diff options
Diffstat (limited to 'base/crypto/rsa_private_key.cc')
-rw-r--r-- | base/crypto/rsa_private_key.cc | 375 |
1 files changed, 375 insertions, 0 deletions
diff --git a/base/crypto/rsa_private_key.cc b/base/crypto/rsa_private_key.cc new file mode 100644 index 0000000..e6faa3e --- /dev/null +++ b/base/crypto/rsa_private_key.cc @@ -0,0 +1,375 @@ +// Copyright (c) 2009 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "base/crypto/rsa_private_key.h" + +#include <iostream> +#include <list> + +#include "base/logging.h" +#include "base/scoped_ptr.h" +#include "base/string_util.h" + +// This file manually encodes and decodes RSA private keys using PrivateKeyInfo +// from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are: +// +// PrivateKeyInfo ::= SEQUENCE { +// version Version, +// privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, +// privateKey PrivateKey, +// attributes [0] IMPLICIT Attributes OPTIONAL +// } +// +// RSAPrivateKey ::= SEQUENCE { +// version Version, +// modulus INTEGER, +// publicExponent INTEGER, +// privateExponent INTEGER, +// prime1 INTEGER, +// prime2 INTEGER, +// exponent1 INTEGER, +// exponent2 INTEGER, +// coefficient INTEGER +// } + +namespace { +// Helper for error handling during key import. +#define READ_ASSERT(truth) \ + if (!(truth)) { \ + NOTREACHED(); \ + return false; \ + } +} // namespace + +namespace base { + +const uint8 PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { + 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, + 0x05, 0x00 +}; + +void PrivateKeyInfoCodec::PrependBytes(uint8* val, + int start, + int num_bytes, + std::list<uint8>* data) { + while(num_bytes > 0) { + --num_bytes; + data->push_front(val[start + num_bytes]); + } +} + +void PrivateKeyInfoCodec::PrependLength(size_t size, std::list<uint8>* data) { + // The high bit is used to indicate whether additional octets are needed to + // represent the length. + if (size < 0x80) { + data->push_front(static_cast<uint8>(size)); + } else { + uint8 num_bytes = 0; + while (size > 0) { + data->push_front(static_cast<uint8>(size & 0xFF)); + size >>= 8; + num_bytes++; + } + CHECK(num_bytes <= 4); + data->push_front(0x80 | num_bytes); + } +} + +void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(uint8 type, + uint32 length, + std::list<uint8>* output) { + PrependLength(length, output); + output->push_front(type); +} + +void PrivateKeyInfoCodec::PrependBitString(uint8* val, + int num_bytes, + std::list<uint8>* output) { + // Start with the data. + PrependBytes(val, 0, num_bytes, output); + // Zero unused bits. + output->push_front(0); + // Add the length. + PrependLength(num_bytes + 1, output); + // Finally, add the bit string tag. + output->push_front((uint8) kBitStringTag); +} + +bool PrivateKeyInfoCodec::ReadLength(uint8** pos, uint8* end, uint32* result) { + READ_ASSERT(*pos < end); + int length = 0; + + // If the MSB is not set, the length is just the byte itself. + if (!(**pos & 0x80)) { + length = **pos; + (*pos)++; + } else { + // Otherwise, the lower 7 indicate the length of the length. + int length_of_length = **pos & 0x7F; + READ_ASSERT(length_of_length <= 4); + (*pos)++; + READ_ASSERT(*pos + length_of_length < end); + + length = 0; + for (int i = 0; i < length_of_length; ++i) { + length <<= 8; + length |= **pos; + (*pos)++; + } + } + + READ_ASSERT(*pos + length <= end); + if (result) *result = length; + return true; +} + +bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8** pos, + uint8* end, + uint8 expected_tag, + uint32* length) { + READ_ASSERT(*pos < end); + READ_ASSERT(**pos == expected_tag); + (*pos)++; + + return ReadLength(pos, end, length); +} + +bool PrivateKeyInfoCodec::ReadSequence(uint8** pos, uint8* end) { + return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); +} + +bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8** pos, uint8* end) { + READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); + READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, + sizeof(kRsaAlgorithmIdentifier)) == 0); + (*pos) += sizeof(kRsaAlgorithmIdentifier); + return true; +} + +bool PrivateKeyInfoCodec::ReadVersion(uint8** pos, uint8* end) { + uint32 length = 0; + if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) + return false; + + // The version should be zero. + for (uint32 i = 0; i < length; ++i) { + READ_ASSERT(**pos == 0x00); + (*pos)++; + } + + return true; +} + +bool PrivateKeyInfoCodec::Export(std::vector<uint8>* output) { + std::list<uint8> content; + + // Version (always zero) + uint8 version = 0; + + PrependInteger(coefficient_, &content); + PrependInteger(exponent2_, &content); + PrependInteger(exponent1_, &content); + PrependInteger(prime2_, &content); + PrependInteger(prime1_, &content); + PrependInteger(private_exponent_, &content); + PrependInteger(public_exponent_, &content); + PrependInteger(modulus_, &content); + PrependInteger(&version, 1, &content); + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); + PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); + + // RSA algorithm OID + for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) + content.push_front(kRsaAlgorithmIdentifier[i - 1]); + + PrependInteger(&version, 1, &content); + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); + + // Copy everying into the output. + output->reserve(content.size()); + for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i) + output->push_back(*i); + + return true; +} + +bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector<uint8>* output) { + // Create a sequence with the modulus (n) and public exponent (e). + std::list<uint8> content; + PrependInteger(&public_exponent_[0], + static_cast<int>(public_exponent_.size()), + &content); + PrependInteger(&modulus_[0], static_cast<int>(modulus_.size()), &content); + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); + + // Copy the sequence with n and e into a buffer. + std::vector<uint8> bit_string; + for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i) + bit_string.push_back(*i); + content.clear(); + // Add the sequence as the contents of a bit string. + PrependBitString(&bit_string[0], static_cast<int>(bit_string.size()), + &content); + + // Add the RSA algorithm OID. + for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) + content.push_front(kRsaAlgorithmIdentifier[i - 1]); + + // Finally, wrap everything in a sequence. + PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); + + // Copy everything into the output. + output->reserve(content.size()); + for (std::list<uint8>::iterator i = content.begin(); i != content.end(); ++i) + output->push_back(*i); + + return true; +} + +bool PrivateKeyInfoCodec::Import(const std::vector<uint8>& input) { + if (input.empty()) { + return false; + } + + // Parse the private key info up to the public key values, ignoring + // the subsequent private key values. + uint8* src = const_cast<uint8*>(&input.front()); + uint8* end = src + input.size(); + if (!ReadSequence(&src, end) || + !ReadVersion(&src, end) || + !ReadAlgorithmIdentifier(&src, end) || + !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || + !ReadSequence(&src, end) || + !ReadVersion(&src, end) || + !ReadInteger(&src, end, &modulus_)) + return false; + + int mod_size = modulus_.size(); + READ_ASSERT(mod_size % 2 == 0); + int primes_size = mod_size / 2; + + if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || + !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || + !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || + !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || + !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || + !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || + !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) + return false; + + READ_ASSERT(src == end); + + + return true; +} + +void PrivateKeyInfoCodec::PrependInteger(const std::vector<uint8>& in, + std::list<uint8>* out) { + uint8* ptr = const_cast<uint8*>(&in.front()); + PrependIntegerImpl(ptr, in.size(), out, big_endian_); +} + +// Helper to prepend an ASN.1 integer. +void PrivateKeyInfoCodec::PrependInteger(uint8* val, + int num_bytes, + std::list<uint8>* data) { + PrependIntegerImpl(val, num_bytes, data, big_endian_); +} + +void PrivateKeyInfoCodec::PrependIntegerImpl(uint8* val, + int num_bytes, + std::list<uint8>* data, + bool big_endian) { + // Reverse input if little-endian. + std::vector<uint8> tmp; + if (!big_endian) { + tmp.assign(val, val + num_bytes); + reverse(tmp.begin(), tmp.end()); + val = &tmp.front(); + } + + // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes + // from the most-significant end of the integer. + int start = 0; + while (start < (num_bytes - 1) && val[start] == 0x00) { + start++; + num_bytes--; + } + PrependBytes(val, start, num_bytes, data); + + // ASN.1 integers are signed. To encode a positive integer whose sign bit + // (the most significant bit) would otherwise be set and make the number + // negative, ASN.1 requires a leading null byte to force the integer to be + // positive. + uint8 front = data->front(); + if ((front & 0x80) != 0) { + data->push_front(0x00); + num_bytes++; + } + + PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); +} + +bool PrivateKeyInfoCodec::ReadInteger(uint8** pos, + uint8* end, + std::vector<uint8>* out) { + return ReadIntegerImpl(pos, end, out, big_endian_); +} + +bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8** pos, + uint8* end, + std::vector<uint8>* out, + bool big_endian) { + uint32 length = 0; + if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) + return false; + + // The first byte can be zero to force positiveness. We can ignore this. + if (**pos == 0x00) { + ++(*pos); + --length; + } + + if (length) + out->insert(out->end(), *pos, (*pos) + length); + + (*pos) += length; + + // Reverse output if little-endian. + if (!big_endian) + reverse(out->begin(), out->end()); + return true; +} + +bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(uint8** pos, + uint8* end, + size_t expected_size, + std::vector<uint8>* out) { + std::vector<uint8> temp; + if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian + return false; + + int pad = expected_size - temp.size(); + int index = 0; + if (out->size() == expected_size + 1) { + READ_ASSERT(out->front() == 0x00); + pad++; + index++; + } else { + READ_ASSERT(out->size() <= expected_size); + } + + while(pad) { + out->push_back(0x00); + pad--; + } + out->insert(out->end(), temp.begin(), temp.end()); + + // Reverse output if little-endian. + if (!big_endian_) + reverse(out->begin(), out->end()); + return true; +} + +} // namespace base |