summaryrefslogtreecommitdiffstats
path: root/base/stl_util-inl.h
diff options
context:
space:
mode:
Diffstat (limited to 'base/stl_util-inl.h')
-rw-r--r--base/stl_util-inl.h450
1 files changed, 450 insertions, 0 deletions
diff --git a/base/stl_util-inl.h b/base/stl_util-inl.h
new file mode 100644
index 0000000..54b7b29
--- /dev/null
+++ b/base/stl_util-inl.h
@@ -0,0 +1,450 @@
+// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+// STL utility functions. Usually, these replace built-in, but slow(!),
+// STL functions with more efficient versions.
+
+#ifndef BASE_STL_UTIL_INL_H_
+#define BASE_STL_UTIL_INL_H_
+
+#include <string.h> // for memcpy
+#include <functional>
+#include <set>
+#include <string>
+#include <vector>
+#include <cassert>
+
+// Clear internal memory of an STL object.
+// STL clear()/reserve(0) does not always free internal memory allocated
+// This function uses swap/destructor to ensure the internal memory is freed.
+template<class T> void STLClearObject(T* obj) {
+ T tmp;
+ tmp.swap(*obj);
+ obj->reserve(0); // this is because sometimes "T tmp" allocates objects with
+ // memory (arena implementation?). use reserve()
+ // to clear() even if it doesn't always work
+}
+
+// Reduce memory usage on behalf of object if it is using more than
+// "bytes" bytes of space. By default, we clear objects over 1MB.
+template <class T> inline void STLClearIfBig(T* obj, size_t limit = 1<<20) {
+ if (obj->capacity() >= limit) {
+ STLClearObject(obj);
+ } else {
+ obj->clear();
+ }
+}
+
+// Reserve space for STL object.
+// STL's reserve() will always copy.
+// This function avoid the copy if we already have capacity
+template<class T> void STLReserveIfNeeded(T* obj, int new_size) {
+ if (obj->capacity() < new_size) // increase capacity
+ obj->reserve(new_size);
+ else if (obj->size() > new_size) // reduce size
+ obj->resize(new_size);
+}
+
+// STLDeleteContainerPointers()
+// For a range within a container of pointers, calls delete
+// (non-array version) on these pointers.
+// NOTE: for these three functions, we could just implement a DeleteObject
+// functor and then call for_each() on the range and functor, but this
+// requires us to pull in all of algorithm.h, which seems expensive.
+// For hash_[multi]set, it is important that this deletes behind the iterator
+// because the hash_set may call the hash function on the iterator when it is
+// advanced, which could result in the hash function trying to deference a
+// stale pointer.
+template <class ForwardIterator>
+void STLDeleteContainerPointers(ForwardIterator begin,
+ ForwardIterator end) {
+ while (begin != end) {
+ ForwardIterator temp = begin;
+ ++begin;
+ delete *temp;
+ }
+}
+
+// STLDeleteContainerPairPointers()
+// For a range within a container of pairs, calls delete
+// (non-array version) on BOTH items in the pairs.
+// NOTE: Like STLDeleteContainerPointers, it is important that this deletes
+// behind the iterator because if both the key and value are deleted, the
+// container may call the hash function on the iterator when it is advanced,
+// which could result in the hash function trying to dereference a stale
+// pointer.
+template <class ForwardIterator>
+void STLDeleteContainerPairPointers(ForwardIterator begin,
+ ForwardIterator end) {
+ while (begin != end) {
+ ForwardIterator temp = begin;
+ ++begin;
+ delete temp->first;
+ delete temp->second;
+ }
+}
+
+// STLDeleteContainerPairFirstPointers()
+// For a range within a container of pairs, calls delete (non-array version)
+// on the FIRST item in the pairs.
+// NOTE: Like STLDeleteContainerPointers, deleting behind the iterator.
+template <class ForwardIterator>
+void STLDeleteContainerPairFirstPointers(ForwardIterator begin,
+ ForwardIterator end) {
+ while (begin != end) {
+ ForwardIterator temp = begin;
+ ++begin;
+ delete temp->first;
+ }
+}
+
+// STLDeleteContainerPairSecondPointers()
+// For a range within a container of pairs, calls delete
+// (non-array version) on the SECOND item in the pairs.
+template <class ForwardIterator>
+void STLDeleteContainerPairSecondPointers(ForwardIterator begin,
+ ForwardIterator end) {
+ while (begin != end) {
+ delete begin->second;
+ ++begin;
+ }
+}
+
+template<typename T>
+inline void STLAssignToVector(std::vector<T>* vec,
+ const T* ptr,
+ size_t n) {
+ vec->resize(n);
+ memcpy(&vec->front(), ptr, n*sizeof(T));
+}
+
+/***** Hack to allow faster assignment to a vector *****/
+
+// This routine speeds up an assignment of 32 bytes to a vector from
+// about 250 cycles per assignment to about 140 cycles.
+//
+// Usage:
+// STLAssignToVectorChar(&vec, ptr, size);
+// STLAssignToString(&str, ptr, size);
+
+inline void STLAssignToVectorChar(std::vector<char>* vec,
+ const char* ptr,
+ size_t n) {
+ STLAssignToVector(vec, ptr, n);
+}
+
+inline void STLAssignToString(std::string* str, const char* ptr, size_t n) {
+ str->resize(n);
+ memcpy(&*str->begin(), ptr, n);
+}
+
+// To treat a possibly-empty vector as an array, use these functions.
+// If you know the array will never be empty, you can use &*v.begin()
+// directly, but that is allowed to dump core if v is empty. This
+// function is the most efficient code that will work, taking into
+// account how our STL is actually implemented. THIS IS NON-PORTABLE
+// CODE, so call us instead of repeating the nonportable code
+// everywhere. If our STL implementation changes, we will need to
+// change this as well.
+
+template<typename T>
+inline T* vector_as_array(std::vector<T>* v) {
+# ifdef NDEBUG
+ return &*v->begin();
+# else
+ return v->empty() ? NULL : &*v->begin();
+# endif
+}
+
+template<typename T>
+inline const T* vector_as_array(const std::vector<T>* v) {
+# ifdef NDEBUG
+ return &*v->begin();
+# else
+ return v->empty() ? NULL : &*v->begin();
+# endif
+}
+
+// Return a mutable char* pointing to a string's internal buffer,
+// which may not be null-terminated. Writing through this pointer will
+// modify the string.
+//
+// string_as_array(&str)[i] is valid for 0 <= i < str.size() until the
+// next call to a string method that invalidates iterators.
+//
+// As of 2006-04, there is no standard-blessed way of getting a
+// mutable reference to a string's internal buffer. However, issue 530
+// (http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-active.html#530)
+// proposes this as the method. According to Matt Austern, this should
+// already work on all current implementations.
+inline char* string_as_array(std::string* str) {
+ // DO NOT USE const_cast<char*>(str->data())! See the unittest for why.
+ return str->empty() ? NULL : &*str->begin();
+}
+
+// These are methods that test two hash maps/sets for equality. These exist
+// because the == operator in the STL can return false when the maps/sets
+// contain identical elements. This is because it compares the internal hash
+// tables which may be different if the order of insertions and deletions
+// differed.
+
+template <class HashSet>
+inline bool
+HashSetEquality(const HashSet& set_a,
+ const HashSet& set_b) {
+ if (set_a.size() != set_b.size()) return false;
+ for (typename HashSet::const_iterator i = set_a.begin();
+ i != set_a.end();
+ ++i) {
+ if (set_b.find(*i) == set_b.end())
+ return false;
+ }
+ return true;
+}
+
+template <class HashMap>
+inline bool
+HashMapEquality(const HashMap& map_a,
+ const HashMap& map_b) {
+ if (map_a.size() != map_b.size()) return false;
+ for (typename HashMap::const_iterator i = map_a.begin();
+ i != map_a.end(); ++i) {
+ typename HashMap::const_iterator j = map_b.find(i->first);
+ if (j == map_b.end()) return false;
+ if (i->second != j->second) return false;
+ }
+ return true;
+}
+
+// The following functions are useful for cleaning up STL containers
+// whose elements point to allocated memory.
+
+// STLDeleteElements() deletes all the elements in an STL container and clears
+// the container. This function is suitable for use with a vector, set,
+// hash_set, or any other STL container which defines sensible begin(), end(),
+// and clear() methods.
+//
+// If container is NULL, this function is a no-op.
+//
+// As an alternative to calling STLDeleteElements() directly, consider
+// STLElementDeleter (defined below), which ensures that your container's
+// elements are deleted when the STLElementDeleter goes out of scope.
+template <class T>
+void STLDeleteElements(T *container) {
+ if (!container) return;
+ STLDeleteContainerPointers(container->begin(), container->end());
+ container->clear();
+}
+
+// Given an STL container consisting of (key, value) pairs, STLDeleteValues
+// deletes all the "value" components and clears the container. Does nothing
+// in the case it's given a NULL pointer.
+
+template <class T>
+void STLDeleteValues(T *v) {
+ if (!v) return;
+ for (typename T::iterator i = v->begin(); i != v->end(); ++i) {
+ delete i->second;
+ }
+ v->clear();
+}
+
+
+// The following classes provide a convenient way to delete all elements or
+// values from STL containers when they goes out of scope. This greatly
+// simplifies code that creates temporary objects and has multiple return
+// statements. Example:
+//
+// vector<MyProto *> tmp_proto;
+// STLElementDeleter<vector<MyProto *> > d(&tmp_proto);
+// if (...) return false;
+// ...
+// return success;
+
+// Given a pointer to an STL container this class will delete all the element
+// pointers when it goes out of scope.
+
+template<class STLContainer> class STLElementDeleter {
+ public:
+ STLElementDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {}
+ ~STLElementDeleter<STLContainer>() { STLDeleteElements(container_ptr_); }
+ private:
+ STLContainer *container_ptr_;
+};
+
+// Given a pointer to an STL container this class will delete all the value
+// pointers when it goes out of scope.
+
+template<class STLContainer> class STLValueDeleter {
+ public:
+ STLValueDeleter<STLContainer>(STLContainer *ptr) : container_ptr_(ptr) {}
+ ~STLValueDeleter<STLContainer>() { STLDeleteValues(container_ptr_); }
+ private:
+ STLContainer *container_ptr_;
+};
+
+
+// Forward declare some callback classes in callback.h for STLBinaryFunction
+template <class R, class T1, class T2>
+class ResultCallback2;
+
+// STLBinaryFunction is a wrapper for the ResultCallback2 class in callback.h
+// It provides an operator () method instead of a Run method, so it may be
+// passed to STL functions in <algorithm>.
+//
+// The client should create callback with NewPermanentCallback, and should
+// delete callback after it is done using the STLBinaryFunction.
+
+template <class Result, class Arg1, class Arg2>
+class STLBinaryFunction : public std::binary_function<Arg1, Arg2, Result> {
+ public:
+ typedef ResultCallback2<Result, Arg1, Arg2> Callback;
+
+ STLBinaryFunction(Callback* callback)
+ : callback_(callback) {
+ assert(callback_);
+ }
+
+ Result operator() (Arg1 arg1, Arg2 arg2) {
+ return callback_->Run(arg1, arg2);
+ }
+
+ private:
+ Callback* callback_;
+};
+
+// STLBinaryPredicate is a specialized version of STLBinaryFunction, where the
+// return type is bool and both arguments have type Arg. It can be used
+// wherever STL requires a StrictWeakOrdering, such as in sort() or
+// lower_bound().
+//
+// templated typedefs are not supported, so instead we use inheritance.
+
+template <class Arg>
+class STLBinaryPredicate : public STLBinaryFunction<bool, Arg, Arg> {
+ public:
+ typedef typename STLBinaryPredicate<Arg>::Callback Callback;
+ STLBinaryPredicate(Callback* callback)
+ : STLBinaryFunction<bool, Arg, Arg>(callback) {
+ }
+};
+
+// Functors that compose arbitrary unary and binary functions with a
+// function that "projects" one of the members of a pair.
+// Specifically, if p1 and p2, respectively, are the functions that
+// map a pair to its first and second, respectively, members, the
+// table below summarizes the functions that can be constructed:
+//
+// * UnaryOperate1st<pair>(f) returns the function x -> f(p1(x))
+// * UnaryOperate2nd<pair>(f) returns the function x -> f(p2(x))
+// * BinaryOperate1st<pair>(f) returns the function (x,y) -> f(p1(x),p1(y))
+// * BinaryOperate2nd<pair>(f) returns the function (x,y) -> f(p2(x),p2(y))
+//
+// A typical usage for these functions would be when iterating over
+// the contents of an STL map. For other sample usage, see the unittest.
+
+template<typename Pair, typename UnaryOp>
+class UnaryOperateOnFirst
+ : public std::unary_function<Pair, typename UnaryOp::result_type> {
+ public:
+ UnaryOperateOnFirst() {
+ }
+
+ UnaryOperateOnFirst(const UnaryOp& f) : f_(f) {
+ }
+
+ typename UnaryOp::result_type operator()(const Pair& p) const {
+ return f_(p.first);
+ }
+
+ private:
+ UnaryOp f_;
+};
+
+template<typename Pair, typename UnaryOp>
+UnaryOperateOnFirst<Pair, UnaryOp> UnaryOperate1st(const UnaryOp& f) {
+ return UnaryOperateOnFirst<Pair, UnaryOp>(f);
+}
+
+template<typename Pair, typename UnaryOp>
+class UnaryOperateOnSecond
+ : public std::unary_function<Pair, typename UnaryOp::result_type> {
+ public:
+ UnaryOperateOnSecond() {
+ }
+
+ UnaryOperateOnSecond(const UnaryOp& f) : f_(f) {
+ }
+
+ typename UnaryOp::result_type operator()(const Pair& p) const {
+ return f_(p.second);
+ }
+
+ private:
+ UnaryOp f_;
+};
+
+template<typename Pair, typename UnaryOp>
+UnaryOperateOnSecond<Pair, UnaryOp> UnaryOperate2nd(const UnaryOp& f) {
+ return UnaryOperateOnSecond<Pair, UnaryOp>(f);
+}
+
+template<typename Pair, typename BinaryOp>
+class BinaryOperateOnFirst
+ : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
+ public:
+ BinaryOperateOnFirst() {
+ }
+
+ BinaryOperateOnFirst(const BinaryOp& f) : f_(f) {
+ }
+
+ typename BinaryOp::result_type operator()(const Pair& p1,
+ const Pair& p2) const {
+ return f_(p1.first, p2.first);
+ }
+
+ private:
+ BinaryOp f_;
+};
+
+template<typename Pair, typename BinaryOp>
+BinaryOperateOnFirst<Pair, BinaryOp> BinaryOperate1st(const BinaryOp& f) {
+ return BinaryOperateOnFirst<Pair, BinaryOp>(f);
+}
+
+template<typename Pair, typename BinaryOp>
+class BinaryOperateOnSecond
+ : public std::binary_function<Pair, Pair, typename BinaryOp::result_type> {
+ public:
+ BinaryOperateOnSecond() {
+ }
+
+ BinaryOperateOnSecond(const BinaryOp& f) : f_(f) {
+ }
+
+ typename BinaryOp::result_type operator()(const Pair& p1,
+ const Pair& p2) const {
+ return f_(p1.second, p2.second);
+ }
+
+ private:
+ BinaryOp f_;
+};
+
+template<typename Pair, typename BinaryOp>
+BinaryOperateOnSecond<Pair, BinaryOp> BinaryOperate2nd(const BinaryOp& f) {
+ return BinaryOperateOnSecond<Pair, BinaryOp>(f);
+}
+
+// Translates a set into a vector.
+template<typename T>
+std::vector<T> SetToVector(const std::set<T>& values) {
+ std::vector<T> result;
+ result.reserve(values.size());
+ result.insert(result.begin(), values.begin(), values.end());
+ return result;
+}
+
+#endif // BASE_STL_UTIL_INL_H_