diff options
Diffstat (limited to 'cc/resources/picture_layer_tiling.cc')
-rw-r--r-- | cc/resources/picture_layer_tiling.cc | 723 |
1 files changed, 723 insertions, 0 deletions
diff --git a/cc/resources/picture_layer_tiling.cc b/cc/resources/picture_layer_tiling.cc new file mode 100644 index 0000000..1ddd460 --- /dev/null +++ b/cc/resources/picture_layer_tiling.cc @@ -0,0 +1,723 @@ +// Copyright 2012 The Chromium Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "cc/resources/picture_layer_tiling.h" + +#include <cmath> + +#include "base/debug/trace_event.h" +#include "cc/base/math_util.h" +#include "ui/gfx/point_conversions.h" +#include "ui/gfx/rect_conversions.h" +#include "ui/gfx/safe_integer_conversions.h" +#include "ui/gfx/size_conversions.h" + +namespace cc { + +scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create( + float contents_scale) { + return make_scoped_ptr(new PictureLayerTiling(contents_scale)); +} + +scoped_ptr<PictureLayerTiling> PictureLayerTiling::Clone() const { + return make_scoped_ptr(new PictureLayerTiling(*this)); +} + +PictureLayerTiling::PictureLayerTiling(float contents_scale) + : client_(NULL), + contents_scale_(contents_scale), + tiling_data_(gfx::Size(), gfx::Size(), true), + resolution_(NON_IDEAL_RESOLUTION), + last_source_frame_number_(0), + last_impl_frame_time_(0) { +} + +PictureLayerTiling::~PictureLayerTiling() { +} + +void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) { + client_ = client; +} + +gfx::Rect PictureLayerTiling::ContentRect() const { + return gfx::Rect(tiling_data_.total_size()); +} + +gfx::SizeF PictureLayerTiling::ContentSizeF() const { + return gfx::ScaleSize(layer_bounds_, contents_scale_); +} + +Tile* PictureLayerTiling::TileAt(int i, int j) const { + TileMap::const_iterator iter = tiles_.find(TileMapKey(i, j)); + if (iter == tiles_.end()) + return NULL; + return iter->second.get(); +} + +void PictureLayerTiling::CreateTile(int i, int j) { + gfx::Rect tile_rect = tiling_data_.TileBoundsWithBorder(i, j); + tile_rect.set_size(tiling_data_.max_texture_size()); + TileMapKey key(i, j); + DCHECK(tiles_.find(key) == tiles_.end()); + scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect); + if (tile) + tiles_[key] = tile; +} + +Region PictureLayerTiling::OpaqueRegionInContentRect( + const gfx::Rect& content_rect) const { + Region opaque_region; + // TODO(enne): implement me + return opaque_region; +} + +void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) { + if (layer_bounds_ == layer_bounds) + return; + + gfx::Size old_layer_bounds = layer_bounds_; + layer_bounds_ = layer_bounds; + gfx::Size old_content_bounds = tiling_data_.total_size(); + gfx::Size content_bounds = + gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_)); + + tiling_data_.SetTotalSize(content_bounds); + if (layer_bounds_.IsEmpty()) { + tiles_.clear(); + return; + } + + gfx::Size tile_size = client_->CalculateTileSize( + tiling_data_.max_texture_size(), + content_bounds); + if (tile_size != tiling_data_.max_texture_size()) { + tiling_data_.SetMaxTextureSize(tile_size); + tiles_.clear(); + CreateTilesFromLayerRect(gfx::Rect(layer_bounds_)); + return; + } + + // Any tiles outside our new bounds are invalid and should be dropped. + if (old_content_bounds.width() > content_bounds.width() || + old_content_bounds.height() > content_bounds.height()) { + int right = + tiling_data_.TileXIndexFromSrcCoord(content_bounds.width() - 1); + int bottom = + tiling_data_.TileYIndexFromSrcCoord(content_bounds.height() - 1); + + std::vector<TileMapKey> invalid_tile_keys; + for (TileMap::const_iterator it = tiles_.begin(); + it != tiles_.end(); ++it) { + if (it->first.first > right || it->first.second > bottom) + invalid_tile_keys.push_back(it->first); + } + for (size_t i = 0; i < invalid_tile_keys.size(); ++i) + tiles_.erase(invalid_tile_keys[i]); + } + + // Create tiles for newly exposed areas. + Region layer_region((gfx::Rect(layer_bounds_))); + layer_region.Subtract(gfx::Rect(old_layer_bounds)); + for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) { + Invalidate(iter.rect()); + CreateTilesFromLayerRect(iter.rect()); + } +} + +void PictureLayerTiling::Invalidate(const Region& layer_invalidation) { + std::vector<TileMapKey> new_tiles; + + for (Region::Iterator region_iter(layer_invalidation); + region_iter.has_rect(); + region_iter.next()) { + + gfx::Rect layer_invalidation = region_iter.rect(); + layer_invalidation.Intersect(gfx::Rect(layer_bounds_)); + gfx::Rect rect = + gfx::ToEnclosingRect(ScaleRect(layer_invalidation, contents_scale_)); + + for (PictureLayerTiling::Iterator tile_iter(this, contents_scale_, rect, + PictureLayerTiling::LayerDeviceAlignmentUnknown); + tile_iter; + ++tile_iter) { + TileMapKey key(tile_iter.tile_i_, tile_iter.tile_j_); + TileMap::iterator found = tiles_.find(key); + if (found == tiles_.end()) + continue; + + tiles_.erase(found); + new_tiles.push_back(key); + } + } + + for (size_t i = 0; i < new_tiles.size(); ++i) + CreateTile(new_tiles[i].first, new_tiles[i].second); +} + +void PictureLayerTiling::CreateTilesFromLayerRect(gfx::Rect layer_rect) { + gfx::Rect content_rect = + gfx::ToEnclosingRect(ScaleRect(layer_rect, contents_scale_)); + CreateTilesFromContentRect(content_rect); +} + +void PictureLayerTiling::CreateTilesFromContentRect(gfx::Rect content_rect) { + for (TilingData::Iterator iter(&tiling_data_, content_rect); iter; ++iter) { + TileMap::iterator found = + tiles_.find(TileMapKey(iter.index_x(), iter.index_y())); + // Ignore any tiles that already exist. + if (found != tiles_.end()) + continue; + CreateTile(iter.index_x(), iter.index_y()); + } +} + +PictureLayerTiling::Iterator::Iterator() + : tiling_(NULL), + current_tile_(NULL), + tile_i_(0), + tile_j_(0), + left_(0), + top_(0), + right_(-1), + bottom_(-1) { +} + +PictureLayerTiling::Iterator::Iterator(const PictureLayerTiling* tiling, + float dest_scale, + gfx::Rect dest_rect, + LayerDeviceAlignment layerDeviceAlignment) + : tiling_(tiling), + dest_rect_(dest_rect), + dest_to_content_scale_(0), + current_tile_(NULL), + tile_i_(0), + tile_j_(0), + left_(0), + top_(0), + right_(-1), + bottom_(-1) { + DCHECK(tiling_); + if (dest_rect_.IsEmpty()) + return; + + dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale; + // This is the maximum size that the dest rect can be, given the content size. + gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize( + tiling_->ContentRect().size(), + 1 / dest_to_content_scale_, + 1 / dest_to_content_scale_)); + + gfx::Rect content_rect = + gfx::ToEnclosingRect(gfx::ScaleRect(dest_rect_, + dest_to_content_scale_, + dest_to_content_scale_)); + // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to + // check for non-intersection first. + content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size())); + if (content_rect.IsEmpty()) + return; + + left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x()); + top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y()); + right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord( + content_rect.right() - 1); + bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord( + content_rect.bottom() - 1); + + tile_i_ = left_ - 1; + tile_j_ = top_; + ++(*this); +} + +PictureLayerTiling::Iterator::~Iterator() { +} + +PictureLayerTiling::Iterator& PictureLayerTiling::Iterator::operator++() { + if (tile_j_ > bottom_) + return *this; + + bool first_time = tile_i_ < left_; + bool new_row = false; + tile_i_++; + if (tile_i_ > right_) { + tile_i_ = left_; + tile_j_++; + new_row = true; + if (tile_j_ > bottom_) { + current_tile_ = NULL; + return *this; + } + } + + current_tile_ = tiling_->TileAt(tile_i_, tile_j_); + + // Calculate the current geometry rect. Due to floating point rounding + // and ToEnclosingRect, tiles might overlap in destination space on the + // edges. + gfx::Rect last_geometry_rect = current_geometry_rect_; + + gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_); + + current_geometry_rect_ = gfx::ToEnclosingRect( + gfx::ScaleRect(content_rect, 1 / dest_to_content_scale_, + 1 / dest_to_content_scale_)); + + current_geometry_rect_.Intersect(dest_rect_); + + if (first_time) + return *this; + + // Iteration happens left->right, top->bottom. Running off the bottom-right + // edge is handled by the intersection above with dest_rect_. Here we make + // sure that the new current geometry rect doesn't overlap with the last. + int min_left; + int min_top; + if (new_row) { + min_left = dest_rect_.x(); + min_top = last_geometry_rect.bottom(); + } else { + min_left = last_geometry_rect.right(); + min_top = last_geometry_rect.y(); + } + + int inset_left = std::max(0, min_left - current_geometry_rect_.x()); + int inset_top = std::max(0, min_top - current_geometry_rect_.y()); + current_geometry_rect_.Inset(inset_left, inset_top, 0, 0); + + if (!new_row) { + DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x()); + DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom()); + DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y()); + } + + return *this; +} + +gfx::Rect PictureLayerTiling::Iterator::geometry_rect() const { + return current_geometry_rect_; +} + +gfx::Rect PictureLayerTiling::Iterator::full_tile_geometry_rect() const { + gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_); + rect.set_size(tiling_->tiling_data_.max_texture_size()); + return rect; +} + +gfx::RectF PictureLayerTiling::Iterator::texture_rect() const { + gfx::PointF tex_origin = + tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin(); + + // Convert from dest space => content space => texture space. + gfx::RectF texture_rect(current_geometry_rect_); + texture_rect.Scale(dest_to_content_scale_, + dest_to_content_scale_); + texture_rect.Offset(-tex_origin.OffsetFromOrigin()); + texture_rect.Intersect(tiling_->ContentRect()); + + return texture_rect; +} + +gfx::Size PictureLayerTiling::Iterator::texture_size() const { + return tiling_->tiling_data_.max_texture_size(); +} + +void PictureLayerTiling::UpdateTilePriorities( + WhichTree tree, + gfx::Size device_viewport, + const gfx::RectF& viewport_in_layer_space, + gfx::Size last_layer_bounds, + gfx::Size current_layer_bounds, + float last_layer_contents_scale, + float current_layer_contents_scale, + const gfx::Transform& last_screen_transform, + const gfx::Transform& current_screen_transform, + int current_source_frame_number, + double current_frame_time, + bool store_screen_space_quads_on_tiles) { + if (ContentRect().IsEmpty()) + return; + + bool first_update_in_new_source_frame = + current_source_frame_number != last_source_frame_number_; + + bool first_update_in_new_impl_frame = + current_frame_time != last_impl_frame_time_; + + // In pending tree, this is always called. We update priorities: + // - Immediately after a commit (first_update_in_new_source_frame). + // - On animation ticks after the first frame in the tree + // (first_update_in_new_impl_frame). + // In active tree, this is only called during draw. We update priorities: + // - On draw if properties were not already computed by the pending tree + // and activated for the frame (first_update_in_new_impl_frame). + if (!first_update_in_new_impl_frame && !first_update_in_new_source_frame) + return; + + double time_delta = 0; + if (last_impl_frame_time_ != 0 && last_layer_bounds == current_layer_bounds) + time_delta = current_frame_time - last_impl_frame_time_; + + gfx::Rect viewport_in_content_space = + gfx::ToEnclosingRect(gfx::ScaleRect(viewport_in_layer_space, + contents_scale_)); + + gfx::Size tile_size = tiling_data_.max_texture_size(); + int64 prioritized_rect_area = + TilePriority::kNumTilesToCoverWithInflatedViewportRectForPrioritization * + tile_size.width() * tile_size.height(); + + gfx::Rect prioritized_rect = ExpandRectEquallyToAreaBoundedBy( + viewport_in_content_space, + prioritized_rect_area, + ContentRect()); + DCHECK(ContentRect().Contains(prioritized_rect)); + + // Iterate through all of the tiles that were live last frame but will + // not be live this frame, and mark them as being dead. + for (TilingData::DifferenceIterator iter(&tiling_data_, + last_prioritized_rect_, + prioritized_rect); + iter; + ++iter) { + TileMap::iterator find = tiles_.find(iter.index()); + if (find == tiles_.end()) + continue; + + TilePriority priority; + DCHECK(!priority.is_live); + Tile* tile = find->second.get(); + tile->SetPriority(tree, priority); + } + last_prioritized_rect_ = prioritized_rect; + + gfx::Rect view_rect(device_viewport); + float current_scale = current_layer_contents_scale / contents_scale_; + float last_scale = last_layer_contents_scale / contents_scale_; + + // Fast path tile priority calculation when both transforms are translations. + if (last_screen_transform.IsIdentityOrTranslation() && + current_screen_transform.IsIdentityOrTranslation()) + { + gfx::Vector2dF current_offset( + current_screen_transform.matrix().get(0, 3), + current_screen_transform.matrix().get(1, 3)); + gfx::Vector2dF last_offset( + last_screen_transform.matrix().get(0, 3), + last_screen_transform.matrix().get(1, 3)); + + for (TilingData::Iterator iter(&tiling_data_, prioritized_rect); + iter; ++iter) { + TileMap::iterator find = tiles_.find(iter.index()); + if (find == tiles_.end()) + continue; + Tile* tile = find->second.get(); + + gfx::Rect tile_bounds = + tiling_data_.TileBounds(iter.index_x(), iter.index_y()); + gfx::RectF current_screen_rect = gfx::ScaleRect( + tile_bounds, + current_scale, + current_scale) + current_offset; + gfx::RectF last_screen_rect = gfx::ScaleRect( + tile_bounds, + last_scale, + last_scale) + last_offset; + + float distance_to_visible_in_pixels = + TilePriority::manhattanDistance(current_screen_rect, view_rect); + + float time_to_visible_in_seconds = + TilePriority::TimeForBoundsToIntersect( + last_screen_rect, current_screen_rect, time_delta, view_rect); + TilePriority priority( + resolution_, + time_to_visible_in_seconds, + distance_to_visible_in_pixels); + if (store_screen_space_quads_on_tiles) + priority.set_current_screen_quad(gfx::QuadF(current_screen_rect)); + tile->SetPriority(tree, priority); + } + } else { + for (TilingData::Iterator iter(&tiling_data_, prioritized_rect); + iter; ++iter) { + TileMap::iterator find = tiles_.find(iter.index()); + if (find == tiles_.end()) + continue; + Tile* tile = find->second.get(); + + gfx::Rect tile_bounds = + tiling_data_.TileBounds(iter.index_x(), iter.index_y()); + gfx::RectF current_layer_content_rect = gfx::ScaleRect( + tile_bounds, + current_scale, + current_scale); + gfx::RectF current_screen_rect = MathUtil::MapClippedRect( + current_screen_transform, current_layer_content_rect); + gfx::RectF last_layer_content_rect = gfx::ScaleRect( + tile_bounds, + last_scale, + last_scale); + gfx::RectF last_screen_rect = MathUtil::MapClippedRect( + last_screen_transform, last_layer_content_rect); + + float distance_to_visible_in_pixels = + TilePriority::manhattanDistance(current_screen_rect, view_rect); + + float time_to_visible_in_seconds = + TilePriority::TimeForBoundsToIntersect( + last_screen_rect, current_screen_rect, time_delta, view_rect); + + TilePriority priority( + resolution_, + time_to_visible_in_seconds, + distance_to_visible_in_pixels); + if (store_screen_space_quads_on_tiles) { + bool clipped; + priority.set_current_screen_quad( + MathUtil::MapQuad(current_screen_transform, + gfx::QuadF(current_layer_content_rect), + &clipped)); + } + tile->SetPriority(tree, priority); + } + } + + last_source_frame_number_ = current_source_frame_number; + last_impl_frame_time_ = current_frame_time; +} + +void PictureLayerTiling::DidBecomeActive() { + for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) { + it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE)); + it->second->SetPriority(PENDING_TREE, TilePriority()); + + // Tile holds a ref onto a picture pile. If the tile never gets invalidated + // and recreated, then that picture pile ref could exist indefinitely. To + // prevent this, ask the client to update the pile to its own ref. This + // will cause PicturePileImpls and their clones to get deleted once the + // corresponding PictureLayerImpl and any in flight raster jobs go out of + // scope. + client_->UpdatePile(it->second); + } +} + +scoped_ptr<base::Value> PictureLayerTiling::AsValue() const { + scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue()); + state->SetInteger("num_tiles", tiles_.size()); + state->SetDouble("content_scale", contents_scale_); + state->Set("content_bounds", + MathUtil::AsValue(ContentRect().size()).release()); + return state.PassAs<base::Value>(); +} + +namespace { + +int ComputeOffsetToExpand4EdgesEqually(int old_width, + int old_height, + int64 target_area) { + // We need to expand the rect in 4 directions, we can compute the + // amount to expand along each axis with a quadratic equation: + // (old_w + add) * (old_h + add) = target_area + // old_w * old_h + old_w * add + add * old_h + add * add = target_area + // add^2 + add * (old_w + old_h) - target_area + old_w * old_h = 0 + // Therefore, we solve the quadratic equation with: + // a = 1 + // b = old_w + old_h + // c = -target_area + old_w * old_h + int a = 1; + int64 b = old_width + old_height; + int64 c = -target_area + old_width * old_height; + int sqrt_part = std::sqrt(b * b - 4.0 * a * c); + int add_each_axis = (-b + sqrt_part) / 2 / a; + return add_each_axis / 2; +} + +int ComputeOffsetToExpand3EdgesEqually(int old_width, + int old_height, + int64 target_area, + bool left_complete, + bool top_complete, + bool right_complete, + bool bottom_complete) { + // We need to expand the rect in three directions, so we will have to + // expand along one axis twice as much as the other. Otherwise, this + // is very similar to the case where we expand in all 4 directions. + + if (left_complete || right_complete) { + // Expanding twice as much vertically as horizontally. + // (old_w + add) * (old_h + add*2) = target_area + // old_w * old_h + old_w * add*2 + add * old_h + add * add*2 = target_area + // (add^2)*2 + add * (old_w*2 + old_h) - target_area + old_w * old_h = 0 + // Therefore, we solve the quadratic equation with: + // a = 2 + // b = old_w*2 + old_h + // c = -target_area + old_w * old_h + int a = 2; + int64 b = old_width * 2 + old_height; + int64 c = -target_area + old_width * old_height; + int sqrt_part = std::sqrt(b * b - 4.0 * a * c); + int add_each_direction = (-b + sqrt_part) / 2 / a; + return add_each_direction; + } else { + // Expanding twice as much horizontally as vertically. + // (old_w + add*2) * (old_h + add) = target_area + // old_w * old_h + old_w * add + add*2 * old_h + add*2 * add = target_area + // (add^2)*2 + add * (old_w + old_h*2) - target_area + old_w * old_h = 0 + // Therefore, we solve the quadratic equation with: + // a = 2 + // b = old_w + old_h*2 + // c = -target_area + old_w * old_h + int a = 2; + int64 b = old_width + old_height * 2; + int64 c = -target_area + old_width * old_height; + int sqrt_part = std::sqrt(b * b - 4.0 * a * c); + int add_each_direction = (-b + sqrt_part) / 2 / a; + return add_each_direction; + } +} + +int ComputeOffsetToExpand2EdgesEqually(int old_width, + int old_height, + int64 target_area, + bool left_complete, + bool top_complete, + bool right_complete, + bool bottom_complete) { + // We need to expand the rect along two directions. If the two directions + // are opposite from each other then we only need to compute a distance + // along a single axis. + if (left_complete && right_complete) { + // Expanding along the vertical axis only: + // old_w * (old_h + add) = target_area + // old_w * old_h + old_w * add = target_area + // add_vertically = (target_area - old_w * old_h) / old_w + int add_vertically = target_area / old_width - old_height; + return add_vertically / 2; + } else if (top_complete && bottom_complete) { + // Expanding along the horizontal axis only: + // (old_w + add) * old_h = target_area + // old_w * old_h + add * old_h = target_area + // add_horizontally = (target_area - old_w * old_h) / old_h + int add_horizontally = target_area / old_height - old_width; + return add_horizontally / 2; + } else { + // If we need to expand along both horizontal and vertical axes, we can use + // the same result as if we were expanding all four edges. But we apply the + // offset computed for opposing edges to a single edge. + int add_each_direction = ComputeOffsetToExpand4EdgesEqually( + old_width, old_height, target_area); + return add_each_direction * 2; + } +} + +int ComputeOffsetToExpand1Edge(int old_width, + int old_height, + int64 target_area, + bool left_complete, + bool top_complete, + bool right_complete, + bool bottom_complete) { + // We need to expand the rect in a single direction, so we are either + // moving just a verical edge, or just a horizontal edge. + if (!top_complete || !bottom_complete) { + // Moving a vertical edge: + // old_w * (old_h + add) = target_area + // old_w * old_h + old_w * add = target_area + // add_vertically = (target_area - old_w * old_h) / old_w + int add_vertically = target_area / old_width - old_height; + return add_vertically; + } else { + // Moving a horizontal edge: + // (old_w + add) * old_h = target_area + // old_w * old_h + add * old_h = target_area + // add_horizontally = (target_area - old_w * old_h) / old_h + int add_horizontally = target_area / old_height - old_width; + return add_horizontally; + } +} + +} // namespace + +// static +gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy( + gfx::Rect starting_rect, + int64 target_area, + gfx::Rect bounding_rect) { + + bool left_complete = false; + bool top_complete = false; + bool right_complete = false; + bool bottom_complete = false; + int num_edges_complete = 0; + + gfx::Rect working_rect = starting_rect; + for (int i = 0; i < 4; ++i) { + if (num_edges_complete != i) + continue; + int offset_for_each_edge = 0; + switch (num_edges_complete) { + case 0: + offset_for_each_edge = ComputeOffsetToExpand4EdgesEqually( + working_rect.width(), + working_rect.height(), + target_area); + break; + case 1: + offset_for_each_edge = ComputeOffsetToExpand3EdgesEqually( + working_rect.width(), + working_rect.height(), + target_area, + left_complete, + top_complete, + right_complete, + bottom_complete); + break; + case 2: + offset_for_each_edge = ComputeOffsetToExpand2EdgesEqually( + working_rect.width(), + working_rect.height(), + target_area, + left_complete, + top_complete, + right_complete, + bottom_complete); + break; + case 3: + offset_for_each_edge = ComputeOffsetToExpand1Edge( + working_rect.width(), + working_rect.height(), + target_area, + left_complete, + top_complete, + right_complete, + bottom_complete); + } + + working_rect.Inset((left_complete ? 0 : -offset_for_each_edge), + (top_complete ? 0 : -offset_for_each_edge), + (right_complete ? 0 : -offset_for_each_edge), + (bottom_complete ? 0 : -offset_for_each_edge)); + + if (bounding_rect.Contains(working_rect)) + return working_rect; + working_rect.Intersect(bounding_rect); + + if (working_rect.x() == bounding_rect.x()) left_complete = true; + if (working_rect.y() == bounding_rect.y()) top_complete = true; + if (working_rect.right() == bounding_rect.right()) right_complete = true; + if (working_rect.bottom() == bounding_rect.bottom()) bottom_complete = true; + + num_edges_complete = (left_complete ? 1 : 0) + + (top_complete ? 1 : 0) + + (right_complete ? 1 : 0) + + (bottom_complete ? 1 : 0); + if (num_edges_complete == 4) + return working_rect; + } + + NOTREACHED(); + return starting_rect; +} + +} // namespace cc |