summaryrefslogtreecommitdiffstats
path: root/base/allocator/allocator_unittests.cc
diff options
context:
space:
mode:
Diffstat (limited to 'base/allocator/allocator_unittests.cc')
-rw-r--r--base/allocator/allocator_unittests.cc490
1 files changed, 490 insertions, 0 deletions
diff --git a/base/allocator/allocator_unittests.cc b/base/allocator/allocator_unittests.cc
new file mode 100644
index 0000000..919cfab
--- /dev/null
+++ b/base/allocator/allocator_unittests.cc
@@ -0,0 +1,490 @@
+// Copyright (c) 2009 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <algorithm> // for min()
+#include "base/atomicops.h"
+#include "base/logging.h"
+#include "testing/gtest/include/gtest/gtest.h"
+
+// Number of bits in a size_t.
+static const int kSizeBits = 8 * sizeof(size_t);
+// The maximum size of a size_t.
+static const size_t kMaxSize = ~static_cast<size_t>(0);
+// Maximum positive size of a size_t if it were signed.
+static const size_t kMaxSignedSize = ((size_t(1) << (kSizeBits-1)) - 1);
+// An allocation size which is not too big to be reasonable.
+static const size_t kNotTooBig = 100000;
+// An allocation size which is just too big.
+static const size_t kTooBig = ~static_cast<size_t>(0);
+
+namespace {
+
+using std::min;
+
+// Fill a buffer of the specified size with a predetermined pattern
+static void Fill(unsigned char* buffer, int n) {
+ for (int i = 0; i < n; i++) {
+ buffer[i] = (i & 0xff);
+ }
+}
+
+// Check that the specified buffer has the predetermined pattern
+// generated by Fill()
+static bool Valid(unsigned char* buffer, int n) {
+ for (int i = 0; i < n; i++) {
+ if (buffer[i] != (i & 0xff)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+// Check that a buffer is completely zeroed.
+static bool IsZeroed(unsigned char* buffer, int n) {
+ for (int i = 0; i < n; i++) {
+ if (buffer[i] != 0) {
+ return false;
+ }
+ }
+ return true;
+}
+
+// Check alignment
+static void CheckAlignment(void* p, int align) {
+ EXPECT_EQ(0, reinterpret_cast<uintptr_t>(p) & (align-1));
+}
+
+// Return the next interesting size/delta to check. Returns -1 if no more.
+static int NextSize(int size) {
+ if (size < 100)
+ return size+1;
+
+ if (size < 100000) {
+ // Find next power of two
+ int power = 1;
+ while (power < size)
+ power <<= 1;
+
+ // Yield (power-1, power, power+1)
+ if (size < power-1)
+ return power-1;
+
+ if (size == power-1)
+ return power;
+
+ assert(size == power);
+ return power+1;
+ } else {
+ return -1;
+ }
+}
+
+#define GG_ULONGLONG(x) static_cast<uint64>(x)
+
+template <class AtomicType>
+static void TestAtomicIncrement() {
+ // For now, we just test single threaded execution
+
+ // use a guard value to make sure the NoBarrier_AtomicIncrement doesn't go
+ // outside the expected address bounds. This is in particular to
+ // test that some future change to the asm code doesn't cause the
+ // 32-bit NoBarrier_AtomicIncrement to do the wrong thing on 64-bit machines.
+ struct {
+ AtomicType prev_word;
+ AtomicType count;
+ AtomicType next_word;
+ } s;
+
+ AtomicType prev_word_value, next_word_value;
+ memset(&prev_word_value, 0xFF, sizeof(AtomicType));
+ memset(&next_word_value, 0xEE, sizeof(AtomicType));
+
+ s.prev_word = prev_word_value;
+ s.count = 0;
+ s.next_word = next_word_value;
+
+ EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 1), 1);
+ EXPECT_EQ(s.count, 1);
+ EXPECT_EQ(s.prev_word, prev_word_value);
+ EXPECT_EQ(s.next_word, next_word_value);
+
+ EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 2), 3);
+ EXPECT_EQ(s.count, 3);
+ EXPECT_EQ(s.prev_word, prev_word_value);
+ EXPECT_EQ(s.next_word, next_word_value);
+
+ EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 3), 6);
+ EXPECT_EQ(s.count, 6);
+ EXPECT_EQ(s.prev_word, prev_word_value);
+ EXPECT_EQ(s.next_word, next_word_value);
+
+ EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -3), 3);
+ EXPECT_EQ(s.count, 3);
+ EXPECT_EQ(s.prev_word, prev_word_value);
+ EXPECT_EQ(s.next_word, next_word_value);
+
+ EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -2), 1);
+ EXPECT_EQ(s.count, 1);
+ EXPECT_EQ(s.prev_word, prev_word_value);
+ EXPECT_EQ(s.next_word, next_word_value);
+
+ EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), 0);
+ EXPECT_EQ(s.count, 0);
+ EXPECT_EQ(s.prev_word, prev_word_value);
+ EXPECT_EQ(s.next_word, next_word_value);
+
+ EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -1), -1);
+ EXPECT_EQ(s.count, -1);
+ EXPECT_EQ(s.prev_word, prev_word_value);
+ EXPECT_EQ(s.next_word, next_word_value);
+
+ EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, -4), -5);
+ EXPECT_EQ(s.count, -5);
+ EXPECT_EQ(s.prev_word, prev_word_value);
+ EXPECT_EQ(s.next_word, next_word_value);
+
+ EXPECT_EQ(base::subtle::NoBarrier_AtomicIncrement(&s.count, 5), 0);
+ EXPECT_EQ(s.count, 0);
+ EXPECT_EQ(s.prev_word, prev_word_value);
+ EXPECT_EQ(s.next_word, next_word_value);
+}
+
+
+#define NUM_BITS(T) (sizeof(T) * 8)
+
+
+template <class AtomicType>
+static void TestCompareAndSwap() {
+ AtomicType value = 0;
+ AtomicType prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 1);
+ EXPECT_EQ(1, value);
+ EXPECT_EQ(0, prev);
+
+ // Use test value that has non-zero bits in both halves, more for testing
+ // 64-bit implementation on 32-bit platforms.
+ const AtomicType k_test_val = (GG_ULONGLONG(1) <<
+ (NUM_BITS(AtomicType) - 2)) + 11;
+ value = k_test_val;
+ prev = base::subtle::NoBarrier_CompareAndSwap(&value, 0, 5);
+ EXPECT_EQ(k_test_val, value);
+ EXPECT_EQ(k_test_val, prev);
+
+ value = k_test_val;
+ prev = base::subtle::NoBarrier_CompareAndSwap(&value, k_test_val, 5);
+ EXPECT_EQ(5, value);
+ EXPECT_EQ(k_test_val, prev);
+}
+
+
+template <class AtomicType>
+static void TestAtomicExchange() {
+ AtomicType value = 0;
+ AtomicType new_value = base::subtle::NoBarrier_AtomicExchange(&value, 1);
+ EXPECT_EQ(1, value);
+ EXPECT_EQ(0, new_value);
+
+ // Use test value that has non-zero bits in both halves, more for testing
+ // 64-bit implementation on 32-bit platforms.
+ const AtomicType k_test_val = (GG_ULONGLONG(1) <<
+ (NUM_BITS(AtomicType) - 2)) + 11;
+ value = k_test_val;
+ new_value = base::subtle::NoBarrier_AtomicExchange(&value, k_test_val);
+ EXPECT_EQ(k_test_val, value);
+ EXPECT_EQ(k_test_val, new_value);
+
+ value = k_test_val;
+ new_value = base::subtle::NoBarrier_AtomicExchange(&value, 5);
+ EXPECT_EQ(5, value);
+ EXPECT_EQ(k_test_val, new_value);
+}
+
+
+template <class AtomicType>
+static void TestAtomicIncrementBounds() {
+ // Test increment at the half-width boundary of the atomic type.
+ // It is primarily for testing at the 32-bit boundary for 64-bit atomic type.
+ AtomicType test_val = GG_ULONGLONG(1) << (NUM_BITS(AtomicType) / 2);
+ AtomicType value = test_val - 1;
+ AtomicType new_value = base::subtle::NoBarrier_AtomicIncrement(&value, 1);
+ EXPECT_EQ(test_val, value);
+ EXPECT_EQ(value, new_value);
+
+ base::subtle::NoBarrier_AtomicIncrement(&value, -1);
+ EXPECT_EQ(test_val - 1, value);
+}
+
+// This is a simple sanity check that values are correct. Not testing
+// atomicity
+template <class AtomicType>
+static void TestStore() {
+ const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
+ const AtomicType kVal2 = static_cast<AtomicType>(-1);
+
+ AtomicType value;
+
+ base::subtle::NoBarrier_Store(&value, kVal1);
+ EXPECT_EQ(kVal1, value);
+ base::subtle::NoBarrier_Store(&value, kVal2);
+ EXPECT_EQ(kVal2, value);
+
+ base::subtle::Acquire_Store(&value, kVal1);
+ EXPECT_EQ(kVal1, value);
+ base::subtle::Acquire_Store(&value, kVal2);
+ EXPECT_EQ(kVal2, value);
+
+ base::subtle::Release_Store(&value, kVal1);
+ EXPECT_EQ(kVal1, value);
+ base::subtle::Release_Store(&value, kVal2);
+ EXPECT_EQ(kVal2, value);
+}
+
+// This is a simple sanity check that values are correct. Not testing
+// atomicity
+template <class AtomicType>
+static void TestLoad() {
+ const AtomicType kVal1 = static_cast<AtomicType>(0xa5a5a5a5a5a5a5a5LL);
+ const AtomicType kVal2 = static_cast<AtomicType>(-1);
+
+ AtomicType value;
+
+ value = kVal1;
+ EXPECT_EQ(kVal1, base::subtle::NoBarrier_Load(&value));
+ value = kVal2;
+ EXPECT_EQ(kVal2, base::subtle::NoBarrier_Load(&value));
+
+ value = kVal1;
+ EXPECT_EQ(kVal1, base::subtle::Acquire_Load(&value));
+ value = kVal2;
+ EXPECT_EQ(kVal2, base::subtle::Acquire_Load(&value));
+
+ value = kVal1;
+ EXPECT_EQ(kVal1, base::subtle::Release_Load(&value));
+ value = kVal2;
+ EXPECT_EQ(kVal2, base::subtle::Release_Load(&value));
+}
+
+template <class AtomicType>
+static void TestAtomicOps() {
+ TestCompareAndSwap<AtomicType>();
+ TestAtomicExchange<AtomicType>();
+ TestAtomicIncrementBounds<AtomicType>();
+ TestStore<AtomicType>();
+ TestLoad<AtomicType>();
+}
+
+static void TestCalloc(size_t n, size_t s, bool ok) {
+ char* p = reinterpret_cast<char*>(calloc(n, s));
+ if (!ok) {
+ EXPECT_EQ(NULL, p) << "calloc(n, s) should not succeed";
+ } else {
+ EXPECT_NE(reinterpret_cast<void*>(NULL), p) <<
+ "calloc(n, s) should succeed";
+ for (int i = 0; i < n*s; i++) {
+ EXPECT_EQ('\0', p[i]);
+ }
+ free(p);
+ }
+}
+
+
+// A global test counter for number of times the NewHandler is called.
+static int news_handled = 0;
+static void TestNewHandler() {
+ ++news_handled;
+ throw std::bad_alloc();
+}
+
+// Because we compile without exceptions, we expect these will not throw.
+static void TestOneNewWithoutExceptions(void* (*func)(size_t),
+ bool should_throw) {
+ // success test
+ try {
+ void* ptr = (*func)(kNotTooBig);
+ EXPECT_NE(reinterpret_cast<void*>(NULL), ptr) <<
+ "allocation should not have failed.";
+ } catch(...) {
+ EXPECT_EQ(0, 1) << "allocation threw unexpected exception.";
+ }
+
+ // failure test
+ try {
+ void* rv = (*func)(kTooBig);
+ EXPECT_EQ(NULL, rv);
+ EXPECT_EQ(false, should_throw) << "allocation should have thrown.";
+ } catch(...) {
+ EXPECT_EQ(true, should_throw) << "allocation threw unexpected exception.";
+ }
+}
+
+static void TestNothrowNew(void* (*func)(size_t)) {
+ news_handled = 0;
+
+ // test without new_handler:
+ std::new_handler saved_handler = std::set_new_handler(0);
+ TestOneNewWithoutExceptions(func, false);
+
+ // test with new_handler:
+ std::set_new_handler(TestNewHandler);
+ TestOneNewWithoutExceptions(func, true);
+ EXPECT_EQ(news_handled, 1) << "nothrow new_handler was not called.";
+ std::set_new_handler(saved_handler);
+}
+
+} // namespace
+
+//-----------------------------------------------------------------------------
+
+TEST(Atomics, AtomicIncrementWord) {
+ TestAtomicIncrement<AtomicWord>();
+}
+
+TEST(Atomics, AtomicIncrement32) {
+ TestAtomicIncrement<Atomic32>();
+}
+
+TEST(Atomics, AtomicOpsWord) {
+ TestAtomicIncrement<AtomicWord>();
+}
+
+TEST(Atomics, AtomicOps32) {
+ TestAtomicIncrement<Atomic32>();
+}
+
+TEST(Allocators, Malloc) {
+ // Try allocating data with a bunch of alignments and sizes
+ for (int size = 1; size < 1048576; size *= 2) {
+ unsigned char* ptr = reinterpret_cast<unsigned char*>(malloc(size));
+ CheckAlignment(ptr, 2); // Should be 2 byte aligned
+ Fill(ptr, size);
+ EXPECT_EQ(true, Valid(ptr, size));
+ free(ptr);
+ }
+}
+
+TEST(Allocators, Calloc) {
+ TestCalloc(0, 0, true);
+ TestCalloc(0, 1, true);
+ TestCalloc(1, 1, true);
+ TestCalloc(1<<10, 0, true);
+ TestCalloc(1<<20, 0, true);
+ TestCalloc(0, 1<<10, true);
+ TestCalloc(0, 1<<20, true);
+ TestCalloc(1<<20, 2, true);
+ TestCalloc(2, 1<<20, true);
+ TestCalloc(1000, 1000, true);
+
+ TestCalloc(kMaxSize, 2, false);
+ TestCalloc(2, kMaxSize, false);
+ TestCalloc(kMaxSize, kMaxSize, false);
+
+ TestCalloc(kMaxSignedSize, 3, false);
+ TestCalloc(3, kMaxSignedSize, false);
+ TestCalloc(kMaxSignedSize, kMaxSignedSize, false);
+}
+
+TEST(Allocators, New) {
+ TestNothrowNew(&::operator new);
+ TestNothrowNew(&::operator new[]);
+}
+
+// This makes sure that reallocing a small number of bytes in either
+// direction doesn't cause us to allocate new memory.
+TEST(Allocators, Realloc1) {
+ int start_sizes[] = { 100, 1000, 10000, 100000 };
+ int deltas[] = { 1, -2, 4, -8, 16, -32, 64, -128 };
+
+ for (int s = 0; s < sizeof(start_sizes)/sizeof(*start_sizes); ++s) {
+ void* p = malloc(start_sizes[s]);
+ CHECK(p);
+ // The larger the start-size, the larger the non-reallocing delta.
+ for (int d = 0; d < s*2; ++d) {
+ void* new_p = realloc(p, start_sizes[s] + deltas[d]);
+ CHECK(p == new_p); // realloc should not allocate new memory
+ }
+ // Test again, but this time reallocing smaller first.
+ for (int d = 0; d < s*2; ++d) {
+ void* new_p = realloc(p, start_sizes[s] - deltas[d]);
+ CHECK(p == new_p); // realloc should not allocate new memory
+ }
+ free(p);
+ }
+}
+
+TEST(Allocators, Realloc2) {
+ for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
+ for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
+ unsigned char* src = reinterpret_cast<unsigned char*>(malloc(src_size));
+ Fill(src, src_size);
+ unsigned char* dst =
+ reinterpret_cast<unsigned char*>(realloc(src, dst_size));
+ EXPECT_EQ(true, Valid(dst, min(src_size, dst_size)));
+ Fill(dst, dst_size);
+ EXPECT_EQ(true, Valid(dst, dst_size));
+ if (dst != NULL) free(dst);
+ }
+ }
+
+ // Now make sure realloc works correctly even when we overflow the
+ // packed cache, so some entries are evicted from the cache.
+ // The cache has 2^12 entries, keyed by page number.
+ const int kNumEntries = 1 << 14;
+ int** p = reinterpret_cast<int**>(malloc(sizeof(*p) * kNumEntries));
+ int sum = 0;
+ for (int i = 0; i < kNumEntries; i++) {
+ // no page size is likely to be bigger than 8192?
+ p[i] = reinterpret_cast<int*>(malloc(8192));
+ p[i][1000] = i; // use memory deep in the heart of p
+ }
+ for (int i = 0; i < kNumEntries; i++) {
+ p[i] = reinterpret_cast<int*>(realloc(p[i], 9000));
+ }
+ for (int i = 0; i < kNumEntries; i++) {
+ sum += p[i][1000];
+ free(p[i]);
+ }
+ EXPECT_EQ(kNumEntries/2 * (kNumEntries - 1), sum); // assume kNE is even
+ free(p);
+}
+
+TEST(Allocators, ReallocZero) {
+ // Test that realloc to zero does not return NULL.
+ for (int size = 0; size >= 0; size = NextSize(size)) {
+ char* ptr = reinterpret_cast<char*>(malloc(size));
+ EXPECT_NE(static_cast<char*>(NULL), ptr);
+ ptr = reinterpret_cast<char*>(realloc(ptr, 0));
+ EXPECT_NE(static_cast<char*>(NULL), ptr);
+ if (ptr)
+ free(ptr);
+ }
+}
+
+#ifdef WIN32
+// Test recalloc
+TEST(Allocators, Recalloc) {
+ for (int src_size = 0; src_size >= 0; src_size = NextSize(src_size)) {
+ for (int dst_size = 0; dst_size >= 0; dst_size = NextSize(dst_size)) {
+ unsigned char* src =
+ reinterpret_cast<unsigned char*>(_recalloc(NULL, 1, src_size));
+ EXPECT_EQ(true, IsZeroed(src, src_size));
+ Fill(src, src_size);
+ unsigned char* dst =
+ reinterpret_cast<unsigned char*>(_recalloc(src, 1, dst_size));
+ EXPECT_EQ(true, Valid(dst, min(src_size, dst_size)));
+ Fill(dst, dst_size);
+ EXPECT_EQ(true, Valid(dst, dst_size));
+ if (dst != NULL)
+ free(dst);
+ }
+ }
+}
+#endif
+
+
+int main(int argc, char** argv) {
+ testing::InitGoogleTest(&argc, argv);
+ return RUN_ALL_TESTS();
+}
+