diff options
Diffstat (limited to 'base/gfx/image_operations.cc')
-rw-r--r-- | base/gfx/image_operations.cc | 362 |
1 files changed, 362 insertions, 0 deletions
diff --git a/base/gfx/image_operations.cc b/base/gfx/image_operations.cc new file mode 100644 index 0000000..a60d19e --- /dev/null +++ b/base/gfx/image_operations.cc @@ -0,0 +1,362 @@ +// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. +// +#define _USE_MATH_DEFINES +#include <cmath> +#include <limits> +#include <vector> + +#include "base/gfx/image_operations.h" + +#include "base/gfx/convolver.h" +#include "base/gfx/rect.h" +#include "base/gfx/size.h" +#include "base/logging.h" +#include "base/stack_container.h" +#include "SkBitmap.h" + +namespace gfx { + +namespace { + +// Returns the ceiling/floor as an integer. +inline int CeilInt(float val) { + return static_cast<int>(ceil(val)); +} +inline int FloorInt(float val) { + return static_cast<int>(floor(val)); +} + +// Filter function computation ------------------------------------------------- + +// Evaluates the box filter, which goes from -0.5 to +0.5. +float EvalBox(float x) { + return (x >= -0.5f && x < 0.5f) ? 1.0f : 0.0f; +} + +// Evaluates the Lanczos filter of the given filter size window for the given +// position. +// +// |filter_size| is the width of the filter (the "window"), outside of which +// the value of the function is 0. Inside of the window, the value is the +// normalized sinc function: +// lanczos(x) = sinc(x) * sinc(x / filter_size); +// where +// sinc(x) = sin(pi*x) / (pi*x); +float EvalLanczos(int filter_size, float x) { + if (x <= -filter_size || x >= filter_size) + return 0.0f; // Outside of the window. + if (x > -std::numeric_limits<float>::epsilon() && + x < std::numeric_limits<float>::epsilon()) + return 1.0f; // Special case the discontinuity at the origin. + float xpi = x * static_cast<float>(M_PI); + return (sin(xpi) / xpi) * // sinc(x) + sin(xpi / filter_size) / (xpi / filter_size); // sinc(x/filter_size) +} + +// ResizeFilter ---------------------------------------------------------------- + +// Encapsulates computation and storage of the filters required for one complete +// resize operation. +class ResizeFilter { + public: + ResizeFilter(ImageOperations::ResizeMethod method, + const Size& src_full_size, + const Size& dest_size, + const Rect& dest_subset); + + // Returns the bounds in the input bitmap of data that is used in the output. + // The filter offsets are within this rectangle. + const Rect& src_depend() { return src_depend_; } + + // Returns the filled filter values. + const ConvolusionFilter1D& x_filter() { return x_filter_; } + const ConvolusionFilter1D& y_filter() { return y_filter_; } + + private: + // Returns the number of pixels that the filer spans, in filter space (the + // destination image). + float GetFilterSupport(float scale) { + switch (method_) { + case ImageOperations::RESIZE_BOX: + // The box filter just scales with the image scaling. + return 0.5f; // Only want one side of the filter = /2. + case ImageOperations::RESIZE_LANCZOS3: + // The lanczos filter takes as much space in the source image in + // each direction as the size of the window = 3 for Lanczos3. + return 3.0f; + default: + NOTREACHED(); + return 1.0f; + } + } + + // Computes one set of filters either horizontally or vertically. The caller + // will specify the "min" and "max" rather than the bottom/top and + // right/bottom so that the same code can be re-used in each dimension. + // + // |src_depend_lo| and |src_depend_size| gives the range for the source + // depend rectangle (horizontally or vertically at the caller's discretion + // -- see above for what this means). + // + // Likewise, the range of destination values to compute and the scale factor + // for the transform is also specified. + void ComputeFilters(int src_size, + int dest_subset_lo, int dest_subset_size, + float scale, float src_support, + ConvolusionFilter1D* output); + + // Computes the filter value given the coordinate in filter space. + inline float ComputeFilter(float pos) { + switch (method_) { + case ImageOperations::RESIZE_BOX: + return EvalBox(pos); + case ImageOperations::RESIZE_LANCZOS3: + return EvalLanczos(3, pos); + default: + NOTREACHED(); + return 0; + } + } + + ImageOperations::ResizeMethod method_; + + // Subset of source the filters will touch. + Rect src_depend_; + + // Size of the filter support on one side only in the destination space. + // See GetFilterSupport. + float x_filter_support_; + float y_filter_support_; + + // Subset of scaled destination bitmap to compute. + Rect out_bounds_; + + ConvolusionFilter1D x_filter_; + ConvolusionFilter1D y_filter_; + + DISALLOW_EVIL_CONSTRUCTORS(ResizeFilter); +}; + +ResizeFilter::ResizeFilter(ImageOperations::ResizeMethod method, + const Size& src_full_size, + const Size& dest_size, + const Rect& dest_subset) + : method_(method), + out_bounds_(dest_subset) { + float scale_x = static_cast<float>(dest_size.width()) / + static_cast<float>(src_full_size.width()); + float scale_y = static_cast<float>(dest_size.height()) / + static_cast<float>(src_full_size.height()); + + x_filter_support_ = GetFilterSupport(scale_x); + y_filter_support_ = GetFilterSupport(scale_y); + + gfx::Rect src_full(0, 0, src_full_size.width(), src_full_size.height()); + gfx::Rect dest_full(0, 0, + static_cast<int>(src_full_size.width() * scale_x + 0.5), + static_cast<int>(src_full_size.height() * scale_y + 0.5)); + + // Support of the filter in source space. + float src_x_support = x_filter_support_ / scale_x; + float src_y_support = y_filter_support_ / scale_y; + + ComputeFilters(src_full_size.width(), dest_subset.x(), dest_subset.width(), + scale_x, src_x_support, &x_filter_); + ComputeFilters(src_full_size.height(), dest_subset.y(), dest_subset.height(), + scale_y, src_y_support, &y_filter_); +} + +void ResizeFilter::ComputeFilters(int src_size, + int dest_subset_lo, int dest_subset_size, + float scale, float src_support, + ConvolusionFilter1D* output) { + int dest_subset_hi = dest_subset_lo + dest_subset_size; // [lo, hi) + + // When we're doing a magnification, the scale will be larger than one. This + // means the destination pixels are much smaller than the source pixels, and + // that the range covered by the filter won't necessarily cover any source + // pixel boundaries. Therefore, we use these clamped values (max of 1) for + // some computations. + float clamped_scale = std::min(1.0f, scale); + + // Speed up the divisions below by turning them into multiplies. + float inv_scale = 1.0f / scale; + + StackVector<float, 64> filter_values; + StackVector<int16, 64> fixed_filter_values; + + // Loop over all pixels in the output range. We will generate one set of + // filter values for each one. Those values will tell us how to blend the + // source pixels to compute the destination pixel. + for (int dest_subset_i = dest_subset_lo; dest_subset_i < dest_subset_hi; + dest_subset_i++) { + // Reset the arrays. We don't declare them inside so they can re-use the + // same malloc-ed buffer. + filter_values->clear(); + fixed_filter_values->clear(); + + // This is the pixel in the source directly under the pixel in the dest. + float src_pixel = dest_subset_i * inv_scale; + + // Compute the (inclusive) range of source pixels the filter covers. + int src_begin = std::max(0, FloorInt(src_pixel - src_support)); + int src_end = std::min(src_size - 1, CeilInt(src_pixel + src_support)); + + // Compute the unnormalized filter value at each location of the source + // it covers. + float filter_sum = 0.0f; // Sub of the filter values for normalizing. + for (int cur_filter_pixel = src_begin; cur_filter_pixel <= src_end; + cur_filter_pixel++) { + // Distance from the center of the filter, this is the filter coordinate + // in source space. + float src_filter_pos = cur_filter_pixel - src_pixel; + + // Since the filter really exists in dest space, map it there. + float dest_filter_pos = src_filter_pos * clamped_scale; + + // Compute the filter value at that location. + float filter_value = ComputeFilter(dest_filter_pos); + filter_values->push_back(filter_value); + + filter_sum += filter_value; + } + DCHECK(!filter_values->empty()) << "We should always get a filter!"; + + // The filter must be normalized so that we don't affect the brightness of + // the image. Convert to normalized fixed point. + int16 fixed_sum = 0; + for (size_t i = 0; i < filter_values->size(); i++) { + int16 cur_fixed = output->FloatToFixed(filter_values[i] / filter_sum); + fixed_sum += cur_fixed; + fixed_filter_values->push_back(cur_fixed); + } + + // The conversion to fixed point will leave some rounding errors, which + // we add back in to avoid affecting the brightness of the image. We + // arbitrarily add this to the center of the filter array (this won't always + // be the center of the filter function since it could get clipped on the + // edges, but it doesn't matter enough to worry about that case). + int16 leftovers = output->FloatToFixed(1.0f) - fixed_sum; + fixed_filter_values[fixed_filter_values->size() / 2] += leftovers; + + // Now it's ready to go. + output->AddFilter(src_begin, &fixed_filter_values[0], + static_cast<int>(fixed_filter_values->size())); + } +} + +} // namespace + +// Resize ---------------------------------------------------------------------- + +// static +SkBitmap ImageOperations::Resize(const SkBitmap& source, + ResizeMethod method, + const Size& dest_size, + const Rect& dest_subset) { + DCHECK(Rect(dest_size.width(), dest_size.height()).Contains(dest_subset)) << + "The supplied subset does not fall within the destination image."; + + // If the size of source or destination is 0, i.e. 0x0, 0xN or Nx0, just + // return empty + if (source.width() < 1 || source.height() < 1 || + dest_size.width() < 1 || dest_size.height() < 1) + return SkBitmap(); + + SkAutoLockPixels locker(source); + + ResizeFilter filter(method, Size(source.width(), source.height()), + dest_size, dest_subset); + + // Get a source bitmap encompassing this touched area. We construct the + // offsets and row strides such that it looks like a new bitmap, while + // referring to the old data. + const uint8* source_subset = + reinterpret_cast<const uint8*>(source.getPixels()); + + // Convolve into the result. + SkBitmap result; + result.setConfig(SkBitmap::kARGB_8888_Config, + dest_subset.width(), dest_subset.height()); + result.allocPixels(); + BGRAConvolve2D(source_subset, static_cast<int>(source.rowBytes()), + !source.isOpaque(), filter.x_filter(), filter.y_filter(), + static_cast<unsigned char*>(result.getPixels())); + + // Preserve the "opaque" flag for use as an optimization later. + result.setIsOpaque(source.isOpaque()); + + return result; +} + +// static +SkBitmap ImageOperations::Resize(const SkBitmap& source, + ResizeMethod method, + const Size& dest_size) { + Rect dest_subset(0, 0, dest_size.width(), dest_size.height()); + return Resize(source, method, dest_size, dest_subset); +} + +// static +SkBitmap ImageOperations::CreateBlendedBitmap(const SkBitmap& first, + const SkBitmap& second, + double alpha) { + DCHECK(alpha <= 1 && alpha >= 0); + DCHECK(first.width() == second.width()); + DCHECK(first.height() == second.height()); + DCHECK(first.bytesPerPixel() == second.bytesPerPixel()); + DCHECK(first.config() == SkBitmap::kARGB_8888_Config); + + // Optimize for case where we won't need to blend anything. + static const double alpha_min = 1.0 / 255; + static const double alpha_max = 254.0 / 255; + if (alpha < alpha_min) { + return first; + } else if (alpha > alpha_max) { + return second; + } + + SkAutoLockPixels lock_first(first); + SkAutoLockPixels lock_second(second); + + SkBitmap blended; + blended.setConfig(SkBitmap::kARGB_8888_Config, first.width(), + first.height(), 0); + blended.allocPixels(); + blended.eraseARGB(0, 0, 0, 0); + + double first_alpha = 1 - alpha; + + for (int y = 0; y < first.height(); y++) { + uint32* first_row = first.getAddr32(0, y); + uint32* second_row = second.getAddr32(0, y); + uint32* dst_row = blended.getAddr32(0, y); + + for (int x = 0; x < first.width(); x++) { + uint32 first_pixel = first_row[x]; + uint32 second_pixel = second_row[x]; + + int a = static_cast<int>( + SkColorGetA(first_pixel) * first_alpha + + SkColorGetA(second_pixel) * alpha); + int r = static_cast<int>( + SkColorGetR(first_pixel) * first_alpha + + SkColorGetR(second_pixel) * alpha); + int g = static_cast<int>( + SkColorGetG(first_pixel) * first_alpha + + SkColorGetG(second_pixel) * alpha); + int b = static_cast<int>( + SkColorGetB(first_pixel) * first_alpha + + SkColorGetB(second_pixel) * alpha); + + dst_row[x] = SkColorSetARGB(a, r, g, b); + } + } + + return blended; +} + +} // namespace gfx + |