- /dev/null
+++ b/third_party/tcmalloc/page_heap.cc
@@ -0,0 +1,495 @@
+// Copyright (c) 2008, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+// Author: Sanjay Ghemawat <opensource@google.com>
+
+#include <config.h>
+#include "page_heap.h"
+
+#include "static_vars.h"
+#include "system-alloc.h"
+
+DEFINE_double(tcmalloc_release_rate,
+ EnvToDouble("TCMALLOC_RELEASE_RATE", 1.0),
+ "Rate at which we release unused memory to the system. "
+ "Zero means we never release memory back to the system. "
+ "Increase this flag to return memory faster; decrease it "
+ "to return memory slower. Reasonable rates are in the "
+ "range [0,10]");
+
+namespace tcmalloc {
+
+PageHeap::PageHeap()
+ : pagemap_(MetaDataAlloc),
+ pagemap_cache_(0),
+ free_pages_(0),
+ system_bytes_(0),
+ scavenge_counter_(0),
+ // Start scavenging at kMaxPages list
+ scavenge_index_(kMaxPages-1) {
+ COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
+ DLL_Init(&large_.normal);
+ DLL_Init(&large_.returned);
+ for (int i = 0; i < kMaxPages; i++) {
+ DLL_Init(&free_[i].normal);
+ DLL_Init(&free_[i].returned);
+ }
+}
+
+Span* PageHeap::New(Length n) {
+ ASSERT(Check());
+ ASSERT(n > 0);
+
+ // Find first size >= n that has a non-empty list
+ for (Length s = n; s < kMaxPages; s++) {
+ Span* ll = &free_[s].normal;
+ // If we're lucky, ll is non-empty, meaning it has a suitable span.
+ if (!DLL_IsEmpty(ll)) {
+ ASSERT(ll->next->location == Span::ON_NORMAL_FREELIST);
+ return Carve(ll->next, n);
+ }
+ // Alternatively, maybe there's a usable returned span.
+ ll = &free_[s].returned;
+ if (!DLL_IsEmpty(ll)) {
+ ASSERT(ll->next->location == Span::ON_RETURNED_FREELIST);
+ return Carve(ll->next, n);
+ }
+ // Still no luck, so keep looking in larger classes.
+ }
+
+ Span* result = AllocLarge(n);
+ if (result != NULL) return result;
+
+ // Grow the heap and try again
+ if (!GrowHeap(n)) {
+ ASSERT(Check());
+ return NULL;
+ }
+
+ return AllocLarge(n);
+}
+
+Span* PageHeap::AllocLarge(Length n) {
+ // find the best span (closest to n in size).
+ // The following loops implements address-ordered best-fit.
+ Span *best = NULL;
+
+ // Search through normal list
+ for (Span* span = large_.normal.next;
+ span != &large_.normal;
+ span = span->next) {
+ if (span->length >= n) {
+ if ((best == NULL)
+ || (span->length < best->length)
+ || ((span->length == best->length) && (span->start < best->start))) {
+ best = span;
+ ASSERT(best->location == Span::ON_NORMAL_FREELIST);
+ }
+ }
+ }
+
+ // Search through released list in case it has a better fit
+ for (Span* span = large_.returned.next;
+ span != &large_.returned;
+ span = span->next) {
+ if (span->length >= n) {
+ if ((best == NULL)
+ || (span->length < best->length)
+ || ((span->length == best->length) && (span->start < best->start))) {
+ best = span;
+ ASSERT(best->location == Span::ON_RETURNED_FREELIST);
+ }
+ }
+ }
+
+ return best == NULL ? NULL : Carve(best, n);
+}
+
+Span* PageHeap::Split(Span* span, Length n) {
+ ASSERT(0 < n);
+ ASSERT(n < span->length);
+ ASSERT(span->location == Span::IN_USE);
+ ASSERT(span->sizeclass == 0);
+ Event(span, 'T', n);
+
+ const int extra = span->length - n;
+ Span* leftover = NewSpan(span->start + n, extra);
+ ASSERT(leftover->location == Span::IN_USE);
+ Event(leftover, 'U', extra);
+ RecordSpan(leftover);
+ pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
+ span->length = n;
+
+ return leftover;
+}
+
+Span* PageHeap::Carve(Span* span, Length n) {
+ ASSERT(n > 0);
+ ASSERT(span->location != Span::IN_USE);
+ const int old_location = span->location;
+ DLL_Remove(span);
+ span->location = Span::IN_USE;
+ Event(span, 'A', n);
+
+ const int extra = span->length - n;
+ ASSERT(extra >= 0);
+ if (extra > 0) {
+ Span* leftover = NewSpan(span->start + n, extra);
+ leftover->location = old_location;
+ Event(leftover, 'S', extra);
+ RecordSpan(leftover);
+
+ // Place leftover span on appropriate free list
+ SpanList* listpair = (extra < kMaxPages) ? &free_[extra] : &large_;
+ Span* dst = (leftover->location == Span::ON_RETURNED_FREELIST
+ ? &listpair->returned : &listpair->normal);
+ DLL_Prepend(dst, leftover);
+
+ span->length = n;
+ pagemap_.set(span->start + n - 1, span);
+ }
+ ASSERT(Check());
+ free_pages_ -= n;
+ if (old_location == Span::ON_RETURNED_FREELIST) {
+ // We need to recommit this address space.
+ TCMalloc_SystemCommit(
+ reinterpret_cast<void*>(span->start << kPageShift),
+ static_cast<size_t>(span->length << kPageShift));
+ }
+ return span;
+}
+
+void PageHeap::Delete(Span* span) {
+ ASSERT(Check());
+ ASSERT(span->location == Span::IN_USE);
+ ASSERT(span->length > 0);
+ ASSERT(GetDescriptor(span->start) == span);
+ ASSERT(GetDescriptor(span->start + span->length - 1) == span);
+ span->sizeclass = 0;
+ span->sample = 0;
+
+ // Coalesce -- we guarantee that "p" != 0, so no bounds checking
+ // necessary. We do not bother resetting the stale pagemap
+ // entries for the pieces we are merging together because we only
+ // care about the pagemap entries for the boundaries.
+ //
+ // Note that the spans we merge into "span" may come out of
+ // a "normal" list. For simplicity, we move these into the
+ // "returned" list of the appropriate size class. We do this
+ // so that we can maximize large, continuous blocks of freed
+ // space.
+ const PageID p = span->start;
+ const Length n = span->length;
+ Span* prev = GetDescriptor(p-1);
+ if (prev != NULL && prev->location != Span::IN_USE) {
+ // Merge preceding span into this span
+ ASSERT(prev->start + prev->length == p);
+ const Length len = prev->length;
+ DLL_Remove(prev);
+ DeleteSpan(prev);
+ span->start -= len;
+ span->length += len;
+ pagemap_.set(span->start, span);
+ Event(span, 'L', len);
+ }
+ Span* next = GetDescriptor(p+n);
+ if (next != NULL && next->location != Span::IN_USE) {
+ // Merge next span into this span
+ ASSERT(next->start == p+n);
+ const Length len = next->length;
+ DLL_Remove(next);
+ DeleteSpan(next);
+ span->length += len;
+ pagemap_.set(span->start + span->length - 1, span);
+ Event(span, 'R', len);
+ }
+
+ Event(span, 'D', span->length);
+ span->location = Span::ON_RETURNED_FREELIST;
+ TCMalloc_SystemRelease(reinterpret_cast<void*>(span->start << kPageShift),
+ static_cast<size_t>(span->length << kPageShift));
+ if (span->length < kMaxPages)
+ DLL_Prepend(&free_[span->length].returned, span);
+ else
+ DLL_Prepend(&large_.returned, span);
+ free_pages_ += n;
+
+ IncrementalScavenge(n);
+ ASSERT(Check());
+}
+
+void PageHeap::IncrementalScavenge(Length n) {
+ // Fast path; not yet time to release memory
+ scavenge_counter_ -= n;
+ if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
+
+ // Never delay scavenging for more than the following number of
+ // deallocated pages. With 4K pages, this comes to 4GB of
+ // deallocation.
+ // Chrome: Changed to 64MB
+ static const int kMaxReleaseDelay = 1 << 14;
+
+ // If there is nothing to release, wait for so many pages before
+ // scavenging again. With 4K pages, this comes to 1GB of memory.
+ // Chrome: Changed to 16MB
+ static const int kDefaultReleaseDelay = 1 << 12;
+
+ const double rate = FLAGS_tcmalloc_release_rate;
+ if (rate <= 1e-6) {
+ // Tiny release rate means that releasing is disabled.
+ scavenge_counter_ = kDefaultReleaseDelay;
+ return;
+ }
+
+ // Find index of free list to scavenge
+ int index = scavenge_index_ + 1;
+ for (int i = 0; i < kMaxPages+1; i++) {
+ if (index > kMaxPages) index = 0;
+ SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
+ if (!DLL_IsEmpty(&slist->normal)) {
+ // Release the last span on the normal portion of this list
+ Span* s = slist->normal.prev;
+ ASSERT(s->location == Span::ON_NORMAL_FREELIST);
+ DLL_Remove(s);
+ TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
+ static_cast<size_t>(s->length << kPageShift));
+ s->location = Span::ON_RETURNED_FREELIST;
+ DLL_Prepend(&slist->returned, s);
+
+ // Compute how long to wait until we return memory.
+ // FLAGS_tcmalloc_release_rate==1 means wait for 1000 pages
+ // after releasing one page.
+ const double mult = 1000.0 / rate;
+ double wait = mult * static_cast<double>(s->length);
+ if (wait > kMaxReleaseDelay) {
+ // Avoid overflow and bound to reasonable range
+ wait = kMaxReleaseDelay;
+ }
+ scavenge_counter_ = static_cast<int64_t>(wait);
+
+ scavenge_index_ = index; // Scavenge at index+1 next time
+ // Note: we stop scavenging after finding one.
+ return;
+ }
+ index++;
+ }
+
+ // Nothing to scavenge, delay for a while
+ scavenge_counter_ = kDefaultReleaseDelay;
+}
+
+void PageHeap::RegisterSizeClass(Span* span, size_t sc) {
+ // Associate span object with all interior pages as well
+ ASSERT(span->location == Span::IN_USE);
+ ASSERT(GetDescriptor(span->start) == span);
+ ASSERT(GetDescriptor(span->start+span->length-1) == span);
+ Event(span, 'C', sc);
+ span->sizeclass = sc;
+ for (Length i = 1; i < span->length-1; i++) {
+ pagemap_.set(span->start+i, span);
+ }
+}
+
+static double PagesToMB(uint64_t pages) {
+ return (pages << kPageShift) / 1048576.0;
+}
+
+void PageHeap::Dump(TCMalloc_Printer* out) {
+ int nonempty_sizes = 0;
+ for (int s = 0; s < kMaxPages; s++) {
+ if (!DLL_IsEmpty(&free_[s].normal) || !DLL_IsEmpty(&free_[s].returned)) {
+ nonempty_sizes++;
+ }
+ }
+ out->printf("------------------------------------------------\n");
+ out->printf("PageHeap: %d sizes; %6.1f MB free\n",
+ nonempty_sizes, PagesToMB(free_pages_));
+ out->printf("------------------------------------------------\n");
+ uint64_t total_normal = 0;
+ uint64_t total_returned = 0;
+ for (int s = 0; s < kMaxPages; s++) {
+ const int n_length = DLL_Length(&free_[s].normal);
+ const int r_length = DLL_Length(&free_[s].returned);
+ if (n_length + r_length > 0) {
+ uint64_t n_pages = s * n_length;
+ uint64_t r_pages = s * r_length;
+ total_normal += n_pages;
+ total_returned += r_pages;
+ out->printf("%6u pages * %6u spans ~ %6.1f MB; %6.1f MB cum"
+ "; unmapped: %6.1f MB; %6.1f MB cum\n",
+ s,
+ (n_length + r_length),
+ PagesToMB(n_pages + r_pages),
+ PagesToMB(total_normal + total_returned),
+ PagesToMB(r_pages),
+ PagesToMB(total_returned));
+ }
+ }
+
+ uint64_t n_pages = 0;
+ uint64_t r_pages = 0;
+ int n_spans = 0;
+ int r_spans = 0;
+ out->printf("Normal large spans:\n");
+ for (Span* s = large_.normal.next; s != &large_.normal; s = s->next) {
+ out->printf(" [ %6" PRIuPTR " pages ] %6.1f MB\n",
+ s->length, PagesToMB(s->length));
+ n_pages += s->length;
+ n_spans++;
+ }
+ out->printf("Unmapped large spans:\n");
+ for (Span* s = large_.returned.next; s != &large_.returned; s = s->next) {
+ out->printf(" [ %6" PRIuPTR " pages ] %6.1f MB\n",
+ s->length, PagesToMB(s->length));
+ r_pages += s->length;
+ r_spans++;
+ }
+ total_normal += n_pages;
+ total_returned += r_pages;
+ out->printf(">255 large * %6u spans ~ %6.1f MB; %6.1f MB cum"
+ "; unmapped: %6.1f MB; %6.1f MB cum\n",
+ (n_spans + r_spans),
+ PagesToMB(n_pages + r_pages),
+ PagesToMB(total_normal + total_returned),
+ PagesToMB(r_pages),
+ PagesToMB(total_returned));
+}
+
+static void RecordGrowth(size_t growth) {
+ StackTrace* t = Static::stacktrace_allocator()->New();
+ t->depth = GetStackTrace(t->stack, kMaxStackDepth-1, 3);
+ t->size = growth;
+ t->stack[kMaxStackDepth-1] = reinterpret_cast<void*>(Static::growth_stacks());
+ Static::set_growth_stacks(t);
+}
+
+bool PageHeap::GrowHeap(Length n) {
+ ASSERT(kMaxPages >= kMinSystemAlloc);
+ if (n > kMaxValidPages) return false;
+ Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
+ size_t actual_size;
+ void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
+ if (ptr == NULL) {
+ if (n < ask) {
+ // Try growing just "n" pages
+ ask = n;
+ ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
+ }
+ if (ptr == NULL) return false;
+ }
+ ask = actual_size >> kPageShift;
+ RecordGrowth(ask << kPageShift);
+
+ uint64_t old_system_bytes = system_bytes_;
+ system_bytes_ += (ask << kPageShift);
+ const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+ ASSERT(p > 0);
+
+ // If we have already a lot of pages allocated, just pre allocate a bunch of
+ // memory for the page map. This prevents fragmentation by pagemap metadata
+ // when a program keeps allocating and freeing large blocks.
+
+ if (old_system_bytes < kPageMapBigAllocationThreshold
+ && system_bytes_ >= kPageMapBigAllocationThreshold) {
+ pagemap_.PreallocateMoreMemory();
+ }
+
+ // Make sure pagemap_ has entries for all of the new pages.
+ // Plus ensure one before and one after so coalescing code
+ // does not need bounds-checking.
+ if (pagemap_.Ensure(p-1, ask+2)) {
+ // Pretend the new area is allocated and then Delete() it to
+ // cause any necessary coalescing to occur.
+ //
+ // We do not adjust free_pages_ here since Delete() will do it for us.
+ Span* span = NewSpan(p, ask);
+ RecordSpan(span);
+ Delete(span);
+ ASSERT(Check());
+ return true;
+ } else {
+ // We could not allocate memory within "pagemap_"
+ // TODO: Once we can return memory to the system, return the new span
+ return false;
+ }
+}
+
+bool PageHeap::Check() {
+ ASSERT(free_[0].normal.next == &free_[0].normal);
+ ASSERT(free_[0].returned.next == &free_[0].returned);
+ return true;
+}
+
+bool PageHeap::CheckExpensive() {
+ bool result = Check();
+ CheckList(&large_.normal, kMaxPages, 1000000000, Span::ON_NORMAL_FREELIST);
+ CheckList(&large_.returned, kMaxPages, 1000000000, Span::ON_RETURNED_FREELIST);
+ for (Length s = 1; s < kMaxPages; s++) {
+ CheckList(&free_[s].normal, s, s, Span::ON_NORMAL_FREELIST);
+ CheckList(&free_[s].returned, s, s, Span::ON_RETURNED_FREELIST);
+ }
+ return result;
+}
+
+bool PageHeap::CheckList(Span* list, Length min_pages, Length max_pages,
+ int freelist) {
+ for (Span* s = list->next; s != list; s = s->next) {
+ CHECK_CONDITION(s->location == freelist); // NORMAL or RETURNED
+ CHECK_CONDITION(s->length >= min_pages);
+ CHECK_CONDITION(s->length <= max_pages);
+ CHECK_CONDITION(GetDescriptor(s->start) == s);
+ CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
+ }
+ return true;
+}
+
+static void ReleaseFreeList(Span* list, Span* returned) {
+ // Walk backwards through list so that when we push these
+ // spans on the "returned" list, we preserve the order.
+ while (!DLL_IsEmpty(list)) {
+ Span* s = list->prev;
+ DLL_Remove(s);
+ DLL_Prepend(returned, s);
+ ASSERT(s->location == Span::ON_NORMAL_FREELIST);
+ s->location = Span::ON_RETURNED_FREELIST;
+ TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
+ static_cast<size_t>(s->length << kPageShift));
+ }
+}
+
+void PageHeap::ReleaseFreePages() {
+ for (Length s = 0; s < kMaxPages; s++) {
+ ReleaseFreeList(&free_[s].normal, &free_[s].returned);
+ }
+ ReleaseFreeList(&large_.normal, &large_.returned);
+ ASSERT(Check());
+}
+
+} // namespace tcmalloc
diff --git a/third_party/tcmalloc/port.cc b/third_party/tcmalloc/port.cc
new file mode 100644
index 0000000..578c8ba
--- /dev/null
+++ b/third_party/tcmalloc/port.cc
@@ -0,0 +1,301 @@
+/* Copyright (c) 2007, Google Inc.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are
+ * met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above
+ * copyright notice, this list of conditions and the following disclaimer
+ * in the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Google Inc. nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ * ---
+ * Author: Craig Silverstein
+ */
+
+#ifndef _WIN32
+# error You should only be including windows/port.cc in a windows environment!
+#endif
+
+#include <config.h>
+#include <string.h> // for strlen(), memset(), memcmp()
+#include <assert.h>
+#include <stdarg.h> // for va_list, va_start, va_end
+#include <windows.h>
+#include "port.h"
+#include "base/logging.h"
+#include "base/spinlock.h"
+#include "system-alloc.h"
+
+// -----------------------------------------------------------------------
+// Basic libraries
+
+// These call the windows _vsnprintf, but always NUL-terminate.
+int safe_vsnprintf(char *str, size_t size, const char *format, va_list ap) {
+ if (size == 0) // not even room for a \0?
+ return -1; // not what C99 says to do, but what windows does
+ str[size-1] = '\0';
+ return _vsnprintf(str, size-1, format, ap);
+}
+
+#ifndef HAVE_SNPRINTF
+int snprintf(char *str, size_t size, const char *format, ...) {
+ va_list ap;
+ va_start(ap, format);
+ const int r = vsnprintf(str, size, format, ap);
+ va_end(ap);
+ return r;
+}
+#endif
+
+int getpagesize() {
+ static int pagesize = 0;
+ if (pagesize == 0) {
+ SYSTEM_INFO system_info;
+ GetSystemInfo(&system_info);
+ pagesize = system_info.dwPageSize;
+ }
+ return pagesize;
+}
+
+extern "C" PERFTOOLS_DLL_DECL void* __sbrk(ptrdiff_t increment) {
+ LOG(FATAL, "Windows doesn't implement sbrk!\n");
+ return NULL;
+}
+
+// -----------------------------------------------------------------------
+// Threads code
+
+bool CheckIfKernelSupportsTLS() {
+ // TODO(csilvers): return true (all win's since win95, at least, support this)
+ return false;
+}
+
+// Windows doesn't support pthread_key_create's destr_function, and in
+// fact it's a bit tricky to get code to run when a thread exits. This
+// is cargo-cult magic from http://www.codeproject.com/threads/tls.asp.
+// This code is for VC++ 7.1 and later; VC++ 6.0 support is possible
+// but more busy-work -- see the webpage for how to do it. If all
+// this fails, we could use DllMain instead. The big problem with
+// DllMain is it doesn't run if this code is statically linked into a
+// binary (it also doesn't run if the thread is terminated via
+// TerminateThread, which if we're lucky this routine does).
+
+// This makes the linker create the TLS directory if it's not already
+// there (that is, even if __declspec(thead) is not used).
+#ifdef _MSC_VER
+#pragma comment(linker, "/INCLUDE:__tls_used")
+#endif
+
+// When destr_fn eventually runs, it's supposed to take as its
+// argument the tls-value associated with key that pthread_key_create
+// creates. (Yeah, it sounds confusing but it's really not.) We
+// store the destr_fn/key pair in this data structure. Because we
+// store this in a single var, this implies we can only have one
+// destr_fn in a program! That's enough in practice. If asserts
+// trigger because we end up needing more, we'll have to turn this
+// into an array.
+struct DestrFnClosure {
+ void (*destr_fn)(void*);
+ pthread_key_t key_for_destr_fn_arg;
+};
+
+static DestrFnClosure destr_fn_info; // initted to all NULL/0.
+
+static int on_process_term(void) {
+ if (destr_fn_info.destr_fn) {
+ void *ptr = TlsGetValue(destr_fn_info.key_for_destr_fn_arg);
+ // This shouldn't be necessary, but in Release mode, Windows
+ // sometimes trashes the pointer in the TLS slot, so we need to
+ // remove the pointer from the TLS slot before the thread dies.
+ TlsSetValue(destr_fn_info.key_for_destr_fn_arg, NULL);
+ if (ptr) // pthread semantics say not to call if ptr is NULL
+ (*destr_fn_info.destr_fn)(ptr);
+ }
+ return 0;
+}
+
+static void NTAPI on_tls_callback(HINSTANCE h, DWORD dwReason, PVOID pv) {
+ if (dwReason == DLL_THREAD_DETACH) { // thread is being destroyed!
+ on_process_term();
+ }
+}
+
+#ifdef _MSC_VER
+
+// This tells the linker to run these functions.
+#pragma data_seg(push, old_seg)
+#pragma data_seg(".CRT$XLB")
+static void (NTAPI *p_thread_callback)(HINSTANCE h, DWORD dwReason, PVOID pv)
+ = on_tls_callback;
+#pragma data_seg(".CRT$XTU")
+static int (*p_process_term)(void) = on_process_term;
+#pragma data_seg(pop, old_seg)
+
+#else // #ifdef _MSC_VER [probably msys/mingw]
+
+// We have to try the DllMain solution here, because we can't use the
+// msvc-specific pragmas.
+BOOL WINAPI DllMain(HINSTANCE h, DWORD dwReason, PVOID pv) {
+ if (dwReason == DLL_THREAD_DETACH)
+ on_tls_callback(h, dwReason, pv);
+ else if (dwReason == DLL_PROCESS_DETACH)
+ on_process_term();
+ return TRUE;
+}
+
+#endif // #ifdef _MSC_VER
+
+pthread_key_t PthreadKeyCreate(void (*destr_fn)(void*)) {
+ // Semantics are: we create a new key, and then promise to call
+ // destr_fn with TlsGetValue(key) when the thread is destroyed
+ // (as long as TlsGetValue(key) is not NULL).
+ pthread_key_t key = TlsAlloc();
+ if (destr_fn) { // register it
+ // If this assert fails, we'll need to support an array of destr_fn_infos
+ assert(destr_fn_info.destr_fn == NULL);
+ destr_fn_info.destr_fn = destr_fn;
+ destr_fn_info.key_for_destr_fn_arg = key;
+ }
+ return key;
+}
+
+
+// -----------------------------------------------------------------------
+// These functions replace system-alloc.cc
+
+static SpinLock alloc_lock(SpinLock::LINKER_INITIALIZED);
+
+// This is mostly like MmapSysAllocator::Alloc, except it does these weird
+// munmap's in the middle of the page, which is forbidden in windows.
+extern void* TCMalloc_SystemAlloc(size_t size, size_t *actual_size,
+ size_t alignment) {
+ // Safest is to make actual_size same as input-size.
+ if (actual_size) {
+ *actual_size = size;
+ }
+
+ SpinLockHolder sh(&alloc_lock);
+ // Align on the pagesize boundary
+ const int pagesize = getpagesize();
+ if (alignment < pagesize) alignment = pagesize;
+ size = ((size + alignment - 1) / alignment) * alignment;
+
+ // Ask for extra memory if alignment > pagesize
+ size_t extra = 0;
+ if (alignment > pagesize) {
+ extra = alignment - pagesize;
+ }
+
+ void* result = VirtualAlloc(0, size + extra,
+ MEM_COMMIT|MEM_RESERVE, PAGE_READWRITE);
+ if (result == NULL)
+ return NULL;
+
+ // Adjust the return memory so it is aligned
+ uintptr_t ptr = reinterpret_cast<uintptr_t>(result);
+ size_t adjust = 0;
+ if ((ptr & (alignment - 1)) != 0) {
+ adjust = alignment - (ptr & (alignment - 1));
+ }
+
+ ptr += adjust;
+ return reinterpret_cast<void*>(ptr);
+}
+
+void TCMalloc_SystemRelease(void* start, size_t length) {
+ if (VirtualFree(start, length, MEM_DECOMMIT))
+ return;
+
+ // The decommit may fail if the memory region consists of allocations
+ // from more than one call to VirtualAlloc. In this case, fall back to
+ // using VirtualQuery to retrieve the allocation boundaries and decommit
+ // them each individually.
+
+ char* ptr = static_cast<char*>(start);
+ char* end = ptr + length;
+ MEMORY_BASIC_INFORMATION info;
+ while (ptr < end) {
+ size_t resultSize = VirtualQuery(ptr, &info, sizeof(info));
+ assert(resultSize == sizeof(info));
+ size_t decommitSize = std::min<size_t>(info.RegionSize, end - ptr);
+ BOOL success = VirtualFree(ptr, decommitSize, MEM_DECOMMIT);
+ assert(success == TRUE);
+ ptr += decommitSize;
+ }
+}
+
+void TCMalloc_SystemCommit(void* start, size_t length)
+{
+ if (VirtualAlloc(start, length, MEM_COMMIT, PAGE_READWRITE) == start)
+ return;
+
+ // The commit may fail if the memory region consists of allocations
+ // from more than one call to VirtualAlloc. In this case, fall back to
+ // using VirtualQuery to retrieve the allocation boundaries and commit them
+ // each individually.
+
+ char* ptr = static_cast<char*>(start);
+ char* end = ptr + length;
+ MEMORY_BASIC_INFORMATION info;
+ while (ptr < end) {
+ size_t resultSize = VirtualQuery(ptr, &info, sizeof(info));
+ assert(resultSize == sizeof(info));
+
+ size_t commitSize = std::min<size_t>(info.RegionSize, end - ptr);
+ void* newAddress = VirtualAlloc(ptr, commitSize, MEM_COMMIT,
+ PAGE_READWRITE);
+ assert(newAddress == ptr);
+ ptr += commitSize;
+ }
+}
+
+bool RegisterSystemAllocator(SysAllocator *allocator, int priority) {
+ return false; // we don't allow registration on windows, right now
+}
+
+void DumpSystemAllocatorStats(TCMalloc_Printer* printer) {
+ // We don't dump stats on windows, right now
+}
+
+
+// -----------------------------------------------------------------------
+// These functions rework existing functions of the same name in the
+// Google codebase.
+
+// A replacement for HeapProfiler::CleanupOldProfiles.
+void DeleteMatchingFiles(const char* prefix, const char* full_glob) {
+ WIN32_FIND_DATAA found; // that final A is for Ansi (as opposed to Unicode)
+ HANDLE hFind = FindFirstFileA(full_glob, &found); // A is for Ansi
+ if (hFind != INVALID_HANDLE_VALUE) {
+ const int prefix_length = strlen(prefix);
+ do {
+ const char *fname = found.cFileName;
+ if ((strlen(fname) >= prefix_length) &&
+ (memcmp(fname, prefix, prefix_length) == 0)) {
+ RAW_VLOG(0, "Removing old heap profile %s\n", fname);
+ // TODO(csilvers): we really need to unlink dirname + fname
+ _unlink(fname);
+ }
+ } while (FindNextFileA(hFind, &found) != FALSE); // A is for Ansi
+ FindClose(hFind);
+ }
+}
diff --git a/third_party/tcmalloc/system-alloc.cc b/third_party/tcmalloc/system-alloc.cc
new file mode 100644
index 0000000..21d9b43
--- /dev/null
+++ b/third_party/tcmalloc/system-alloc.cc
@@ -0,0 +1,505 @@
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+// Author: Sanjay Ghemawat
+
+#include <config.h>
+#if defined HAVE_STDINT_H
+#include <stdint.h>
+#elif defined HAVE_INTTYPES_H
+#include <inttypes.h>
+#else
+#include <sys/types.h>
+#endif
+#ifdef HAVE_UNISTD_H
+#include <unistd.h>
+#endif
+#include <fcntl.h> // for open()
+#ifdef HAVE_MMAP
+#include <sys/mman.h>
+#endif
+#include <errno.h>
+#include "system-alloc.h"
+#include "internal_logging.h"
+#include "base/logging.h"
+#include "base/commandlineflags.h"
+#include "base/spinlock.h"
+
+// On systems (like freebsd) that don't define MAP_ANONYMOUS, use the old
+// form of the name instead.
+#ifndef MAP_ANONYMOUS
+# define MAP_ANONYMOUS MAP_ANON
+#endif
+
+// Solaris has a bug where it doesn't declare madvise() for C++.
+// http://www.opensolaris.org/jive/thread.jspa?threadID=21035&tstart=0
+#if defined(__sun) && defined(__SVR4)
+# include <sys/types.h> // for caddr_t
+ extern "C" { extern int madvise(caddr_t, size_t, int); }
+#endif
+
+// Set kDebugMode mode so that we can have use C++ conditionals
+// instead of preprocessor conditionals.
+#ifdef NDEBUG
+static const bool kDebugMode = false;
+#else
+static const bool kDebugMode = true;
+#endif
+
+// Structure for discovering alignment
+union MemoryAligner {
+ void* p;
+ double d;
+ size_t s;
+};
+
+static SpinLock spinlock(SpinLock::LINKER_INITIALIZED);
+
+#if defined(HAVE_MMAP) || defined(MADV_DONTNEED)
+// Page size is initialized on demand (only needed for mmap-based allocators)
+static size_t pagesize = 0;
+#endif
+
+// Configuration parameters.
+
+DEFINE_int32(malloc_devmem_start,
+ EnvToInt("TCMALLOC_DEVMEM_START", 0),
+ "Physical memory starting location in MB for /dev/mem allocation."
+ " Setting this to 0 disables /dev/mem allocation");
+DEFINE_int32(malloc_devmem_limit,
+ EnvToInt("TCMALLOC_DEVMEM_LIMIT", 0),
+ "Physical memory limit location in MB for /dev/mem allocation."
+ " Setting this to 0 means no limit.");
+DEFINE_bool(malloc_skip_sbrk,
+ EnvToBool("TCMALLOC_SKIP_SBRK", false),
+ "Whether sbrk can be used to obtain memory.");
+DEFINE_bool(malloc_skip_mmap,
+ EnvToBool("TCMALLOC_SKIP_MMAP", false),
+ "Whether mmap can be used to obtain memory.");
+
+// static allocators
+class SbrkSysAllocator : public SysAllocator {
+public:
+ SbrkSysAllocator() : SysAllocator() {
+ }
+ void* Alloc(size_t size, size_t *actual_size, size_t alignment);
+ void DumpStats(TCMalloc_Printer* printer);
+};
+static char sbrk_space[sizeof(SbrkSysAllocator)];
+
+class MmapSysAllocator : public SysAllocator {
+public:
+ MmapSysAllocator() : SysAllocator() {
+ }
+ void* Alloc(size_t size, size_t *actual_size, size_t alignment);
+ void DumpStats(TCMalloc_Printer* printer);
+};
+static char mmap_space[sizeof(MmapSysAllocator)];
+
+class DevMemSysAllocator : public SysAllocator {
+public:
+ DevMemSysAllocator() : SysAllocator() {
+ }
+ void* Alloc(size_t size, size_t *actual_size, size_t alignment);
+ void DumpStats(TCMalloc_Printer* printer);
+};
+static char devmem_space[sizeof(DevMemSysAllocator)];
+
+static const int kStaticAllocators = 3;
+// kMaxDynamicAllocators + kStaticAllocators;
+static const int kMaxAllocators = 5;
+static SysAllocator *allocators[kMaxAllocators];
+
+bool RegisterSystemAllocator(SysAllocator *a, int priority) {
+ SpinLockHolder lock_holder(&spinlock);
+
+ // No two allocators should have a priority conflict, since the order
+ // is determined at compile time.
+ CHECK_CONDITION(allocators[priority] == NULL);
+ allocators[priority] = a;
+ return true;
+}
+
+
+void* SbrkSysAllocator::Alloc(size_t size, size_t *actual_size,
+ size_t alignment) {
+ // Check if we should use sbrk allocation.
+ // FLAGS_malloc_skip_sbrk starts out as false (its uninitialized
+ // state) and eventually gets initialized to the specified value. Note
+ // that this code runs for a while before the flags are initialized.
+ // That means that even if this flag is set to true, some (initial)
+ // memory will be allocated with sbrk before the flag takes effect.
+ if (FLAGS_malloc_skip_sbrk) {
+ return NULL;
+ }
+
+ // sbrk will release memory if passed a negative number, so we do
+ // a strict check here
+ if (static_cast<ptrdiff_t>(size + alignment) < 0) return NULL;
+
+ // could theoretically return the "extra" bytes here, but this
+ // is simple and correct.
+ if (actual_size) {
+ *actual_size = size;
+ }
+
+ // This doesn't overflow because TCMalloc_SystemAlloc has already
+ // tested for overflow at the alignment boundary.
+ size = ((size + alignment - 1) / alignment) * alignment;
+
+ // Check that we we're not asking for so much more memory that we'd
+ // wrap around the end of the virtual address space. (This seems
+ // like something sbrk() should check for us, and indeed opensolaris
+ // does, but glibc does not:
+ // http://src.opensolaris.org/source/xref/onnv/onnv-gate/usr/src/lib/libc/port/sys/sbrk.c?a=true
+ // http://sourceware.org/cgi-bin/cvsweb.cgi/~checkout~/libc/misc/sbrk.c?rev=1.1.2.1&content-type=text/plain&cvsroot=glibc
+ // Without this check, sbrk may succeed when it ought to fail.)
+ if (reinterpret_cast<intptr_t>(sbrk(0)) + size < size) {
+ failed_ = true;
+ return NULL;
+ }
+
+ void* result = sbrk(size);
+ if (result == reinterpret_cast<void*>(-1)) {
+ failed_ = true;
+ return NULL;
+ }
+
+ // Is it aligned?
+ uintptr_t ptr = reinterpret_cast<uintptr_t>(result);
+ if ((ptr & (alignment-1)) == 0) return result;
+
+ // Try to get more memory for alignment
+ size_t extra = alignment - (ptr & (alignment-1));
+ void* r2 = sbrk(extra);
+ if (reinterpret_cast<uintptr_t>(r2) == (ptr + size)) {
+ // Contiguous with previous result
+ return reinterpret_cast<void*>(ptr + extra);
+ }
+
+ // Give up and ask for "size + alignment - 1" bytes so
+ // that we can find an aligned region within it.
+ result = sbrk(size + alignment - 1);
+ if (result == reinterpret_cast<void*>(-1)) {
+ failed_ = true;
+ return NULL;
+ }
+ ptr = reinterpret_cast<uintptr_t>(result);
+ if ((ptr & (alignment-1)) != 0) {
+ ptr += alignment - (ptr & (alignment-1));
+ }
+ return reinterpret_cast<void*>(ptr);
+}
+
+void SbrkSysAllocator::DumpStats(TCMalloc_Printer* printer) {
+ printer->printf("SbrkSysAllocator: failed_=%d\n", failed_);
+}
+
+void* MmapSysAllocator::Alloc(size_t size, size_t *actual_size,
+ size_t alignment) {
+#ifndef HAVE_MMAP
+ failed_ = true;
+ return NULL;
+#else
+ // Check if we should use mmap allocation.
+ // FLAGS_malloc_skip_mmap starts out as false (its uninitialized
+ // state) and eventually gets initialized to the specified value. Note
+ // that this code runs for a while before the flags are initialized.
+ // Chances are we never get here before the flags are initialized since
+ // sbrk is used until the heap is exhausted (before mmap is used).
+ if (FLAGS_malloc_skip_mmap) {
+ return NULL;
+ }
+
+ // could theoretically return the "extra" bytes here, but this
+ // is simple and correct.
+ if (actual_size) {
+ *actual_size = size;
+ }
+
+ // Enforce page alignment
+ if (pagesize == 0) pagesize = getpagesize();
+ if (alignment < pagesize) alignment = pagesize;
+ size_t aligned_size = ((size + alignment - 1) / alignment) * alignment;
+ if (aligned_size < size) {
+ return NULL;
+ }
+ size = aligned_size;
+
+ // Ask for extra memory if alignment > pagesize
+ size_t extra = 0;
+ if (alignment > pagesize) {
+ extra = alignment - pagesize;
+ }
+
+ // Note: size + extra does not overflow since:
+ // size + alignment < (1<<NBITS).
+ // and extra <= alignment
+ // therefore size + extra < (1<<NBITS)
+ void* result = mmap(NULL, size + extra,
+ PROT_READ|PROT_WRITE,
+ MAP_PRIVATE|MAP_ANONYMOUS,
+ -1, 0);
+ if (result == reinterpret_cast<void*>(MAP_FAILED)) {
+ failed_ = true;
+ return NULL;
+ }
+
+ // Adjust the return memory so it is aligned
+ uintptr_t ptr = reinterpret_cast<uintptr_t>(result);
+ size_t adjust = 0;
+ if ((ptr & (alignment - 1)) != 0) {
+ adjust = alignment - (ptr & (alignment - 1));
+ }
+
+ // Return the unused memory to the system
+ if (adjust > 0) {
+ munmap(reinterpret_cast<void*>(ptr), adjust);
+ }
+ if (adjust < extra) {
+ munmap(reinterpret_cast<void*>(ptr + adjust + size), extra - adjust);
+ }
+
+ ptr += adjust;
+ return reinterpret_cast<void*>(ptr);
+#endif // HAVE_MMAP
+}
+
+void MmapSysAllocator::DumpStats(TCMalloc_Printer* printer) {
+ printer->printf("MmapSysAllocator: failed_=%d\n", failed_);
+}
+
+void* DevMemSysAllocator::Alloc(size_t size, size_t *actual_size,
+ size_t alignment) {
+#ifndef HAVE_MMAP
+ failed_ = true;
+ return NULL;
+#else
+ static bool initialized = false;
+ static off_t physmem_base; // next physical memory address to allocate
+ static off_t physmem_limit; // maximum physical address allowed
+ static int physmem_fd; // file descriptor for /dev/mem
+
+ // Check if we should use /dev/mem allocation. Note that it may take
+ // a while to get this flag initialized, so meanwhile we fall back to
+ // the next allocator. (It looks like 7MB gets allocated before
+ // this flag gets initialized -khr.)
+ if (FLAGS_malloc_devmem_start == 0) {
+ // NOTE: not a devmem_failure - we'd like TCMalloc_SystemAlloc to
+ // try us again next time.
+ return NULL;
+ }
+
+ if (!initialized) {
+ physmem_fd = open("/dev/mem", O_RDWR);
+ if (physmem_fd < 0) {
+ failed_ = true;
+ return NULL;
+ }
+ physmem_base = FLAGS_malloc_devmem_start*1024LL*1024LL;
+ physmem_limit = FLAGS_malloc_devmem_limit*1024LL*1024LL;
+ initialized = true;
+ }
+
+ // could theoretically return the "extra" bytes here, but this
+ // is simple and correct.
+ if (actual_size) {
+ *actual_size = size;
+ }
+
+ // Enforce page alignment
+ if (pagesize == 0) pagesize = getpagesize();
+ if (alignment < pagesize) alignment = pagesize;
+ size_t aligned_size = ((size + alignment - 1) / alignment) * alignment;
+ if (aligned_size < size) {
+ return NULL;
+ }
+ size = aligned_size;
+
+ // Ask for extra memory if alignment > pagesize
+ size_t extra = 0;
+ if (alignment > pagesize) {
+ extra = alignment - pagesize;
+ }
+
+ // check to see if we have any memory left
+ if (physmem_limit != 0 &&
+ ((size + extra) > (physmem_limit - physmem_base))) {
+ failed_ = true;
+ return NULL;
+ }
+
+ // Note: size + extra does not overflow since:
+ // size + alignment < (1<<NBITS).
+ // and extra <= alignment
+ // therefore size + extra < (1<<NBITS)
+ void *result = mmap(0, size + extra, PROT_WRITE|PROT_READ,
+ MAP_SHARED, physmem_fd, physmem_base);
+ if (result == reinterpret_cast<void*>(MAP_FAILED)) {
+ failed_ = true;
+ return NULL;
+ }
+ uintptr_t ptr = reinterpret_cast<uintptr_t>(result);
+
+ // Adjust the return memory so it is aligned
+ size_t adjust = 0;
+ if ((ptr & (alignment - 1)) != 0) {
+ adjust = alignment - (ptr & (alignment - 1));
+ }
+
+ // Return the unused virtual memory to the system
+ if (adjust > 0) {
+ munmap(reinterpret_cast<void*>(ptr), adjust);
+ }
+ if (adjust < extra) {
+ munmap(reinterpret_cast<void*>(ptr + adjust + size), extra - adjust);
+ }
+
+ ptr += adjust;
+ physmem_base += adjust + size;
+
+ return reinterpret_cast<void*>(ptr);
+#endif // HAVE_MMAP
+}
+
+void DevMemSysAllocator::DumpStats(TCMalloc_Printer* printer) {
+ printer->printf("DevMemSysAllocator: failed_=%d\n", failed_);
+}
+
+static bool system_alloc_inited = false;
+void InitSystemAllocators(void) {
+ // This determines the order in which system allocators are called
+ int i = kMaxDynamicAllocators;
+ allocators[i++] = new (devmem_space) DevMemSysAllocator();
+
+ // In 64-bit debug mode, place the mmap allocator first since it
+ // allocates pointers that do not fit in 32 bits and therefore gives
+ // us better testing of code's 64-bit correctness. It also leads to
+ // less false negatives in heap-checking code. (Numbers are less
+ // likely to look like pointers and therefore the conservative gc in
+ // the heap-checker is less likely to misinterpret a number as a
+ // pointer).
+ if (kDebugMode && sizeof(void*) > 4) {
+ allocators[i++] = new (mmap_space) MmapSysAllocator();
+ allocators[i++] = new (sbrk_space) SbrkSysAllocator();
+ } else {
+ allocators[i++] = new (sbrk_space) SbrkSysAllocator();
+ allocators[i++] = new (mmap_space) MmapSysAllocator();
+ }
+}
+
+void* TCMalloc_SystemAlloc(size_t size, size_t *actual_size,
+ size_t alignment) {
+ // Discard requests that overflow
+ if (size + alignment < size) return NULL;
+
+ SpinLockHolder lock_holder(&spinlock);
+
+ if (!system_alloc_inited) {
+ InitSystemAllocators();
+ system_alloc_inited = true;
+ }
+
+ // Enforce minimum alignment
+ if (alignment < sizeof(MemoryAligner)) alignment = sizeof(MemoryAligner);
+
+ // Try twice, once avoiding allocators that failed before, and once
+ // more trying all allocators even if they failed before.
+ for (int i = 0; i < 2; i++) {
+ for (int j = 0; j < kMaxAllocators; j++) {
+ SysAllocator *a = allocators[j];
+ if (a == NULL) continue;
+ if (a->usable_ && !a->failed_) {
+ void* result = a->Alloc(size, actual_size, alignment);
+ if (result != NULL) return result;
+ }
+ }
+
+ // nothing worked - reset failed_ flags and try again
+ for (int j = 0; j < kMaxAllocators; j++) {
+ SysAllocator *a = allocators[j];
+ if (a == NULL) continue;
+ a->failed_ = false;
+ }
+ }
+ return NULL;
+}
+
+void TCMalloc_SystemRelease(void* start, size_t length) {
+#ifdef MADV_DONTNEED
+ if (FLAGS_malloc_devmem_start) {
+ // It's not safe to use MADV_DONTNEED if we've been mapping
+ // /dev/mem for heap memory
+ return;
+ }
+ if (pagesize == 0) pagesize = getpagesize();
+ const size_t pagemask = pagesize - 1;
+
+ size_t new_start = reinterpret_cast<size_t>(start);
+ size_t end = new_start + length;
+ size_t new_end = end;
+
+ // Round up the starting address and round down the ending address
+ // to be page aligned:
+ new_start = (new_start + pagesize - 1) & ~pagemask;
+ new_end = new_end & ~pagemask;
+
+ ASSERT((new_start & pagemask) == 0);
+ ASSERT((new_end & pagemask) == 0);
+ ASSERT(new_start >= reinterpret_cast<size_t>(start));
+ ASSERT(new_end <= end);
+
+ if (new_end > new_start) {
+ // Note -- ignoring most return codes, because if this fails it
+ // doesn't matter...
+ while (madvise(reinterpret_cast<char*>(new_start), new_end - new_start,
+ MADV_DONTNEED) == -1 &&
+ errno == EAGAIN) {
+ // NOP
+ }
+ }
+#endif
+}
+
+void TCMalloc_SystemCommit(void* start, size_t length) {
+ // Nothing to do here. TCMalloc_SystemRelease does not alter pages
+ // such that they need to be re-committed before they can be used by the
+ // application.
+}
+
+void DumpSystemAllocatorStats(TCMalloc_Printer* printer) {
+ for (int j = 0; j < kMaxAllocators; j++) {
+ SysAllocator *a = allocators[j];
+ if (a == NULL) continue;
+ if (a->usable_) {
+ a->DumpStats(printer);
+ }
+ }
+}
diff --git a/third_party/tcmalloc/system-alloc.h b/third_party/tcmalloc/system-alloc.h
new file mode 100644
index 0000000..60affed
--- /dev/null
+++ b/third_party/tcmalloc/system-alloc.h
@@ -0,0 +1,119 @@
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+// Author: Sanjay Ghemawat
+//
+// Routine that uses sbrk/mmap to allocate memory from the system.
+// Useful for implementing malloc.
+
+#ifndef TCMALLOC_SYSTEM_ALLOC_H_
+#define TCMALLOC_SYSTEM_ALLOC_H_
+
+#include <config.h>
+#include "internal_logging.h"
+
+// REQUIRES: "alignment" is a power of two or "0" to indicate default alignment
+//
+// Allocate and return "N" bytes of zeroed memory.
+//
+// If actual_bytes is NULL then the returned memory is exactly the
+// requested size. If actual bytes is non-NULL then the allocator
+// may optionally return more bytes than asked for (i.e. return an
+// entire "huge" page if a huge page allocator is in use).
+//
+// The returned pointer is a multiple of "alignment" if non-zero.
+//
+// Returns NULL when out of memory.
+extern void* TCMalloc_SystemAlloc(size_t bytes, size_t *actual_bytes,
+ size_t alignment = 0);
+
+// This call is a hint to the operating system that the pages
+// contained in the specified range of memory will not be used for a
+// while, and can be released for use by other processes or the OS.
+// Pages which are released in this way may be destroyed (zeroed) by
+// the OS. The benefit of this function is that it frees memory for
+// use by the system, the cost is that the pages are faulted back into
+// the address space next time they are touched, which can impact
+// performance. (Only pages fully covered by the memory region will
+// be released, partial pages will not.)
+extern void TCMalloc_SystemRelease(void* start, size_t length);
+
+// Called to ressurect memory which has been previously released
+// to the system via TCMalloc_SystemRelease. An attempt to
+// commit a page that is already committed does not cause this
+// function to fail.
+extern void TCMalloc_SystemCommit(void* start, size_t length);
+
+// Interface to a pluggable system allocator.
+class SysAllocator {
+ public:
+ SysAllocator()
+ : usable_(true),
+ failed_(false) {
+ };
+ virtual ~SysAllocator() {};
+
+ virtual void* Alloc(size_t size, size_t *actual_size, size_t alignment) = 0;
+
+ // Populate the map with whatever properties the specified allocator finds
+ // useful for debugging (such as number of bytes allocated and whether the
+ // allocator has failed). The callee is responsible for any necessary
+ // locking (and avoiding deadlock).
+ virtual void DumpStats(TCMalloc_Printer* printer) = 0;
+
+ // So the allocator can be turned off at compile time
+ bool usable_;
+
+ // Did this allocator fail? If so, we don't need to retry more than twice.
+ bool failed_;
+};
+
+// Register a new system allocator. The priority determines the order in
+// which the allocators will be invoked. Allocators with numerically lower
+// priority are tried first. To keep things simple, the priority of various
+// allocators is known at compile time.
+//
+// Valid range of priorities: [0, kMaxDynamicAllocators)
+//
+// Please note that we can't use complex data structures and cause
+// recursive calls to malloc within this function. So all data structures
+// are statically allocated.
+//
+// Returns true on success. Does nothing on failure.
+extern PERFTOOLS_DLL_DECL bool RegisterSystemAllocator(SysAllocator *allocator,
+ int priority);
+
+// Number of SysAllocators known to call RegisterSystemAllocator
+static const int kMaxDynamicAllocators = 2;
+
+// Retrieve the current state of various system allocators.
+extern PERFTOOLS_DLL_DECL void DumpSystemAllocatorStats(TCMalloc_Printer* printer);
+
+#endif /* TCMALLOC_SYSTEM_ALLOC_H_ */
diff --git a/third_party/tcmalloc/tcmalloc.cc b/third_party/tcmalloc/tcmalloc.cc
new file mode 100644
index 0000000..e3bbb81
--- /dev/null
+++ b/third_party/tcmalloc/tcmalloc.cc
@@ -0,0 +1,1293 @@
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+// Author: Sanjay Ghemawat <opensource@google.com>
+//
+// A malloc that uses a per-thread cache to satisfy small malloc requests.
+// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
+//
+// See doc/tcmalloc.html for a high-level
+// description of how this malloc works.
+//
+// SYNCHRONIZATION
+// 1. The thread-specific lists are accessed without acquiring any locks.
+// This is safe because each such list is only accessed by one thread.
+// 2. We have a lock per central free-list, and hold it while manipulating
+// the central free list for a particular size.
+// 3. The central page allocator is protected by "pageheap_lock".
+// 4. The pagemap (which maps from page-number to descriptor),
+// can be read without holding any locks, and written while holding
+// the "pageheap_lock".
+// 5. To improve performance, a subset of the information one can get
+// from the pagemap is cached in a data structure, pagemap_cache_,
+// that atomically reads and writes its entries. This cache can be
+// read and written without locking.
+//
+// This multi-threaded access to the pagemap is safe for fairly
+// subtle reasons. We basically assume that when an object X is
+// allocated by thread A and deallocated by thread B, there must
+// have been appropriate synchronization in the handoff of object
+// X from thread A to thread B. The same logic applies to pagemap_cache_.
+//
+// THE PAGEID-TO-SIZECLASS CACHE
+// Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
+// returns 0 for a particular PageID then that means "no information," not that
+// the sizeclass is 0. The cache may have stale information for pages that do
+// not hold the beginning of any free()'able object. Staleness is eliminated
+// in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
+// do_memalign() for all other relevant pages.
+//
+// PAGEMAP
+// -------
+// Page map contains a mapping from page id to Span.
+//
+// If Span s occupies pages [p..q],
+// pagemap[p] == s
+// pagemap[q] == s
+// pagemap[p+1..q-1] are undefined
+// pagemap[p-1] and pagemap[q+1] are defined:
+// NULL if the corresponding page is not yet in the address space.
+// Otherwise it points to a Span. This span may be free
+// or allocated. If free, it is in one of pageheap's freelist.
+//
+// TODO: Bias reclamation to larger addresses
+// TODO: implement mallinfo/mallopt
+// TODO: Better testing
+//
+// 9/28/2003 (new page-level allocator replaces ptmalloc2):
+// * malloc/free of small objects goes from ~300 ns to ~50 ns.
+// * allocation of a reasonably complicated struct
+// goes from about 1100 ns to about 300 ns.
+
+#include <config.h>
+#include <new>
+#include <stdio.h>
+#include <stddef.h>
+#if defined HAVE_STDINT_H
+#include <stdint.h>
+#elif defined HAVE_INTTYPES_H
+#include <inttypes.h>
+#else
+#include <sys/types.h>
+#endif
+#if defined(HAVE_MALLOC_H) && defined(HAVE_STRUCT_MALLINFO)
+#include <malloc.h> // for struct mallinfo
+#endif
+#include <string.h>
+#ifdef HAVE_PTHREAD
+#include <pthread.h>
+#endif
+#ifdef HAVE_UNISTD_H
+#include <unistd.h>
+#endif
+#include <errno.h>
+#include <stdarg.h>
+#include <algorithm>
+#include <google/tcmalloc.h>
+#include "base/commandlineflags.h"
+#include "base/basictypes.h" // gets us PRIu64
+#include "base/sysinfo.h"
+#include "base/spinlock.h"
+#include "common.h"
+#include "malloc_hook-inl.h"
+#include <google/malloc_hook.h>
+#include <google/malloc_extension.h>
+#include "central_freelist.h"
+#include "internal_logging.h"
+#include "linked_list.h"
+#include "maybe_threads.h"
+#include "page_heap.h"
+#include "page_heap_allocator.h"
+#include "pagemap.h"
+#include "span.h"
+#include "static_vars.h"
+#include "system-alloc.h"
+#include "tcmalloc_guard.h"
+#include "thread_cache.h"
+
+#if (defined(_WIN32) && !defined(__CYGWIN__) && !defined(__CYGWIN32__)) && !defined(WIN32_OVERRIDE_ALLOCATORS)
+# define WIN32_DO_PATCHING 1
+#endif
+
+using tcmalloc::PageHeap;
+using tcmalloc::PageHeapAllocator;
+using tcmalloc::SizeMap;
+using tcmalloc::Span;
+using tcmalloc::StackTrace;
+using tcmalloc::Static;
+using tcmalloc::ThreadCache;
+
+// __THROW is defined in glibc systems. It means, counter-intuitively,
+// "This function will never throw an exception." It's an optional
+// optimization tool, but we may need to use it to match glibc prototypes.
+#ifndef __THROW // I guess we're not on a glibc system
+# define __THROW // __THROW is just an optimization, so ok to make it ""
+#endif
+
+DECLARE_int64(tcmalloc_sample_parameter);
+DECLARE_double(tcmalloc_release_rate);
+
+// For windows, the printf we use to report large allocs is
+// potentially dangerous: it could cause a malloc that would cause an
+// infinite loop. So by default we set the threshold to a huge number
+// on windows, so this bad situation will never trigger. You can
+// always set TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD manually if you
+// want this functionality.
+#ifdef _WIN32
+const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 62;
+#else
+const int64 kDefaultLargeAllocReportThreshold = static_cast<int64>(1) << 30;
+#endif
+DEFINE_int64(tcmalloc_large_alloc_report_threshold,
+ EnvToInt64("TCMALLOC_LARGE_ALLOC_REPORT_THRESHOLD",
+ kDefaultLargeAllocReportThreshold),
+ "Allocations larger than this value cause a stack "
+ "trace to be dumped to stderr. The threshold for "
+ "dumping stack traces is increased by a factor of 1.125 "
+ "every time we print a message so that the threshold "
+ "automatically goes up by a factor of ~1000 every 60 "
+ "messages. This bounds the amount of extra logging "
+ "generated by this flag. Default value of this flag "
+ "is very large and therefore you should see no extra "
+ "logging unless the flag is overridden. Set to 0 to "
+ "disable reporting entirely.");
+
+
+// We already declared these functions in tcmalloc.h, but we have to
+// declare them again to give them an ATTRIBUTE_SECTION: we want to
+// put all callers of MallocHook::Invoke* in this module into
+// ATTRIBUTE_SECTION(google_malloc) section, so that
+// MallocHook::GetCallerStackTrace can function accurately.
+extern "C" {
+ void* tc_malloc(size_t size) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_free(void* ptr) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_realloc(void* ptr, size_t size) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_calloc(size_t nmemb, size_t size) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_cfree(void* ptr) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+
+ void* tc_memalign(size_t __alignment, size_t __size) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ int tc_posix_memalign(void** ptr, size_t align, size_t size) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_valloc(size_t __size) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_pvalloc(size_t __size) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+
+ void tc_malloc_stats(void) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ int tc_mallopt(int cmd, int value) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+#ifdef HAVE_STRUCT_MALLINFO // struct mallinfo isn't defined on freebsd
+ struct mallinfo tc_mallinfo(void) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+#endif
+
+ void* tc_new(size_t size)
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_delete(void* p) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_newarray(size_t size)
+ ATTRIBUTE_SECTION(google_malloc);
+ void tc_deletearray(void* p) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+
+ // And the nothrow variants of these:
+ void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+ void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW
+ ATTRIBUTE_SECTION(google_malloc);
+}
+
+// Override the libc functions to prefer our own instead. This comes
+// first so code in tcmalloc.cc can use the overridden versions. One
+// exception: in windows, by default, we patch our code into these
+// functions (via src/windows/patch_function.cc) rather than override
+// them. In that case, we don't want to do this overriding here.
+#ifndef WIN32_DO_PATCHING
+
+// TODO(mbelshe): Turn off TCMalloc's symbols for libc. We do that
+// elsewhere.
+#if 0
+
+#if defined(__GNUC__) && !defined(__MACH__)
+ // Potentially faster variants that use the gcc alias extension.
+ // Mach-O (Darwin) does not support weak aliases, hence the __MACH__ check.
+ // FreeBSD does support aliases, but apparently not correctly. :-(
+# define ALIAS(x) __attribute__ ((alias (x)))
+void* operator new(size_t size) ALIAS("tc_new");
+void operator delete(void* p) __THROW ALIAS("tc_delete");
+void* operator new[](size_t size) ALIAS("tc_newarray");
+void operator delete[](void* p) __THROW ALIAS("tc_deletearray");
+void* operator new(size_t size, const std::nothrow_t&) __THROW
+ ALIAS("tc_new_nothrow");
+void* operator new[](size_t size, const std::nothrow_t&) __THROW
+ ALIAS("tc_newarray_nothrow");
+extern "C" {
+ void* malloc(size_t size) __THROW ALIAS("tc_malloc");
+ void free(void* ptr) __THROW ALIAS("tc_free");
+ void* realloc(void* ptr, size_t size) __THROW ALIAS("tc_realloc");
+ void* calloc(size_t n, size_t size) __THROW ALIAS("tc_calloc");
+ void cfree(void* ptr) __THROW ALIAS("tc_cfree");
+ void* memalign(size_t align, size_t s) __THROW ALIAS("tc_memalign");
+ void* valloc(size_t size) __THROW ALIAS("tc_valloc");
+ void* pvalloc(size_t size) __THROW ALIAS("tc_pvalloc");
+ int posix_memalign(void** r, size_t a, size_t s) __THROW
+ ALIAS("tc_posix_memalign");
+ void malloc_stats(void) __THROW ALIAS("tc_malloc_stats");
+ int mallopt(int cmd, int value) __THROW ALIAS("tc_mallopt");
+#ifdef HAVE_STRUCT_MALLINFO
+ struct mallinfo mallinfo(void) __THROW ALIAS("tc_mallinfo");
+#endif
+ // Some library routines on RedHat 9 allocate memory using malloc()
+ // and free it using __libc_free() (or vice-versa). Since we provide
+ // our own implementations of malloc/free, we need to make sure that
+ // the __libc_XXX variants (defined as part of glibc) also point to
+ // the same implementations.
+# if defined(__GLIBC__)
+ void* __libc_malloc(size_t size) ALIAS("tc_malloc");
+ void __libc_free(void* ptr) ALIAS("tc_free");
+ void* __libc_realloc(void* ptr, size_t size) ALIAS("tc_realloc");
+ void* __libc_calloc(size_t n, size_t size) ALIAS("tc_calloc");
+ void __libc_cfree(void* ptr) ALIAS("tc_cfree");
+ void* __libc_memalign(size_t align, size_t s) ALIAS("tc_memalign");
+ void* __libc_valloc(size_t size) ALIAS("tc_valloc");
+ void* __libc_pvalloc(size_t size) ALIAS("tc_pvalloc");
+ int __posix_memalign(void** r, size_t a, size_t s) ALIAS("tc_posix_memalign");
+# define HAVE_ALIASED___LIBC 1
+# endif // #if defined(__GLIBC__)
+} // extern "C"
+# undef ALIAS
+#else
+// Portable wrappers
+void* operator new(size_t size) { return tc_new(size); }
+void operator delete(void* p) __THROW { tc_delete(p); }
+void* operator new[](size_t size) { return tc_newarray(size); }
+void operator delete[](void* p) __THROW { tc_deletearray(p); }
+void* operator new(size_t size, const std::nothrow_t& nt) __THROW {
+ return tc_new_nothrow(size, nt);
+}
+void* operator new[](size_t size, const std::nothrow_t& nt) __THROW {
+ return tc_newarray_nothrow(size, nt);
+}
+extern "C" {
+ void* malloc(size_t s) __THROW { return tc_malloc(s); }
+ void free(void* p) __THROW { tc_free(p); }
+ void* realloc(void* p, size_t s) __THROW { return tc_realloc(p, s); }
+ void* calloc(size_t n, size_t s) __THROW { return tc_calloc(n, s); }
+ void cfree(void* p) __THROW { tc_cfree(p); }
+ void* memalign(size_t a, size_t s) __THROW { return tc_memalign(a, s); }
+ void* valloc(size_t s) __THROW { return tc_valloc(s); }
+ void* pvalloc(size_t s) __THROW { return tc_pvalloc(s); }
+ int posix_memalign(void** r, size_t a, size_t s) __THROW {
+ return tc_posix_memalign(r, a, s);
+ }
+ void malloc_stats(void) __THROW { tc_malloc_stats(); }
+ int mallopt(int cmd, int v) __THROW { return tc_mallopt(cmd, v); }
+#ifdef HAVE_STRUCT_MALLINFO
+ struct mallinfo mallinfo(void) __THROW { return tc_mallinfo(); }
+#endif
+} // extern C
+#endif // #if defined(__GNUC__)
+
+#ifndef HAVE_ALIASED___LIBC
+extern "C" {
+ void* __libc_malloc(size_t size) { return malloc(size); }
+ void __libc_free(void* ptr) { free(ptr); }
+ void* __libc_realloc(void* ptr, size_t size) { return realloc(ptr, size); }
+ void* __libc_calloc(size_t n, size_t size) { return calloc(n, size); }
+ void __libc_cfree(void* ptr) { cfree(ptr); }
+ void* __libc_memalign(size_t align, size_t s) { return memalign(align, s); }
+ void* __libc_valloc(size_t size) { return valloc(size); }
+ void* __libc_pvalloc(size_t size) { return pvalloc(size); }
+ int __posix_memalign(void** r, size_t a, size_t s) {
+ return posix_memalign(r, a, s);
+ }
+} // extern "C"
+#endif // #ifndef HAVE_ALIASED___LIBC
+
+#endif // #ifdef 0
+
+#endif // #ifndef WIN32_DO_PATCHING
+
+
+// ----------------------- IMPLEMENTATION -------------------------------
+
+// These routines are called by free(), realloc(), etc. if the pointer is
+// invalid. This is a cheap (source-editing required) kind of exception
+// handling for these routines.
+namespace {
+void InvalidFree(void* ptr) {
+ CRASH("Attempt to free invalid pointer: %p\n", ptr);
+}
+
+size_t InvalidGetSizeForRealloc(void* old_ptr) {
+ CRASH("Attempt to realloc invalid pointer: %p\n", old_ptr);
+ return 0;
+}
+
+size_t InvalidGetAllocatedSize(void* ptr) {
+ CRASH("Attempt to get the size of an invalid pointer: %p\n", ptr);
+ return 0;
+}
+} // unnamed namespace
+
+// Extract interesting stats
+struct TCMallocStats {
+ uint64_t system_bytes; // Bytes alloced from system
+ uint64_t thread_bytes; // Bytes in thread caches
+ uint64_t central_bytes; // Bytes in central cache
+ uint64_t transfer_bytes; // Bytes in central transfer cache
+ uint64_t pageheap_bytes; // Bytes in page heap
+ uint64_t metadata_bytes; // Bytes alloced for metadata
+};
+
+// Get stats into "r". Also get per-size-class counts if class_count != NULL
+static void ExtractStats(TCMallocStats* r, uint64_t* class_count) {
+ r->central_bytes = 0;
+ r->transfer_bytes = 0;
+ for (int cl = 0; cl < kNumClasses; ++cl) {
+ const int length = Static::central_cache()[cl].length();
+ const int tc_length = Static::central_cache()[cl].tc_length();
+ const size_t size = static_cast<uint64_t>(
+ Static::sizemap()->ByteSizeForClass(cl));
+ r->central_bytes += (size * length);
+ r->transfer_bytes += (size * tc_length);
+ if (class_count) class_count[cl] = length + tc_length;
+ }
+
+ // Add stats from per-thread heaps
+ r->thread_bytes = 0;
+ { // scope
+ SpinLockHolder h(Static::pageheap_lock());
+ ThreadCache::GetThreadStats(&r->thread_bytes, class_count);
+ }
+
+ { //scope
+ SpinLockHolder h(Static::pageheap_lock());
+ r->system_bytes = Static::pageheap()->SystemBytes();
+ r->metadata_bytes = tcmalloc::metadata_system_bytes();
+ r->pageheap_bytes = Static::pageheap()->FreeBytes();
+ }
+}
+
+// WRITE stats to "out"
+static void DumpStats(TCMalloc_Printer* out, int level) {
+ TCMallocStats stats;
+ uint64_t class_count[kNumClasses];
+ ExtractStats(&stats, (level >= 2 ? class_count : NULL));
+
+ static const double MB = 1048576.0;
+
+ if (level >= 2) {
+ out->printf("------------------------------------------------\n");
+ uint64_t cumulative = 0;
+ for (int cl = 0; cl < kNumClasses; ++cl) {
+ if (class_count[cl] > 0) {
+ uint64_t class_bytes =
+ class_count[cl] * Static::sizemap()->ByteSizeForClass(cl);
+ cumulative += class_bytes;
+ out->printf("class %3d [ %8" PRIuS " bytes ] : "
+ "%8" PRIu64 " objs; %5.1f MB; %5.1f cum MB\n",
+ cl, Static::sizemap()->ByteSizeForClass(cl),
+ class_count[cl],
+ class_bytes / MB,
+ cumulative / MB);
+ }
+ }
+
+ SpinLockHolder h(Static::pageheap_lock());
+ Static::pageheap()->Dump(out);
+
+ out->printf("------------------------------------------------\n");
+ DumpSystemAllocatorStats(out);
+ }
+
+ const uint64_t bytes_in_use = stats.system_bytes
+ - stats.pageheap_bytes
+ - stats.central_bytes
+ - stats.transfer_bytes
+ - stats.thread_bytes;
+
+ out->printf("------------------------------------------------\n"
+ "MALLOC: %12" PRIu64 " (%7.1f MB) Heap size\n"
+ "MALLOC: %12" PRIu64 " (%7.1f MB) Bytes in use by application\n"
+ "MALLOC: %12" PRIu64 " (%7.1f MB) Bytes free in page heap\n"
+ "MALLOC: %12" PRIu64 " (%7.1f MB) Bytes free in central cache\n"
+ "MALLOC: %12" PRIu64 " (%7.1f MB) Bytes free in transfer cache\n"
+ "MALLOC: %12" PRIu64 " (%7.1f MB) Bytes free in thread caches\n"
+ "MALLOC: %12" PRIu64 " Spans in use\n"
+ "MALLOC: %12" PRIu64 " Thread heaps in use\n"
+ "MALLOC: %12" PRIu64 " (%7.1f MB) Metadata allocated\n"
+ "------------------------------------------------\n",
+ stats.system_bytes, stats.system_bytes / MB,
+ bytes_in_use, bytes_in_use / MB,
+ stats.pageheap_bytes, stats.pageheap_bytes / MB,
+ stats.central_bytes, stats.central_bytes / MB,
+ stats.transfer_bytes, stats.transfer_bytes / MB,
+ stats.thread_bytes, stats.thread_bytes / MB,
+ uint64_t(Static::span_allocator()->inuse()),
+ uint64_t(ThreadCache::HeapsInUse()),
+ stats.metadata_bytes, stats.metadata_bytes / MB);
+}
+
+static void PrintStats(int level) {
+ const int kBufferSize = 16 << 10;
+ char* buffer = new char[kBufferSize];
+ TCMalloc_Printer printer(buffer, kBufferSize);
+ DumpStats(&printer, level);
+ write(STDERR_FILENO, buffer, strlen(buffer));
+ delete[] buffer;
+}
+
+static void** DumpHeapGrowthStackTraces() {
+ // Count how much space we need
+ int needed_slots = 0;
+ {
+ SpinLockHolder h(Static::pageheap_lock());
+ for (StackTrace* t = Static::growth_stacks();
+ t != NULL;
+ t = reinterpret_cast<StackTrace*>(
+ t->stack[tcmalloc::kMaxStackDepth-1])) {
+ needed_slots += 3 + t->depth;
+ }
+ needed_slots += 100; // Slop in case list grows
+ needed_slots += needed_slots/8; // An extra 12.5% slop
+ }
+
+ void** result = new void*[needed_slots];
+ if (result == NULL) {
+ MESSAGE("tcmalloc: allocation failed for stack trace slots",
+ needed_slots * sizeof(*result));
+ return NULL;
+ }
+
+ SpinLockHolder h(Static::pageheap_lock());
+ int used_slots = 0;
+ for (StackTrace* t = Static::growth_stacks();
+ t != NULL;
+ t = reinterpret_cast<StackTrace*>(
+ t->stack[tcmalloc::kMaxStackDepth-1])) {
+ ASSERT(used_slots < needed_slots); // Need to leave room for terminator
+ if (used_slots + 3 + t->depth >= needed_slots) {
+ // No more room
+ break;
+ }
+
+ result[used_slots+0] = reinterpret_cast<void*>(static_cast<uintptr_t>(1));
+ result[used_slots+1] = reinterpret_cast<void*>(t->size);
+ result[used_slots+2] = reinterpret_cast<void*>(t->depth);
+ for (int d = 0; d < t->depth; d++) {
+ result[used_slots+3+d] = t->stack[d];
+ }
+ used_slots += 3 + t->depth;
+ }
+ result[used_slots] = reinterpret_cast<void*>(static_cast<uintptr_t>(0));
+ return result;
+}
+
+// TCMalloc's support for extra malloc interfaces
+class TCMallocImplementation : public MallocExtension {
+ public:
+ virtual void GetStats(char* buffer, int buffer_length) {
+ ASSERT(buffer_length > 0);
+ TCMalloc_Printer printer(buffer, buffer_length);
+
+ // Print level one stats unless lots of space is available
+ if (buffer_length < 10000) {
+ DumpStats(&printer, 1);
+ } else {
+ DumpStats(&printer, 2);
+ }
+ }
+
+ virtual void** ReadStackTraces(int* sample_period) {
+ tcmalloc::StackTraceTable table;
+ {
+ SpinLockHolder h(Static::pageheap_lock());
+ Span* sampled = Static::sampled_objects();
+ for (Span* s = sampled->next; s != sampled; s = s->next) {
+ table.AddTrace(*reinterpret_cast<StackTrace*>(s->objects));
+ }
+ }
+ *sample_period = ThreadCache::GetCache()->GetSamplePeriod();
+ return table.ReadStackTracesAndClear(); // grabs and releases pageheap_lock
+ }
+
+ virtual void** ReadHeapGrowthStackTraces() {
+ return DumpHeapGrowthStackTraces();
+ }
+
+ virtual bool GetNumericProperty(const char* name, size_t* value) {
+ ASSERT(name != NULL);
+
+ if (strcmp(name, "generic.current_allocated_bytes") == 0) {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL);
+ *value = stats.system_bytes
+ - stats.thread_bytes
+ - stats.central_bytes
+ - stats.transfer_bytes
+ - stats.pageheap_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "generic.heap_size") == 0) {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL);
+ *value = stats.system_bytes;
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.slack_bytes") == 0) {
+ // We assume that bytes in the page heap are not fragmented too
+ // badly, and are therefore available for allocation.
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = Static::pageheap()->FreeBytes();
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ *value = ThreadCache::overall_thread_cache_size();
+ return true;
+ }
+
+ if (strcmp(name, "tcmalloc.current_total_thread_cache_bytes") == 0) {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL);
+ *value = stats.thread_bytes;
+ return true;
+ }
+
+ return false;
+ }
+
+ virtual bool SetNumericProperty(const char* name, size_t value) {
+ ASSERT(name != NULL);
+
+ if (strcmp(name, "tcmalloc.max_total_thread_cache_bytes") == 0) {
+ SpinLockHolder l(Static::pageheap_lock());
+ ThreadCache::set_overall_thread_cache_size(value);
+ return true;
+ }
+
+ return false;
+ }
+
+ virtual void MarkThreadIdle() {
+ ThreadCache::BecomeIdle();
+ }
+
+ virtual void ReleaseFreeMemory() {
+ SpinLockHolder h(Static::pageheap_lock());
+ Static::pageheap()->ReleaseFreePages();
+ }
+
+ virtual void SetMemoryReleaseRate(double rate) {
+ FLAGS_tcmalloc_release_rate = rate;
+ }
+
+ virtual double GetMemoryReleaseRate() {
+ return FLAGS_tcmalloc_release_rate;
+ }
+ virtual size_t GetEstimatedAllocatedSize(size_t size) {
+ if (size <= kMaxSize) {
+ const size_t cl = Static::sizemap()->SizeClass(size);
+ const size_t alloc_size = Static::sizemap()->ByteSizeForClass(cl);
+ return alloc_size;
+ } else {
+ return tcmalloc::pages(size) << kPageShift;
+ }
+ }
+
+ // This just calls GetSizeWithCallback, but because that's in an
+ // unnamed namespace, we need to move the definition below it in the
+ // file.
+ virtual size_t GetAllocatedSize(void* ptr);
+};
+
+// The constructor allocates an object to ensure that initialization
+// runs before main(), and therefore we do not have a chance to become
+// multi-threaded before initialization. We also create the TSD key
+// here. Presumably by the time this constructor runs, glibc is in
+// good enough shape to handle pthread_key_create().
+//
+// The constructor also takes the opportunity to tell STL to use
+// tcmalloc. We want to do this early, before construct time, so
+// all user STL allocations go through tcmalloc (which works really
+// well for STL).
+//
+// The destructor prints stats when the program exits.
+static int tcmallocguard_refcount = 0; // no lock needed: runs before main()
+TCMallocGuard::TCMallocGuard() {
+ if (tcmallocguard_refcount++ == 0) {
+#ifdef HAVE_TLS // this is true if the cc/ld/libc combo support TLS
+ // Check whether the kernel also supports TLS (needs to happen at runtime)
+ tcmalloc::CheckIfKernelSupportsTLS();
+#endif
+#ifdef WIN32_DO_PATCHING
+ // patch the windows VirtualAlloc, etc.
+ PatchWindowsFunctions(); // defined in windows/patch_functions.cc
+#endif
+ free(malloc(1));
+ ThreadCache::InitTSD();
+ free(malloc(1));
+ MallocExtension::Register(new TCMallocImplementation);
+ }
+}
+
+TCMallocGuard::~TCMallocGuard() {
+ if (--tcmallocguard_refcount == 0) {
+ const char* env = getenv("MALLOCSTATS");
+ if (env != NULL) {
+ int level = atoi(env);
+ if (level < 1) level = 1;
+ PrintStats(level);
+ }
+ }
+}
+#ifndef WIN32_OVERRIDE_ALLOCATORS
+static TCMallocGuard module_enter_exit_hook;
+#endif
+
+//-------------------------------------------------------------------
+// Helpers for the exported routines below
+//-------------------------------------------------------------------
+
+static Span* DoSampledAllocation(size_t size) {
+ // Grab the stack trace outside the heap lock
+ StackTrace tmp;
+ tmp.depth = GetStackTrace(tmp.stack, tcmalloc::kMaxStackDepth, 1);
+ tmp.size = size;
+
+ SpinLockHolder h(Static::pageheap_lock());
+ // Allocate span
+ Span *span = Static::pageheap()->New(tcmalloc::pages(size == 0 ? 1 : size));
+ if (span == NULL) {
+ return NULL;
+ }
+
+ // Allocate stack trace
+ StackTrace *stack = Static::stacktrace_allocator()->New();
+ if (stack == NULL) {
+ // Sampling failed because of lack of memory
+ return span;
+ }
+
+ *stack = tmp;
+ span->sample = 1;
+ span->objects = stack;
+ tcmalloc::DLL_Prepend(Static::sampled_objects(), span);
+
+ return span;
+}
+
+static inline bool CheckCachedSizeClass(void *ptr) {
+ PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+ size_t cached_value = Static::pageheap()->GetSizeClassIfCached(p);
+ return cached_value == 0 ||
+ cached_value == Static::pageheap()->GetDescriptor(p)->sizeclass;
+}
+
+static inline void* CheckedMallocResult(void *result)
+{
+ ASSERT(result == 0 || CheckCachedSizeClass(result));
+ return result;
+}
+
+static inline void* SpanToMallocResult(Span *span) {
+ Static::pageheap()->CacheSizeClass(span->start, 0);
+ return
+ CheckedMallocResult(reinterpret_cast<void*>(span->start << kPageShift));
+}
+
+// Copy of FLAGS_tcmalloc_large_alloc_report_threshold with
+// automatic increases factored in.
+static int64_t large_alloc_threshold =
+ (kPageSize > FLAGS_tcmalloc_large_alloc_report_threshold
+ ? kPageSize : FLAGS_tcmalloc_large_alloc_report_threshold);
+
+static void ReportLargeAlloc(Length num_pages, void* result) {
+ StackTrace stack;
+ stack.depth = GetStackTrace(stack.stack, tcmalloc::kMaxStackDepth, 1);
+
+ static const int N = 1000;
+ char buffer[N];
+ TCMalloc_Printer printer(buffer, N);
+ printer.printf("tcmalloc: large alloc %llu bytes == %p @ ",
+ static_cast<unsigned long long>(num_pages) << kPageShift,
+ result);
+ for (int i = 0; i < stack.depth; i++) {
+ printer.printf(" %p", stack.stack[i]);
+ }
+ printer.printf("\n");
+ write(STDERR_FILENO, buffer, strlen(buffer));
+}
+
+namespace {
+
+// Helper for do_malloc().
+inline void* do_malloc_pages(Length num_pages) {
+ Span *span;
+ bool report_large = false;
+ {
+ SpinLockHolder h(Static::pageheap_lock());
+ span = Static::pageheap()->New(num_pages);
+ const int64 threshold = large_alloc_threshold;
+ if (threshold > 0 && num_pages >= (threshold >> kPageShift)) {
+ // Increase the threshold by 1/8 every time we generate a report.
+ // We cap the threshold at 8GB to avoid overflow problems.
+ large_alloc_threshold = (threshold + threshold/8 < 8ll<<30
+ ? threshold + threshold/8 : 8ll<<30);
+ report_large = true;
+ }
+ }
+
+ void* result = (span == NULL ? NULL : SpanToMallocResult(span));
+ if (report_large) {
+ ReportLargeAlloc(num_pages, result);
+ }
+ return result;
+}
+
+inline void* do_malloc(size_t size) {
+ void* ret = NULL;
+
+ // The following call forces module initialization
+ ThreadCache* heap = ThreadCache::GetCache();
+ if ((FLAGS_tcmalloc_sample_parameter > 0) && heap->SampleAllocation(size)) {
+ Span* span = DoSampledAllocation(size);
+ if (span != NULL) {
+ ret = SpanToMallocResult(span);
+ }
+ } else if (size <= kMaxSize) {
+ // The common case, and also the simplest. This just pops the
+ // size-appropriate freelist, after replenishing it if it's empty.
+ ret = CheckedMallocResult(heap->Allocate(size));
+ } else {
+ ret = do_malloc_pages(tcmalloc::pages(size));
+ }
+ if (ret == NULL) errno = ENOMEM;
+ return ret;
+}
+
+inline void* do_calloc(size_t n, size_t elem_size) {
+ // Overflow check
+ const size_t size = n * elem_size;
+ if (elem_size != 0 && size / elem_size != n) return NULL;
+
+ void* result = do_malloc(size);
+ if (result != NULL) {
+ memset(result, 0, size);
+ }
+ return result;
+}
+
+static inline ThreadCache* GetCacheIfPresent() {
+ void* const p = ThreadCache::GetCacheIfPresent();
+ return reinterpret_cast<ThreadCache*>(p);
+}
+
+// This lets you call back to a given function pointer if ptr is invalid.
+// It is used primarily by windows code which wants a specialized callback.
+inline void do_free_with_callback(void* ptr, void (*invalid_free_fn)(void*)) {
+ if (ptr == NULL) return;
+ ASSERT(Static::pageheap() != NULL); // Should not call free() before malloc()
+ const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+ Span* span = NULL;
+ size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
+
+ if (cl == 0) {
+ span = Static::pageheap()->GetDescriptor(p);
+ if (!span) {
+ // span can be NULL because the pointer passed in is invalid
+ // (not something returned by malloc or friends), or because the
+ // pointer was allocated with some other allocator besides
+ // tcmalloc. The latter can happen if tcmalloc is linked in via
+ // a dynamic library, but is not listed last on the link line.
+ // In that case, libraries after it on the link line will
+ // allocate with libc malloc, but free with tcmalloc's free.
+ (*invalid_free_fn)(ptr); // Decide how to handle the bad free request
+ return;
+ }
+ cl = span->sizeclass;
+ Static::pageheap()->CacheSizeClass(p, cl);
+ }
+ if (cl != 0) {
+ ASSERT(!Static::pageheap()->GetDescriptor(p)->sample);
+ ThreadCache* heap = GetCacheIfPresent();
+ if (heap != NULL) {
+ heap->Deallocate(ptr, cl);
+ } else {
+ // Delete directly into central cache
+ tcmalloc::SLL_SetNext(ptr, NULL);
+ Static::central_cache()[cl].InsertRange(ptr, ptr, 1);
+ }
+ } else {
+ SpinLockHolder h(Static::pageheap_lock());
+ ASSERT(reinterpret_cast<uintptr_t>(ptr) % kPageSize == 0);
+ ASSERT(span != NULL && span->start == p);
+ if (span->sample) {
+ tcmalloc::DLL_Remove(span);
+ Static::stacktrace_allocator()->Delete(
+ reinterpret_cast<StackTrace*>(span->objects));
+ span->objects = NULL;
+ }
+ Static::pageheap()->Delete(span);
+ }
+}
+
+// The default "do_free" that uses the default callback.
+inline void do_free(void* ptr) {
+ return do_free_with_callback(ptr, &InvalidFree);
+}
+
+inline size_t GetSizeWithCallback(void* ptr,
+ size_t (*invalid_getsize_fn)(void*)) {
+ if (ptr == NULL)
+ return 0;
+ const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
+ size_t cl = Static::pageheap()->GetSizeClassIfCached(p);
+ if (cl != 0) {
+ return Static::sizemap()->ByteSizeForClass(cl);
+ } else {
+ Span *span = Static::pageheap()->GetDescriptor(p);
+ if (span == NULL) { // means we do not own this memory
+ return (*invalid_getsize_fn)(ptr);
+ } else if (span->sizeclass != 0) {
+ Static::pageheap()->CacheSizeClass(p, span->sizeclass);
+ return Static::sizemap()->ByteSizeForClass(span->sizeclass);
+ } else {
+ return span->length << kPageShift;
+ }
+ }
+}
+
+// This lets you call back to a given function pointer if ptr is invalid.
+// It is used primarily by windows code which wants a specialized callback.
+inline void* do_realloc_with_callback(
+ void* old_ptr, size_t new_size,
+ void (*invalid_free_fn)(void*),
+ size_t (*invalid_get_size_fn)(void*)) {
+ // Get the size of the old entry
+ const size_t old_size = GetSizeWithCallback(old_ptr, invalid_get_size_fn);
+
+ // Reallocate if the new size is larger than the old size,
+ // or if the new size is significantly smaller than the old size.
+ // We do hysteresis to avoid resizing ping-pongs:
+ // . If we need to grow, grow to max(new_size, old_size * 1.X)
+ // . Don't shrink unless new_size < old_size * 0.Y
+ // X and Y trade-off time for wasted space. For now we do 1.25 and 0.5.
+ const int lower_bound_to_grow = old_size + old_size / 4;
+ const int upper_bound_to_shrink = old_size / 2;
+ if ((new_size > old_size) || (new_size < upper_bound_to_shrink)) {
+ // Need to reallocate.
+ void* new_ptr = NULL;
+
+ if (new_size > old_size && new_size < lower_bound_to_grow) {
+ new_ptr = do_malloc(lower_bound_to_grow);
+ }
+ if (new_ptr == NULL) {
+ // Either new_size is not a tiny increment, or last do_malloc failed.
+ new_ptr = do_malloc(new_size);
+ }
+ if (new_ptr == NULL) {
+ return NULL;
+ }
+ MallocHook::InvokeNewHook(new_ptr, new_size);
+ memcpy(new_ptr, old_ptr, ((old_size < new_size) ? old_size : new_size));
+ MallocHook::InvokeDeleteHook(old_ptr);
+ // We could use a variant of do_free() that leverages the fact
+ // that we already know the sizeclass of old_ptr. The benefit
+ // would be small, so don't bother.
+ do_free_with_callback(old_ptr, invalid_free_fn);
+ return new_ptr;
+ } else {
+ // We still need to call hooks to report the updated size:
+ MallocHook::InvokeDeleteHook(old_ptr);
+ MallocHook::InvokeNewHook(old_ptr, new_size);
+ return old_ptr;
+ }
+}
+
+inline void* do_realloc(void* old_ptr, size_t new_size) {
+ return do_realloc_with_callback(old_ptr, new_size,
+ &InvalidFree, &InvalidGetSizeForRealloc);
+}
+
+// For use by exported routines below that want specific alignments
+//
+// Note: this code can be slow, and can significantly fragment memory.
+// The expectation is that memalign/posix_memalign/valloc/pvalloc will
+// not be invoked very often. This requirement simplifies our
+// implementation and allows us to tune for expected allocation
+// patterns.
+void* do_memalign(size_t align, size_t size) {
+ ASSERT((align & (align - 1)) == 0);
+ ASSERT(align > 0);
+ if (size + align < size) return NULL; // Overflow
+
+ if (Static::pageheap() == NULL) ThreadCache::InitModule();
+
+ // Allocate at least one byte to avoid boundary conditions below
+ if (size == 0) size = 1;
+
+ if (size <= kMaxSize && align < kPageSize) {
+ // Search through acceptable size classes looking for one with
+ // enough alignment. This depends on the fact that
+ // InitSizeClasses() currently produces several size classes that
+ // are aligned at powers of two. We will waste time and space if
+ // we miss in the size class array, but that is deemed acceptable
+ // since memalign() should be used rarely.
+ int cl = Static::sizemap()->SizeClass(size);
+ while (cl < kNumClasses &&
+ ((Static::sizemap()->class_to_size(cl) & (align - 1)) != 0)) {
+ cl++;
+ }
+ if (cl < kNumClasses) {
+ ThreadCache* heap = ThreadCache::GetCache();
+ return CheckedMallocResult(heap->Allocate(
+ Static::sizemap()->class_to_size(cl)));
+ }
+ }
+
+ // We will allocate directly from the page heap
+ SpinLockHolder h(Static::pageheap_lock());
+
+ if (align <= kPageSize) {
+ // Any page-level allocation will be fine
+ // TODO: We could put the rest of this page in the appropriate
+ // TODO: cache but it does not seem worth it.
+ Span* span = Static::pageheap()->New(tcmalloc::pages(size));
+ return span == NULL ? NULL : SpanToMallocResult(span);
+ }
+
+ // Allocate extra pages and carve off an aligned portion
+ const Length alloc = tcmalloc::pages(size + align);
+ Span* span = Static::pageheap()->New(alloc);
+ if (span == NULL) return NULL;
+
+ // Skip starting portion so that we end up aligned
+ Length skip = 0;
+ while ((((span->start+skip) << kPageShift) & (align - 1)) != 0) {
+ skip++;
+ }
+ ASSERT(skip < alloc);
+ if (skip > 0) {
+ Span* rest = Static::pageheap()->Split(span, skip);
+ Static::pageheap()->Delete(span);
+ span = rest;
+ }
+
+ // Skip trailing portion that we do not need to return
+ const Length needed = tcmalloc::pages(size);
+ ASSERT(span->length >= needed);
+ if (span->length > needed) {
+ Span* trailer = Static::pageheap()->Split(span, needed);
+ Static::pageheap()->Delete(trailer);
+ }
+ return SpanToMallocResult(span);
+}
+
+// Helpers for use by exported routines below:
+
+inline void do_malloc_stats() {
+ PrintStats(1);
+}
+
+inline int do_mallopt(int cmd, int value) {
+ return 1; // Indicates error
+}
+
+#ifdef HAVE_STRUCT_MALLINFO // mallinfo isn't defined on freebsd, for instance
+inline struct mallinfo do_mallinfo() {
+ TCMallocStats stats;
+ ExtractStats(&stats, NULL);
+
+ // Just some of the fields are filled in.
+ struct mallinfo info;
+ memset(&info, 0, sizeof(info));
+
+ // Unfortunately, the struct contains "int" field, so some of the
+ // size values will be truncated.
+ info.arena = static_cast<int>(stats.system_bytes);
+ info.fsmblks = static_cast<int>(stats.thread_bytes
+ + stats.central_bytes
+ + stats.transfer_bytes);
+ info.fordblks = static_cast<int>(stats.pageheap_bytes);
+ info.uordblks = static_cast<int>(stats.system_bytes
+ - stats.thread_bytes
+ - stats.central_bytes
+ - stats.transfer_bytes
+ - stats.pageheap_bytes);
+
+ return info;
+}
+#endif // #ifndef HAVE_STRUCT_MALLINFO
+
+static SpinLock set_new_handler_lock(SpinLock::LINKER_INITIALIZED);
+
+inline void* cpp_alloc(size_t size, bool nothrow) {
+ for (;;) {
+ void* p = do_malloc(size);
+#ifdef PREANSINEW
+ return p;
+#else
+ if (p == NULL) { // allocation failed
+ // Get the current new handler. NB: this function is not
+ // thread-safe. We make a feeble stab at making it so here, but
+ // this lock only protects against tcmalloc interfering with
+ // itself, not with other libraries calling set_new_handler.
+ std::new_handler nh;
+ {
+ SpinLockHolder h(&set_new_handler_lock);
+ nh = std::set_new_handler(0);
+ (void) std::set_new_handler(nh);
+ }
+#if (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
+ if (nh) {
+ // Since exceptions are disabled, we don't really know if new_handler
+ // failed. Assume it will abort if it fails.
+ (*nh)();
+ continue;
+ }
+ return 0;
+#else
+ // If no new_handler is established, the allocation failed.
+ if (!nh) {
+ if (nothrow) return 0;
+ throw std::bad_alloc();
+ }
+ // Otherwise, try the new_handler. If it returns, retry the
+ // allocation. If it throws std::bad_alloc, fail the allocation.
+ // if it throws something else, don't interfere.
+ try {
+ (*nh)();
+ } catch (const std::bad_alloc&) {
+ if (!nothrow) throw;
+ return p;
+ }
+#endif // (defined(__GNUC__) && !defined(__EXCEPTIONS)) || (defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS)
+ } else { // allocation success
+ return p;
+ }
+#endif // PREANSINEW
+ }
+}
+
+} // end unnamed namespace
+
+// As promised, the definition of this function, declared above.
+size_t TCMallocImplementation::GetAllocatedSize(void* ptr) {
+ return GetSizeWithCallback(ptr, &InvalidGetAllocatedSize);
+}
+
+//-------------------------------------------------------------------
+// Exported routines
+//-------------------------------------------------------------------
+
+// CAVEAT: The code structure below ensures that MallocHook methods are always
+// called from the stack frame of the invoked allocation function.
+// heap-checker.cc depends on this to start a stack trace from
+// the call to the (de)allocation function.
+
+static int tc_new_mode = 0; // See tc_set_new_mode().
+extern "C" void* tc_malloc(size_t size) __THROW {
+ void* result = (tc_new_mode ? cpp_alloc(size, false) : do_malloc(size));
+ MallocHook::InvokeNewHook(result, size);
+ return result;
+}
+
+extern "C" void tc_free(void* ptr) __THROW {
+ MallocHook::InvokeDeleteHook(ptr);
+ do_free(ptr);
+}
+
+extern "C" void* tc_calloc(size_t n, size_t elem_size) __THROW {
+ void* result = do_calloc(n, elem_size);
+ MallocHook::InvokeNewHook(result, n * elem_size);
+ return result;
+}
+
+extern "C" void tc_cfree(void* ptr) __THROW {
+ MallocHook::InvokeDeleteHook(ptr);
+ do_free(ptr);
+}
+
+extern "C" void* tc_realloc(void* old_ptr, size_t new_size) __THROW {
+ if (old_ptr == NULL) {
+ void* result = do_malloc(new_size);
+ MallocHook::InvokeNewHook(result, new_size);
+ return result;
+ }
+ if (new_size == 0) {
+ MallocHook::InvokeDeleteHook(old_ptr);
+ do_free(old_ptr);
+ return NULL;
+ }
+ return do_realloc(old_ptr, new_size);
+}
+
+extern "C" void* tc_new(size_t size) {
+ void* p = cpp_alloc(size, false);
+ // We keep this next instruction out of cpp_alloc for a reason: when
+ // it's in, and new just calls cpp_alloc, the optimizer may fold the
+ // new call into cpp_alloc, which messes up our whole section-based
+ // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
+ // isn't the last thing this fn calls, and prevents the folding.
+ MallocHook::InvokeNewHook(p, size);
+ return p;
+}
+
+extern "C" void* tc_new_nothrow(size_t size, const std::nothrow_t&) __THROW {
+ void* p = cpp_alloc(size, true);
+ MallocHook::InvokeNewHook(p, size);
+ return p;
+}
+
+extern "C" void tc_delete(void* p) __THROW {
+ MallocHook::InvokeDeleteHook(p);
+ do_free(p);
+}
+
+extern "C" void* tc_newarray(size_t size) {
+ void* p = cpp_alloc(size, false);
+ // We keep this next instruction out of cpp_alloc for a reason: when
+ // it's in, and new just calls cpp_alloc, the optimizer may fold the
+ // new call into cpp_alloc, which messes up our whole section-based
+ // stacktracing (see ATTRIBUTE_SECTION, above). This ensures cpp_alloc
+ // isn't the last thing this fn calls, and prevents the folding.
+ MallocHook::InvokeNewHook(p, size);
+ return p;
+}
+
+extern "C" void* tc_newarray_nothrow(size_t size, const std::nothrow_t&) __THROW {
+ void* p = cpp_alloc(size, true);
+ MallocHook::InvokeNewHook(p, size);
+ return p;
+}
+
+extern "C" void tc_deletearray(void* p) __THROW {
+ MallocHook::InvokeDeleteHook(p);
+ do_free(p);
+}
+
+extern "C" void* tc_memalign(size_t align, size_t size) __THROW {
+ void* result = do_memalign(align, size);
+ MallocHook::InvokeNewHook(result, size);
+ return result;
+}
+
+extern "C" int tc_posix_memalign(void** result_ptr, size_t align, size_t size)
+ __THROW {
+ if (((align % sizeof(void*)) != 0) ||
+ ((align & (align - 1)) != 0) ||
+ (align == 0)) {
+ return EINVAL;
+ }
+
+ void* result = do_memalign(align, size);
+ MallocHook::InvokeNewHook(result, size);
+ if (result == NULL) {
+ return ENOMEM;
+ } else {
+ *result_ptr = result;
+ return 0;
+ }
+}
+
+static size_t pagesize = 0;
+
+extern "C" void* tc_valloc(size_t size) __THROW {
+ // Allocate page-aligned object of length >= size bytes
+ if (pagesize == 0) pagesize = getpagesize();
+ void* result = do_memalign(pagesize, size);
+ MallocHook::InvokeNewHook(result, size);
+ return result;
+}
+
+extern "C" void* tc_pvalloc(size_t size) __THROW {
+ // Round up size to a multiple of pagesize
+ if (pagesize == 0) pagesize = getpagesize();
+ size = (size + pagesize - 1) & ~(pagesize - 1);
+ void* result = do_memalign(pagesize, size);
+ MallocHook::InvokeNewHook(result, size);
+ return result;
+}
+
+extern "C" void tc_malloc_stats(void) __THROW {
+ do_malloc_stats();
+}
+
+extern "C" int tc_mallopt(int cmd, int value) __THROW {
+ return do_mallopt(cmd, value);
+}
+
+#ifdef HAVE_STRUCT_MALLINFO
+extern "C" struct mallinfo tc_mallinfo(void) __THROW {
+ return do_mallinfo();
+}
+#endif
+
+// This function behaves similarly to MSVC's _set_new_mode.
+// If flag is 0 (default), calls to malloc will behave normally.
+// If flag is 1, calls to malloc will behave like calls to new,
+// and the std_new_handler will be invoked on failure.
+// Returns the previous mode.
+extern "C" int tc_set_new_mode(int flag) __THROW {
+ int old_mode = tc_new_mode;
+ tc_new_mode = flag;
+ return old_mode;
+}
+
+
+// Override __libc_memalign in libc on linux boxes specially.
+// They have a bug in libc that causes them to (very rarely) allocate
+// with __libc_memalign() yet deallocate with free() and the
+// definitions above don't catch it.
+// This function is an exception to the rule of calling MallocHook method
+// from the stack frame of the allocation function;
+// heap-checker handles this special case explicitly.
+static void *MemalignOverride(size_t align, size_t size, const void *caller)
+ __THROW ATTRIBUTE_SECTION(google_malloc);
+
+static void *MemalignOverride(size_t align, size_t size, const void *caller)
+ __THROW {
+ void* result = do_memalign(align, size);
+ MallocHook::InvokeNewHook(result, size);
+ return result;
+}
+void *(*__memalign_hook)(size_t, size_t, const void *) = MemalignOverride;
diff --git a/third_party/tcmalloc/tcmalloc.gyp b/third_party/tcmalloc/tcmalloc.gyp
index 41e7664..99c0e13 100644
--- a/third_party/tcmalloc/tcmalloc.gyp
+++ b/third_party/tcmalloc/tcmalloc.gyp
@@ -49,26 +49,62 @@
},
},
'sources': [
+ # tcmalloc files
'tcmalloc/src/base/dynamic_annotations.cc',
+ 'tcmalloc/src/base/dynamic_annotations.h',
'tcmalloc/src/base/logging.cc',
+ 'tcmalloc/src/base/logging.h',
'tcmalloc/src/base/low_level_alloc.cc',
+ 'tcmalloc/src/base/low_level_alloc.h',
'tcmalloc/src/base/spinlock.cc',
+ 'tcmalloc/src/base/spinlock.h',
'tcmalloc/src/base/sysinfo.cc',
+ 'tcmalloc/src/base/sysinfo.h',
'tcmalloc/src/central_freelist.cc',
+ 'tcmalloc/src/central_freelist.h',
'tcmalloc/src/common.cc',
+ 'tcmalloc/src/common.h',
'tcmalloc/src/heap-profile-table.cc',
+ 'tcmalloc/src/heap-profile-table.h',
'tcmalloc/src/internal_logging.cc',
+ 'tcmalloc/src/internal_logging.h',
+ 'tcmalloc/src/linked_list.h',
'tcmalloc/src/malloc_extension.cc',
'tcmalloc/src/malloc_hook.cc',
- 'tcmalloc/src/page_heap.cc',
+ 'tcmalloc/src/malloc_hook-inl.h',
+ 'tcmalloc/src/port.h',
'tcmalloc/src/sampler.cc',
+ 'tcmalloc/src/sampler.h',
'tcmalloc/src/span.cc',
+ 'tcmalloc/src/span.h',
'tcmalloc/src/stack_trace_table.cc',
+ 'tcmalloc/src/stack_trace_table.h',
'tcmalloc/src/stacktrace.cc',
+ 'tcmalloc/src/stacktrace.h',
'tcmalloc/src/static_vars.cc',
+ 'tcmalloc/src/static_vars.h',
'tcmalloc/src/thread_cache.cc',
- 'tcmalloc/src/windows/override_functions.cc',
- 'tcmalloc/src/windows/port.cc',
+ 'tcmalloc/src/thread_cache.h',
+
+ # tcmalloc forked files
+ 'allocator_shim.cc',
+ 'page_heap.cc',
+ 'port.cc',
+ 'system-alloc.h',
+ 'tcmalloc.cc',
+ 'win_allocator.cc',
+
+ # jemalloc files
+ 'jemalloc/jemalloc.c',
+ 'jemalloc/jemalloc.h',
+ 'jemalloc/ql.h',
+ 'jemalloc/qr.h',
+ 'jemalloc/rb.h',
+ ],
+ # sources! means that these are not compiled directly.
+ 'sources!': [
+ 'tcmalloc.cc',
+ 'win_allocator.cc',
],
'msvs_settings': {
# TODO(sgk): merge this with build/common.gypi settings
diff --git a/third_party/tcmalloc/win_allocator.cc b/third_party/tcmalloc/win_allocator.cc
new file mode 100644
index 0000000..d2207f6
--- /dev/null
+++ b/third_party/tcmalloc/win_allocator.cc
@@ -0,0 +1,46 @@
+// Copyright (c) 2009 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// This is a simple allocator based on the windows heap.
+
+extern "C" {
+
+HANDLE win_heap;
+
+bool win_heap_init(bool use_lfh) {
+ win_heap = HeapCreate(0, 0, 0);
+ if (win_heap == NULL)
+ return false;
+
+ if (use_lfh) {
+ ULONG enable_lfh = 2;
+ HeapSetInformation(win_heap, HeapCompatibilityInformation,
+ &enable_lfh, sizeof(enable_lfh));
+ // NOTE: Setting LFH may fail. Vista already has it enabled.
+ // And under the debugger, it won't use LFH. So we
+ // ignore any errors.
+ }
+
+ return true;
+}
+
+void* win_heap_malloc(size_t s) {
+ return HeapAlloc(win_heap, 0, s);
+}
+
+void* win_heap_realloc(void* p, size_t s) {
+ if (!p)
+ return win_heap_malloc(s);
+ return HeapReAlloc(win_heap, 0, p, s);
+}
+
+void win_heap_free(void* s) {
+ HeapFree(win_heap, 0, s);
+}
+
+size_t win_heap_msize(void* p) {
+ return HeapSize(win_heap, 0, p);
+}
+
+} // extern "C"