summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--net/disk_cache/entry_unittest.cc128
-rw-r--r--net/disk_cache/mem_entry_impl.cc310
-rw-r--r--net/disk_cache/mem_entry_impl.h66
-rw-r--r--net/disk_cache/mem_rankings.cc5
-rw-r--r--net/disk_cache/mem_rankings.h2
5 files changed, 73 insertions, 438 deletions
diff --git a/net/disk_cache/entry_unittest.cc b/net/disk_cache/entry_unittest.cc
index bf111ec..7b7d5d3 100644
--- a/net/disk_cache/entry_unittest.cc
+++ b/net/disk_cache/entry_unittest.cc
@@ -828,37 +828,43 @@ TEST_F(DiskCacheEntryTest, MemoryOnlyDoomedEntry) {
// enumerations.
TEST_F(DiskCacheEntryTest, MemoryOnlyEnumerationWithSlaveEntries) {
SetMemoryOnlyMode();
+ SetDirectMode();
+ SetMaxSize(1024);
InitCache();
- const int kSize = 4096;
- scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize);
- CacheTestFillBuffer(buf->data(), kSize, false);
-
- std::string key("the first key");
- disk_cache::Entry* parent_entry;
- ASSERT_TRUE(cache_->CreateEntry(key, &parent_entry));
-
- // Writes to the parent entry.
- EXPECT_EQ(kSize, parent_entry->WriteSparseData(0, buf, kSize, NULL));
-
- // This write creates a child entry and writes to it.
- EXPECT_EQ(kSize, parent_entry->WriteSparseData(8192, buf, kSize, NULL));
+ disk_cache::Entry* entry;
+ disk_cache::MemEntryImpl* parent_entry;
+ ASSERT_TRUE(cache_->CreateEntry("parent", &entry));
+ parent_entry = reinterpret_cast<disk_cache::MemEntryImpl*>(entry);
+ EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry, parent_entry->type());
parent_entry->Close();
+ disk_cache::MemEntryImpl* child_entry =
+ new disk_cache::MemEntryImpl(mem_cache_);
+ // TODO(hclam): we shouldn't create a child entry explicit. Once a parent
+ // entry can be triggered to create a child entry, we should change this
+ // to use another public method to do the creation.
+ EXPECT_TRUE(child_entry->CreateChildEntry(parent_entry));
+ EXPECT_EQ(disk_cache::MemEntryImpl::kChildEntry, child_entry->type());
+
// Perform the enumerations.
void* iter = NULL;
- disk_cache::Entry* entry = NULL;
int count = 0;
while (cache_->OpenNextEntry(&iter, &entry)) {
ASSERT_TRUE(entry != NULL);
- ++count;
disk_cache::MemEntryImpl* mem_entry =
reinterpret_cast<disk_cache::MemEntryImpl*>(entry);
EXPECT_EQ(disk_cache::MemEntryImpl::kParentEntry, mem_entry->type());
+ EXPECT_TRUE(mem_entry == parent_entry);
mem_entry->Close();
+ ++count;
}
EXPECT_EQ(1, count);
+
+ // TODO(hclam): remove this when parent entry can doom child entries
+ // internally. Now we have to doom this child entry manually.
+ child_entry->Doom();
}
// Writes |buf_1| to offset and reads it back as |buf_2|.
@@ -934,7 +940,7 @@ TEST_F(DiskCacheEntryTest, BasicSparseSyncIO) {
BasicSparseIO(false);
}
-TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseSyncIO) {
+TEST_F(DiskCacheEntryTest, DISABLED_MemoryOnlyBasicSparseSyncIO) {
SetMemoryOnlyMode();
InitCache();
BasicSparseIO(false);
@@ -945,7 +951,7 @@ TEST_F(DiskCacheEntryTest, BasicSparseAsyncIO) {
BasicSparseIO(true);
}
-TEST_F(DiskCacheEntryTest, MemoryOnlyBasicSparseAsyncIO) {
+TEST_F(DiskCacheEntryTest, DISABLED_MemoryOnlyBasicSparseAsyncIO) {
SetMemoryOnlyMode();
InitCache();
BasicSparseIO(true);
@@ -977,7 +983,7 @@ TEST_F(DiskCacheEntryTest, HugeSparseSyncIO) {
HugeSparseIO(false);
}
-TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseSyncIO) {
+TEST_F(DiskCacheEntryTest, DISABLED_MemoryOnlyHugeSparseSyncIO) {
SetMemoryOnlyMode();
InitCache();
HugeSparseIO(false);
@@ -988,7 +994,7 @@ TEST_F(DiskCacheEntryTest, HugeSparseAsyncIO) {
HugeSparseIO(true);
}
-TEST_F(DiskCacheEntryTest, MemoryOnlyHugeSparseAsyncIO) {
+TEST_F(DiskCacheEntryTest, DISABLED_MemoryOnlyHugeSparseAsyncIO) {
SetMemoryOnlyMode();
InitCache();
HugeSparseIO(true);
@@ -1041,90 +1047,8 @@ TEST_F(DiskCacheEntryTest, GetAvailableRange) {
GetAvailableRange();
}
-TEST_F(DiskCacheEntryTest, MemoryOnlyGetAvailableRange) {
+TEST_F(DiskCacheEntryTest, DISABLED_MemoryOnlyGetAvailableRange) {
SetMemoryOnlyMode();
InitCache();
GetAvailableRange();
}
-
-TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedSparseIO) {
- SetMemoryOnlyMode();
- InitCache();
-
- const int kSize = 8192;
- scoped_refptr<net::IOBuffer> buf_1 = new net::IOBuffer(kSize);
- scoped_refptr<net::IOBuffer> buf_2 = new net::IOBuffer(kSize);
- CacheTestFillBuffer(buf_1->data(), kSize, false);
-
- std::string key("the first key");
- disk_cache::Entry* entry;
- ASSERT_TRUE(cache_->CreateEntry(key, &entry));
-
- // This loop writes back to back starting from offset 0 and 9000.
- for (int i = 0; i < kSize; i += 1024) {
- scoped_refptr<net::WrappedIOBuffer> buf_3 =
- new net::WrappedIOBuffer(buf_1->data() + i);
- VerifySparseIO(entry, i, buf_3, 1024, false, buf_2);
- VerifySparseIO(entry, 9000 + i, buf_3, 1024, false, buf_2);
- }
-
- // Make sure we have data written.
- VerifyContentSparseIO(entry, 0, buf_1->data(), kSize, false);
- VerifyContentSparseIO(entry, 9000, buf_1->data(), kSize, false);
-
- // This tests a large write that spans 3 entries from a misaligned offset.
- VerifySparseIO(entry, 20481, buf_1, 8192, false, buf_2);
-
- entry->Close();
-}
-
-TEST_F(DiskCacheEntryTest, MemoryOnlyMisalignedGetAvailableRange) {
- SetMemoryOnlyMode();
- InitCache();
-
- const int kSize = 8192;
- scoped_refptr<net::IOBuffer> buf = new net::IOBuffer(kSize);
- CacheTestFillBuffer(buf->data(), kSize, false);
-
- disk_cache::Entry* entry;
- std::string key("the first key");
- ASSERT_TRUE(cache_->CreateEntry(key, &entry));
-
- // Writes in the middle of an entry.
- EXPECT_EQ(1024, entry->WriteSparseData(0, buf, 1024, NULL));
- EXPECT_EQ(1024, entry->WriteSparseData(5120, buf, 1024, NULL));
- EXPECT_EQ(1024, entry->WriteSparseData(10000, buf, 1024, NULL));
-
- // Writes in the middle of an entry and spans 2 child entries.
- EXPECT_EQ(8192, entry->WriteSparseData(50000, buf, 8192, NULL));
-
- int64 start;
- // Test that we stop at a discontinuous child at the second block.
- EXPECT_EQ(1024, entry->GetAvailableRange(0, 10000, &start));
- EXPECT_EQ(0, start);
-
- // Test that number of bytes is reported correctly when we start from the
- // middle of a filled region.
- EXPECT_EQ(512, entry->GetAvailableRange(512, 10000, &start));
- EXPECT_EQ(512, start);
-
- // Test that we found bytes in the child of next block.
- EXPECT_EQ(1024, entry->GetAvailableRange(1024, 10000, &start));
- EXPECT_EQ(5120, start);
-
- // Test that the desired length is respected. It starts within a filled
- // region.
- EXPECT_EQ(512, entry->GetAvailableRange(5500, 512, &start));
- EXPECT_EQ(5500, start);
-
- // Test that the desired length is respected. It starts before a filled
- // region.
- EXPECT_EQ(500, entry->GetAvailableRange(5000, 620, &start));
- EXPECT_EQ(5120, start);
-
- // Test that multiple blocks are scanned.
- EXPECT_EQ(8192, entry->GetAvailableRange(40000, 20000, &start));
- EXPECT_EQ(50000, start);
-
- entry->Close();
-}
diff --git a/net/disk_cache/mem_entry_impl.cc b/net/disk_cache/mem_entry_impl.cc
index bf6359d..4905785 100644
--- a/net/disk_cache/mem_entry_impl.cc
+++ b/net/disk_cache/mem_entry_impl.cc
@@ -11,28 +11,6 @@
using base::Time;
-namespace {
-
-const int kSparseData = 1;
-
-// Maximum size of a sparse entry is 2 to the power of this number.
-const int kMaxSparseEntryBits = 12;
-
-// Sparse entry has maximum size of 4KB.
-const int kMaxSparseEntrySize = 1 << kMaxSparseEntryBits;
-
-// Convert global offset to child index.
-inline int ToChildIndex(int64 offset) {
- return static_cast<int>(offset >> kMaxSparseEntryBits);
-}
-
-// Convert global offset to offset in child entry.
-inline int ToChildOffset(int64 offset) {
- return static_cast<int>(offset & (kMaxSparseEntrySize - 1));
-}
-
-} // nemespace
-
namespace disk_cache {
MemEntryImpl::MemEntryImpl(MemBackendImpl* backend) {
@@ -40,8 +18,6 @@ MemEntryImpl::MemEntryImpl(MemBackendImpl* backend) {
backend_ = backend;
ref_count_ = 0;
parent_ = NULL;
- child_id_ = 0;
- child_first_pos_ = 0;
next_ = NULL;
prev_ = NULL;
for (int i = 0; i < NUM_STREAMS; i++)
@@ -58,14 +34,25 @@ bool MemEntryImpl::CreateEntry(const std::string& key) {
key_ = key;
last_modified_ = Time::Now();
last_used_ = Time::Now();
+ type_ = kParentEntry;
Open();
backend_->ModifyStorageSize(0, static_cast<int32>(key.size()));
return true;
}
+bool MemEntryImpl::CreateChildEntry(MemEntryImpl* parent) {
+ parent_ = parent;
+ last_modified_ = Time::Now();
+ last_used_ = Time::Now();
+ type_ = kChildEntry;
+ // Insert this to the backend's ranking list.
+ backend_->InsertIntoRankingList(this);
+ return true;
+}
+
void MemEntryImpl::Close() {
// Only a parent entry can be closed.
- DCHECK(type() == kParentEntry);
+ DCHECK(type_ == kParentEntry);
ref_count_--;
DCHECK(ref_count_ >= 0);
if (!ref_count_ && doomed_)
@@ -74,16 +61,14 @@ void MemEntryImpl::Close() {
void MemEntryImpl::Open() {
// Only a parent entry can be opened.
- // TODO(hclam): make sure it's correct to not apply the concept of ref
- // counting to child entry.
- DCHECK(type() == kParentEntry);
+ DCHECK(type_ == kParentEntry);
ref_count_++;
DCHECK(ref_count_ >= 0);
DCHECK(!doomed_);
}
bool MemEntryImpl::InUse() {
- if (type() == kParentEntry) {
+ if (type_ == kParentEntry) {
return ref_count_ > 0;
} else {
// A child entry is always not in use. The consequence is that a child entry
@@ -96,11 +81,11 @@ bool MemEntryImpl::InUse() {
void MemEntryImpl::Doom() {
if (doomed_)
return;
- if (type() == kParentEntry) {
+ if (type_ == kParentEntry) {
// Perform internal doom from the backend if this is a parent entry.
backend_->InternalDoomEntry(this);
} else {
- // Manually detach from the backend and perform internal doom.
+ // Manually detach from the parent entry and perform internal doom.
backend_->RemoveFromRankingList(this);
InternalDoom();
}
@@ -109,23 +94,10 @@ void MemEntryImpl::Doom() {
void MemEntryImpl::InternalDoom() {
doomed_ = true;
if (!ref_count_) {
- if (type() == kParentEntry) {
- // If this is a parent entry, we need to doom all the child entries.
- if (children_.get()) {
- EntryMap children;
- children.swap(*children_);
- for (EntryMap::iterator i = children.begin();
- i != children.end(); ++i) {
- // Since a pointer to this object is also saved in the map, avoid
- // dooming it.
- if (i->second != this)
- i->second->Doom();
- }
- DCHECK(children_->size() == 0);
- }
+ if (type_ == kParentEntry) {
+ // TODO(hclam): doom all child entries associated with this entry.
} else {
- // If this is a child entry, detach it from the parent.
- parent_->DetachChild(child_id_);
+ // TODO(hclam): detach this child entry from the parent entry.
}
delete this;
}
@@ -133,7 +105,7 @@ void MemEntryImpl::InternalDoom() {
std::string MemEntryImpl::GetKey() const {
// A child entry doesn't have key so this method should not be called.
- DCHECK(type() == kParentEntry);
+ DCHECK(type_ == kParentEntry);
return key_;
}
@@ -148,12 +120,16 @@ Time MemEntryImpl::GetLastModified() const {
int32 MemEntryImpl::GetDataSize(int index) const {
if (index < 0 || index >= NUM_STREAMS)
return 0;
+
+ // TODO(hclam): handle the case when this is a parent entry and has associated
+ // child entries.
return data_size_[index];
}
int MemEntryImpl::ReadData(int index, int offset, net::IOBuffer* buf,
int buf_len, net::CompletionCallback* completion_callback) {
- DCHECK(type() == kParentEntry || index == kSparseData);
+ // This method can only be called with a parent entry.
+ DCHECK(type_ == kParentEntry);
if (index < 0 || index >= NUM_STREAMS)
return net::ERR_INVALID_ARGUMENT;
@@ -176,7 +152,8 @@ int MemEntryImpl::ReadData(int index, int offset, net::IOBuffer* buf,
int MemEntryImpl::WriteData(int index, int offset, net::IOBuffer* buf,
int buf_len, net::CompletionCallback* completion_callback, bool truncate) {
- DCHECK(type() == kParentEntry || index == kSparseData);
+ // This method can only be called with a parent entry.
+ DCHECK(type_ == kParentEntry);
if (index < 0 || index >= NUM_STREAMS)
return net::ERR_INVALID_ARGUMENT;
@@ -189,6 +166,9 @@ int MemEntryImpl::WriteData(int index, int offset, net::IOBuffer* buf,
// offset of buf_len could be negative numbers.
if (offset > max_file_size || buf_len > max_file_size ||
offset + buf_len > max_file_size) {
+ int size = offset + buf_len;
+ if (size <= max_file_size)
+ size = kint32max;
return net::ERR_FAILED;
}
@@ -218,160 +198,16 @@ int MemEntryImpl::WriteData(int index, int offset, net::IOBuffer* buf,
int MemEntryImpl::ReadSparseData(int64 offset, net::IOBuffer* buf, int buf_len,
net::CompletionCallback* completion_callback) {
- DCHECK(type() == kParentEntry);
-
- if (!InitSparseInfo())
- return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
-
- if (offset < 0 || buf_len < 0 || !buf_len)
- return net::ERR_INVALID_ARGUMENT;
-
- // We will keep using this buffer and adjust the offset in this buffer.
- scoped_refptr<net::ReusedIOBuffer> io_buf = new net::ReusedIOBuffer(buf,
- buf_len);
-
- // Counts the number of bytes read.
- int bytes_read = 0;
-
- // Iterate until we have read enough.
- while (bytes_read < buf_len) {
- MemEntryImpl* child = OpenChild(offset + bytes_read, false);
-
- // No child present for that offset.
- if (!child)
- break;
-
- // We then need to prepare the child offset and len.
- int child_offset = ToChildOffset(offset + bytes_read);
-
- // If we are trying to read from a position that the child entry has no data
- // we should stop.
- if (child_offset < child->child_first_pos_)
- break;
- int ret = child->ReadData(kSparseData, child_offset, io_buf,
- buf_len - bytes_read, NULL);
-
- // If we encounter an error in one entry, return immediately.
- if (ret < 0)
- return ret;
- else if (ret == 0)
- break;
-
- // Increment the counter by number of bytes read in the child entry.
- bytes_read += ret;
- // And also adjust the buffer's offset.
- if (bytes_read < buf_len)
- io_buf->SetOffset(bytes_read);
- }
-
- UpdateRank(false);
-
- return bytes_read;
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
}
int MemEntryImpl::WriteSparseData(int64 offset, net::IOBuffer* buf, int buf_len,
net::CompletionCallback* completion_callback) {
- DCHECK(type() == kParentEntry);
-
- if (!InitSparseInfo())
- return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
-
- if (offset < 0 || buf_len < 0)
- return net::ERR_INVALID_ARGUMENT;
-
- scoped_refptr<net::ReusedIOBuffer> io_buf = new net::ReusedIOBuffer(buf,
- buf_len);
- // Counter for amount of bytes written.
- int bytes_written = 0;
-
- // This loop walks through child entries continuously starting from |offset|
- // and writes blocks of data (of maximum size kMaxSparseEntrySize) into each
- // child entry until all |buf_len| bytes are written. The write operation can
- // start in the middle of an entry.
- while (bytes_written < buf_len) {
- MemEntryImpl* child = OpenChild(offset + bytes_written, true);
- int child_offset = ToChildOffset(offset + bytes_written);
-
- // Find the right amount to write, this evaluates the remaining bytes to
- // write and remaining capacity of this child entry.
- int write_len = std::min(buf_len - bytes_written,
- kMaxSparseEntrySize - child_offset);
-
- // Keep a record of the last byte position (exclusive) in the child.
- int data_size = child->GetDataSize(kSparseData);
-
- // Always writes to the child entry. This operation may overwrite data
- // previously written.
- // TODO(hclam): if there is data in the entry and this write is not
- // continuous we may want to discard this write.
- int ret = child->WriteData(kSparseData, child_offset, io_buf, write_len,
- NULL, true);
- if (ret < 0)
- return ret;
- else if (ret == 0)
- break;
-
- // Keep a record of the first byte position in the child if the write was
- // not aligned nor continuous. This is to enable witting to the middle
- // of an entry and still keep track of data off the aligned edge.
- if (data_size != child_offset)
- child->child_first_pos_ = child_offset;
-
- // Increment the counter.
- bytes_written += ret;
-
- // And adjust the offset in the IO buffer.
- if (bytes_written < buf_len)
- io_buf->SetOffset(bytes_written);
- }
-
- UpdateRank(true);
-
- return bytes_written;
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
}
int MemEntryImpl::GetAvailableRange(int64 offset, int len, int64* start) {
- DCHECK(type() == kParentEntry);
- DCHECK(start);
-
- if (!InitSparseInfo())
- return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
-
- if (offset < 0 || len < 0 || !start)
- return net::ERR_INVALID_ARGUMENT;
-
- MemEntryImpl* current_child = NULL;
-
- // Find the first child and record the number of empty bytes.
- int empty = FindNextChild(offset, len, &current_child);
- if (current_child) {
- *start = offset + empty;
- len -= empty;
-
- // Counts the number of continuous bytes.
- int continuous = 0;
-
- // This loop scan for continuous bytes.
- while (len && current_child) {
- // Number of bytes available in this child.
- int data_size = current_child->GetDataSize(kSparseData) -
- ToChildOffset(*start + continuous);
- if (data_size > len)
- data_size = len;
-
- // We have found more continuous bytes so increment the count. Also
- // decrement the length we should scan.
- continuous += data_size;
- len -= data_size;
-
- // If the next child is discontinuous, break the loop.
- if (FindNextChild(*start + continuous, len, &current_child))
- break;
- }
- return continuous;
- }
- *start = offset;
- return 0;
+ return net::ERR_CACHE_OPERATION_NOT_SUPPORTED;
}
void MemEntryImpl::PrepareTarget(int index, int offset, int buf_len) {
@@ -402,84 +238,4 @@ void MemEntryImpl::UpdateRank(bool modified) {
backend_->UpdateRank(this);
}
-bool MemEntryImpl::InitSparseInfo() {
- DCHECK(type() == kParentEntry);
-
- if (!children_.get()) {
- // If we already have some data in sparse stream but we are being
- // initialized as a sparse entry, we should fail.
- if (GetDataSize(kSparseData))
- return false;
- children_.reset(new EntryMap());
-
- // The parent entry stores data for the first block, so save this object to
- // index 0.
- (*children_)[0] = this;
- }
- return true;
-}
-
-bool MemEntryImpl::InitChildEntry(MemEntryImpl* parent, int child_id) {
- DCHECK(!parent_);
- DCHECK(!child_id_);
- parent_ = parent;
- child_id_ = child_id;
- last_modified_ = Time::Now();
- last_used_ = Time::Now();
- // Insert this to the backend's ranking list.
- backend_->InsertIntoRankingList(this);
- return true;
-}
-
-MemEntryImpl* MemEntryImpl::OpenChild(int64 offset, bool create) {
- DCHECK(type() == kParentEntry);
- int index = ToChildIndex(offset);
- EntryMap::iterator i = children_->find(index);
- if (i != children_->end()) {
- return i->second;
- } else if (create) {
- MemEntryImpl* child = new MemEntryImpl(backend_);
- child->InitChildEntry(this, index);
- (*children_)[index] = child;
- return child;
- }
- return NULL;
-}
-
-int MemEntryImpl::FindNextChild(int64 offset, int len, MemEntryImpl** child) {
- DCHECK(child);
- *child = NULL;
- int scanned_len = 0;
-
- // This loop tries to find the first existing child.
- while (scanned_len < len) {
- // This points to the current offset in the child.
- int current_child_offset = ToChildOffset(offset + scanned_len);
- MemEntryImpl* current_child = OpenChild(offset + scanned_len, false);
- if (current_child) {
- int child_first_pos = current_child->child_first_pos_;
-
- // This points to the first byte that we should be reading from, we need
- // to take care of the filled region and the current offset in the child.
- int first_pos = std::max(current_child_offset, child_first_pos);
-
- // If the first byte position we should read from doesn't exceed the
- // filled region, we have found the first child.
- if (first_pos < current_child->GetDataSize(kSparseData)) {
- *child = current_child;
-
- // We need to advance the scanned length.
- scanned_len += first_pos - current_child_offset;
- break;
- }
- }
- scanned_len += kMaxSparseEntrySize - current_child_offset;
- }
- return scanned_len;
-}
-
-void MemEntryImpl::DetachChild(int child_id) {
- children_->erase(child_id);
-}
-
} // namespace disk_cache
diff --git a/net/disk_cache/mem_entry_impl.h b/net/disk_cache/mem_entry_impl.h
index 5f596bb..c63f928 100644
--- a/net/disk_cache/mem_entry_impl.h
+++ b/net/disk_cache/mem_entry_impl.h
@@ -5,8 +5,6 @@
#ifndef NET_DISK_CACHE_MEM_ENTRY_IMPL_H_
#define NET_DISK_CACHE_MEM_ENTRY_IMPL_H_
-#include "base/hash_tables.h"
-#include "base/scoped_ptr.h"
#include "net/disk_cache/disk_cache.h"
#include "testing/gtest/include/gtest/gtest_prod.h"
@@ -17,31 +15,17 @@ class MemBackendImpl;
// This class implements the Entry interface for the memory-only cache. An
// object of this class represents a single entry on the cache. We use two
// types of entries, parent and child to support sparse caching.
-//
// A parent entry is non-sparse until a sparse method is invoked (i.e.
// ReadSparseData, WriteSparseData, GetAvailableRange) when sparse information
// is initialized. It then manages a list of child entries and delegates the
// sparse API calls to the child entries. It creates and deletes child entries
// and updates the list when needed.
-//
// A child entry is used to carry partial cache content, non-sparse methods like
// ReadData and WriteData cannot be applied to them. The lifetime of a child
// entry is managed by the parent entry that created it except that the entry
// can be evicted independently. A child entry does not have a key and it is not
// registered in the backend's entry map. It is registered in the backend's
// ranking list to enable eviction of a partial content.
-//
-// A sparse entry has a fixed maximum size and can be partially filled. There
-// can only be one continous filled region in a sparse entry, as illustrated by
-// the following example:
-// | xxx ooooo |
-// x = unfilled region
-// o = filled region
-// It is guranteed that there is at most one unfilled region and one filled
-// region, and the unfilled region (if there is one) is always before the filled
-// region. The book keeping for filled region in a sparse entry is done by using
-// the variable |child_first_pos_| (inclusive).
-
class MemEntryImpl : public Entry {
public:
enum EntryType {
@@ -73,6 +57,12 @@ class MemEntryImpl : public Entry {
// cache.
bool CreateEntry(const std::string& key);
+ // Performs the initialization of a MemEntryImpl as a child entry.
+ // TODO(hclam): this method should be private. Leave this as public because
+ // this is the only way to create a child entry. Move this method to private
+ // once child entries are created by parent entry.
+ bool CreateChildEntry(MemEntryImpl* parent);
+
// Permanently destroys this entry.
void InternalDoom();
@@ -96,15 +86,13 @@ class MemEntryImpl : public Entry {
}
EntryType type() const {
- return parent_ ? kChildEntry : kParentEntry;
+ return type_;
}
private:
- typedef base::hash_map<int, MemEntryImpl*> EntryMap;
-
- enum {
- NUM_STREAMS = 3
- };
+ enum {
+ NUM_STREAMS = 3
+ };
~MemEntryImpl();
@@ -114,47 +102,19 @@ class MemEntryImpl : public Entry {
// Updates ranking information.
void UpdateRank(bool modified);
- // Initializes the children map and sparse info. This method is only called
- // on a parent entry.
- bool InitSparseInfo();
-
- // Performs the initialization of a MemEntryImpl as a child entry.
- // |parent| is the pointer to the parent entry. |child_id| is the ID of
- // the new child.
- bool InitChildEntry(MemEntryImpl* parent, int child_id);
-
- // Returns an entry responsible for |offset|. The returned entry can be a
- // child entry or this entry itself if |offset| points to the first range.
- // If such entry does not exist and |create| is true, a new child entry is
- // created.
- MemEntryImpl* OpenChild(int64 offset, bool create);
-
- // Finds the first child located within the range [|offset|, |offset + len|).
- // Returns the number of bytes ahead of |offset| to reach the first available
- // bytes in the entry. The first child found is output to |child|.
- int FindNextChild(int64 offset, int len, MemEntryImpl** child);
-
- // Removes child indexed by |child_id| from the children map.
- void DetachChild(int child_id);
-
std::string key_;
std::vector<char> data_[NUM_STREAMS]; // User data.
int32 data_size_[NUM_STREAMS];
int ref_count_;
- MemEntryImpl* next_; // Pointers for the LRU list.
+ MemEntryImpl* next_; // Pointers for the LRU list.
MemEntryImpl* prev_;
- MemEntryImpl* parent_; // Pointer to the parent entry.
- scoped_ptr<EntryMap> children_;
-
- int child_id_; // The ID of a child entry.
- int child_first_pos_; // The position of the first byte in a child
- // entry.
-
+ MemEntryImpl* parent_; // Pointer to the parent entry.
base::Time last_modified_; // LRU information.
base::Time last_used_;
MemBackendImpl* backend_; // Back pointer to the cache.
bool doomed_; // True if this entry was removed from the cache.
+ EntryType type_; // The type of this entry.
DISALLOW_EVIL_CONSTRUCTORS(MemEntryImpl);
};
diff --git a/net/disk_cache/mem_rankings.cc b/net/disk_cache/mem_rankings.cc
index d5f4a65..6ca1bf7 100644
--- a/net/disk_cache/mem_rankings.cc
+++ b/net/disk_cache/mem_rankings.cc
@@ -4,15 +4,10 @@
#include "net/disk_cache/mem_rankings.h"
-#include "base/logging.h"
#include "net/disk_cache/mem_entry_impl.h"
namespace disk_cache {
-MemRankings::~MemRankings() {
- DCHECK(!head_ && !tail_);
-}
-
void MemRankings::Insert(MemEntryImpl* node) {
if (head_)
head_->set_prev(node);
diff --git a/net/disk_cache/mem_rankings.h b/net/disk_cache/mem_rankings.h
index 680be4c..9dd1564 100644
--- a/net/disk_cache/mem_rankings.h
+++ b/net/disk_cache/mem_rankings.h
@@ -17,7 +17,7 @@ class MemEntryImpl;
class MemRankings {
public:
MemRankings() : head_(NULL), tail_(NULL) {}
- ~MemRankings();
+ ~MemRankings() {}
// Inserts a given entry at the head of the queue.
void Insert(MemEntryImpl* node);