summaryrefslogtreecommitdiffstats
path: root/cc/resources/picture_layer_tiling.cc
diff options
context:
space:
mode:
Diffstat (limited to 'cc/resources/picture_layer_tiling.cc')
-rw-r--r--cc/resources/picture_layer_tiling.cc723
1 files changed, 723 insertions, 0 deletions
diff --git a/cc/resources/picture_layer_tiling.cc b/cc/resources/picture_layer_tiling.cc
new file mode 100644
index 0000000..1ddd460
--- /dev/null
+++ b/cc/resources/picture_layer_tiling.cc
@@ -0,0 +1,723 @@
+// Copyright 2012 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "cc/resources/picture_layer_tiling.h"
+
+#include <cmath>
+
+#include "base/debug/trace_event.h"
+#include "cc/base/math_util.h"
+#include "ui/gfx/point_conversions.h"
+#include "ui/gfx/rect_conversions.h"
+#include "ui/gfx/safe_integer_conversions.h"
+#include "ui/gfx/size_conversions.h"
+
+namespace cc {
+
+scoped_ptr<PictureLayerTiling> PictureLayerTiling::Create(
+ float contents_scale) {
+ return make_scoped_ptr(new PictureLayerTiling(contents_scale));
+}
+
+scoped_ptr<PictureLayerTiling> PictureLayerTiling::Clone() const {
+ return make_scoped_ptr(new PictureLayerTiling(*this));
+}
+
+PictureLayerTiling::PictureLayerTiling(float contents_scale)
+ : client_(NULL),
+ contents_scale_(contents_scale),
+ tiling_data_(gfx::Size(), gfx::Size(), true),
+ resolution_(NON_IDEAL_RESOLUTION),
+ last_source_frame_number_(0),
+ last_impl_frame_time_(0) {
+}
+
+PictureLayerTiling::~PictureLayerTiling() {
+}
+
+void PictureLayerTiling::SetClient(PictureLayerTilingClient* client) {
+ client_ = client;
+}
+
+gfx::Rect PictureLayerTiling::ContentRect() const {
+ return gfx::Rect(tiling_data_.total_size());
+}
+
+gfx::SizeF PictureLayerTiling::ContentSizeF() const {
+ return gfx::ScaleSize(layer_bounds_, contents_scale_);
+}
+
+Tile* PictureLayerTiling::TileAt(int i, int j) const {
+ TileMap::const_iterator iter = tiles_.find(TileMapKey(i, j));
+ if (iter == tiles_.end())
+ return NULL;
+ return iter->second.get();
+}
+
+void PictureLayerTiling::CreateTile(int i, int j) {
+ gfx::Rect tile_rect = tiling_data_.TileBoundsWithBorder(i, j);
+ tile_rect.set_size(tiling_data_.max_texture_size());
+ TileMapKey key(i, j);
+ DCHECK(tiles_.find(key) == tiles_.end());
+ scoped_refptr<Tile> tile = client_->CreateTile(this, tile_rect);
+ if (tile)
+ tiles_[key] = tile;
+}
+
+Region PictureLayerTiling::OpaqueRegionInContentRect(
+ const gfx::Rect& content_rect) const {
+ Region opaque_region;
+ // TODO(enne): implement me
+ return opaque_region;
+}
+
+void PictureLayerTiling::SetLayerBounds(gfx::Size layer_bounds) {
+ if (layer_bounds_ == layer_bounds)
+ return;
+
+ gfx::Size old_layer_bounds = layer_bounds_;
+ layer_bounds_ = layer_bounds;
+ gfx::Size old_content_bounds = tiling_data_.total_size();
+ gfx::Size content_bounds =
+ gfx::ToCeiledSize(gfx::ScaleSize(layer_bounds_, contents_scale_));
+
+ tiling_data_.SetTotalSize(content_bounds);
+ if (layer_bounds_.IsEmpty()) {
+ tiles_.clear();
+ return;
+ }
+
+ gfx::Size tile_size = client_->CalculateTileSize(
+ tiling_data_.max_texture_size(),
+ content_bounds);
+ if (tile_size != tiling_data_.max_texture_size()) {
+ tiling_data_.SetMaxTextureSize(tile_size);
+ tiles_.clear();
+ CreateTilesFromLayerRect(gfx::Rect(layer_bounds_));
+ return;
+ }
+
+ // Any tiles outside our new bounds are invalid and should be dropped.
+ if (old_content_bounds.width() > content_bounds.width() ||
+ old_content_bounds.height() > content_bounds.height()) {
+ int right =
+ tiling_data_.TileXIndexFromSrcCoord(content_bounds.width() - 1);
+ int bottom =
+ tiling_data_.TileYIndexFromSrcCoord(content_bounds.height() - 1);
+
+ std::vector<TileMapKey> invalid_tile_keys;
+ for (TileMap::const_iterator it = tiles_.begin();
+ it != tiles_.end(); ++it) {
+ if (it->first.first > right || it->first.second > bottom)
+ invalid_tile_keys.push_back(it->first);
+ }
+ for (size_t i = 0; i < invalid_tile_keys.size(); ++i)
+ tiles_.erase(invalid_tile_keys[i]);
+ }
+
+ // Create tiles for newly exposed areas.
+ Region layer_region((gfx::Rect(layer_bounds_)));
+ layer_region.Subtract(gfx::Rect(old_layer_bounds));
+ for (Region::Iterator iter(layer_region); iter.has_rect(); iter.next()) {
+ Invalidate(iter.rect());
+ CreateTilesFromLayerRect(iter.rect());
+ }
+}
+
+void PictureLayerTiling::Invalidate(const Region& layer_invalidation) {
+ std::vector<TileMapKey> new_tiles;
+
+ for (Region::Iterator region_iter(layer_invalidation);
+ region_iter.has_rect();
+ region_iter.next()) {
+
+ gfx::Rect layer_invalidation = region_iter.rect();
+ layer_invalidation.Intersect(gfx::Rect(layer_bounds_));
+ gfx::Rect rect =
+ gfx::ToEnclosingRect(ScaleRect(layer_invalidation, contents_scale_));
+
+ for (PictureLayerTiling::Iterator tile_iter(this, contents_scale_, rect,
+ PictureLayerTiling::LayerDeviceAlignmentUnknown);
+ tile_iter;
+ ++tile_iter) {
+ TileMapKey key(tile_iter.tile_i_, tile_iter.tile_j_);
+ TileMap::iterator found = tiles_.find(key);
+ if (found == tiles_.end())
+ continue;
+
+ tiles_.erase(found);
+ new_tiles.push_back(key);
+ }
+ }
+
+ for (size_t i = 0; i < new_tiles.size(); ++i)
+ CreateTile(new_tiles[i].first, new_tiles[i].second);
+}
+
+void PictureLayerTiling::CreateTilesFromLayerRect(gfx::Rect layer_rect) {
+ gfx::Rect content_rect =
+ gfx::ToEnclosingRect(ScaleRect(layer_rect, contents_scale_));
+ CreateTilesFromContentRect(content_rect);
+}
+
+void PictureLayerTiling::CreateTilesFromContentRect(gfx::Rect content_rect) {
+ for (TilingData::Iterator iter(&tiling_data_, content_rect); iter; ++iter) {
+ TileMap::iterator found =
+ tiles_.find(TileMapKey(iter.index_x(), iter.index_y()));
+ // Ignore any tiles that already exist.
+ if (found != tiles_.end())
+ continue;
+ CreateTile(iter.index_x(), iter.index_y());
+ }
+}
+
+PictureLayerTiling::Iterator::Iterator()
+ : tiling_(NULL),
+ current_tile_(NULL),
+ tile_i_(0),
+ tile_j_(0),
+ left_(0),
+ top_(0),
+ right_(-1),
+ bottom_(-1) {
+}
+
+PictureLayerTiling::Iterator::Iterator(const PictureLayerTiling* tiling,
+ float dest_scale,
+ gfx::Rect dest_rect,
+ LayerDeviceAlignment layerDeviceAlignment)
+ : tiling_(tiling),
+ dest_rect_(dest_rect),
+ dest_to_content_scale_(0),
+ current_tile_(NULL),
+ tile_i_(0),
+ tile_j_(0),
+ left_(0),
+ top_(0),
+ right_(-1),
+ bottom_(-1) {
+ DCHECK(tiling_);
+ if (dest_rect_.IsEmpty())
+ return;
+
+ dest_to_content_scale_ = tiling_->contents_scale_ / dest_scale;
+ // This is the maximum size that the dest rect can be, given the content size.
+ gfx::Size dest_content_size = gfx::ToCeiledSize(gfx::ScaleSize(
+ tiling_->ContentRect().size(),
+ 1 / dest_to_content_scale_,
+ 1 / dest_to_content_scale_));
+
+ gfx::Rect content_rect =
+ gfx::ToEnclosingRect(gfx::ScaleRect(dest_rect_,
+ dest_to_content_scale_,
+ dest_to_content_scale_));
+ // IndexFromSrcCoord clamps to valid tile ranges, so it's necessary to
+ // check for non-intersection first.
+ content_rect.Intersect(gfx::Rect(tiling_->tiling_data_.total_size()));
+ if (content_rect.IsEmpty())
+ return;
+
+ left_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(content_rect.x());
+ top_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(content_rect.y());
+ right_ = tiling_->tiling_data_.TileXIndexFromSrcCoord(
+ content_rect.right() - 1);
+ bottom_ = tiling_->tiling_data_.TileYIndexFromSrcCoord(
+ content_rect.bottom() - 1);
+
+ tile_i_ = left_ - 1;
+ tile_j_ = top_;
+ ++(*this);
+}
+
+PictureLayerTiling::Iterator::~Iterator() {
+}
+
+PictureLayerTiling::Iterator& PictureLayerTiling::Iterator::operator++() {
+ if (tile_j_ > bottom_)
+ return *this;
+
+ bool first_time = tile_i_ < left_;
+ bool new_row = false;
+ tile_i_++;
+ if (tile_i_ > right_) {
+ tile_i_ = left_;
+ tile_j_++;
+ new_row = true;
+ if (tile_j_ > bottom_) {
+ current_tile_ = NULL;
+ return *this;
+ }
+ }
+
+ current_tile_ = tiling_->TileAt(tile_i_, tile_j_);
+
+ // Calculate the current geometry rect. Due to floating point rounding
+ // and ToEnclosingRect, tiles might overlap in destination space on the
+ // edges.
+ gfx::Rect last_geometry_rect = current_geometry_rect_;
+
+ gfx::Rect content_rect = tiling_->tiling_data_.TileBounds(tile_i_, tile_j_);
+
+ current_geometry_rect_ = gfx::ToEnclosingRect(
+ gfx::ScaleRect(content_rect, 1 / dest_to_content_scale_,
+ 1 / dest_to_content_scale_));
+
+ current_geometry_rect_.Intersect(dest_rect_);
+
+ if (first_time)
+ return *this;
+
+ // Iteration happens left->right, top->bottom. Running off the bottom-right
+ // edge is handled by the intersection above with dest_rect_. Here we make
+ // sure that the new current geometry rect doesn't overlap with the last.
+ int min_left;
+ int min_top;
+ if (new_row) {
+ min_left = dest_rect_.x();
+ min_top = last_geometry_rect.bottom();
+ } else {
+ min_left = last_geometry_rect.right();
+ min_top = last_geometry_rect.y();
+ }
+
+ int inset_left = std::max(0, min_left - current_geometry_rect_.x());
+ int inset_top = std::max(0, min_top - current_geometry_rect_.y());
+ current_geometry_rect_.Inset(inset_left, inset_top, 0, 0);
+
+ if (!new_row) {
+ DCHECK_EQ(last_geometry_rect.right(), current_geometry_rect_.x());
+ DCHECK_EQ(last_geometry_rect.bottom(), current_geometry_rect_.bottom());
+ DCHECK_EQ(last_geometry_rect.y(), current_geometry_rect_.y());
+ }
+
+ return *this;
+}
+
+gfx::Rect PictureLayerTiling::Iterator::geometry_rect() const {
+ return current_geometry_rect_;
+}
+
+gfx::Rect PictureLayerTiling::Iterator::full_tile_geometry_rect() const {
+ gfx::Rect rect = tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_);
+ rect.set_size(tiling_->tiling_data_.max_texture_size());
+ return rect;
+}
+
+gfx::RectF PictureLayerTiling::Iterator::texture_rect() const {
+ gfx::PointF tex_origin =
+ tiling_->tiling_data_.TileBoundsWithBorder(tile_i_, tile_j_).origin();
+
+ // Convert from dest space => content space => texture space.
+ gfx::RectF texture_rect(current_geometry_rect_);
+ texture_rect.Scale(dest_to_content_scale_,
+ dest_to_content_scale_);
+ texture_rect.Offset(-tex_origin.OffsetFromOrigin());
+ texture_rect.Intersect(tiling_->ContentRect());
+
+ return texture_rect;
+}
+
+gfx::Size PictureLayerTiling::Iterator::texture_size() const {
+ return tiling_->tiling_data_.max_texture_size();
+}
+
+void PictureLayerTiling::UpdateTilePriorities(
+ WhichTree tree,
+ gfx::Size device_viewport,
+ const gfx::RectF& viewport_in_layer_space,
+ gfx::Size last_layer_bounds,
+ gfx::Size current_layer_bounds,
+ float last_layer_contents_scale,
+ float current_layer_contents_scale,
+ const gfx::Transform& last_screen_transform,
+ const gfx::Transform& current_screen_transform,
+ int current_source_frame_number,
+ double current_frame_time,
+ bool store_screen_space_quads_on_tiles) {
+ if (ContentRect().IsEmpty())
+ return;
+
+ bool first_update_in_new_source_frame =
+ current_source_frame_number != last_source_frame_number_;
+
+ bool first_update_in_new_impl_frame =
+ current_frame_time != last_impl_frame_time_;
+
+ // In pending tree, this is always called. We update priorities:
+ // - Immediately after a commit (first_update_in_new_source_frame).
+ // - On animation ticks after the first frame in the tree
+ // (first_update_in_new_impl_frame).
+ // In active tree, this is only called during draw. We update priorities:
+ // - On draw if properties were not already computed by the pending tree
+ // and activated for the frame (first_update_in_new_impl_frame).
+ if (!first_update_in_new_impl_frame && !first_update_in_new_source_frame)
+ return;
+
+ double time_delta = 0;
+ if (last_impl_frame_time_ != 0 && last_layer_bounds == current_layer_bounds)
+ time_delta = current_frame_time - last_impl_frame_time_;
+
+ gfx::Rect viewport_in_content_space =
+ gfx::ToEnclosingRect(gfx::ScaleRect(viewport_in_layer_space,
+ contents_scale_));
+
+ gfx::Size tile_size = tiling_data_.max_texture_size();
+ int64 prioritized_rect_area =
+ TilePriority::kNumTilesToCoverWithInflatedViewportRectForPrioritization *
+ tile_size.width() * tile_size.height();
+
+ gfx::Rect prioritized_rect = ExpandRectEquallyToAreaBoundedBy(
+ viewport_in_content_space,
+ prioritized_rect_area,
+ ContentRect());
+ DCHECK(ContentRect().Contains(prioritized_rect));
+
+ // Iterate through all of the tiles that were live last frame but will
+ // not be live this frame, and mark them as being dead.
+ for (TilingData::DifferenceIterator iter(&tiling_data_,
+ last_prioritized_rect_,
+ prioritized_rect);
+ iter;
+ ++iter) {
+ TileMap::iterator find = tiles_.find(iter.index());
+ if (find == tiles_.end())
+ continue;
+
+ TilePriority priority;
+ DCHECK(!priority.is_live);
+ Tile* tile = find->second.get();
+ tile->SetPriority(tree, priority);
+ }
+ last_prioritized_rect_ = prioritized_rect;
+
+ gfx::Rect view_rect(device_viewport);
+ float current_scale = current_layer_contents_scale / contents_scale_;
+ float last_scale = last_layer_contents_scale / contents_scale_;
+
+ // Fast path tile priority calculation when both transforms are translations.
+ if (last_screen_transform.IsIdentityOrTranslation() &&
+ current_screen_transform.IsIdentityOrTranslation())
+ {
+ gfx::Vector2dF current_offset(
+ current_screen_transform.matrix().get(0, 3),
+ current_screen_transform.matrix().get(1, 3));
+ gfx::Vector2dF last_offset(
+ last_screen_transform.matrix().get(0, 3),
+ last_screen_transform.matrix().get(1, 3));
+
+ for (TilingData::Iterator iter(&tiling_data_, prioritized_rect);
+ iter; ++iter) {
+ TileMap::iterator find = tiles_.find(iter.index());
+ if (find == tiles_.end())
+ continue;
+ Tile* tile = find->second.get();
+
+ gfx::Rect tile_bounds =
+ tiling_data_.TileBounds(iter.index_x(), iter.index_y());
+ gfx::RectF current_screen_rect = gfx::ScaleRect(
+ tile_bounds,
+ current_scale,
+ current_scale) + current_offset;
+ gfx::RectF last_screen_rect = gfx::ScaleRect(
+ tile_bounds,
+ last_scale,
+ last_scale) + last_offset;
+
+ float distance_to_visible_in_pixels =
+ TilePriority::manhattanDistance(current_screen_rect, view_rect);
+
+ float time_to_visible_in_seconds =
+ TilePriority::TimeForBoundsToIntersect(
+ last_screen_rect, current_screen_rect, time_delta, view_rect);
+ TilePriority priority(
+ resolution_,
+ time_to_visible_in_seconds,
+ distance_to_visible_in_pixels);
+ if (store_screen_space_quads_on_tiles)
+ priority.set_current_screen_quad(gfx::QuadF(current_screen_rect));
+ tile->SetPriority(tree, priority);
+ }
+ } else {
+ for (TilingData::Iterator iter(&tiling_data_, prioritized_rect);
+ iter; ++iter) {
+ TileMap::iterator find = tiles_.find(iter.index());
+ if (find == tiles_.end())
+ continue;
+ Tile* tile = find->second.get();
+
+ gfx::Rect tile_bounds =
+ tiling_data_.TileBounds(iter.index_x(), iter.index_y());
+ gfx::RectF current_layer_content_rect = gfx::ScaleRect(
+ tile_bounds,
+ current_scale,
+ current_scale);
+ gfx::RectF current_screen_rect = MathUtil::MapClippedRect(
+ current_screen_transform, current_layer_content_rect);
+ gfx::RectF last_layer_content_rect = gfx::ScaleRect(
+ tile_bounds,
+ last_scale,
+ last_scale);
+ gfx::RectF last_screen_rect = MathUtil::MapClippedRect(
+ last_screen_transform, last_layer_content_rect);
+
+ float distance_to_visible_in_pixels =
+ TilePriority::manhattanDistance(current_screen_rect, view_rect);
+
+ float time_to_visible_in_seconds =
+ TilePriority::TimeForBoundsToIntersect(
+ last_screen_rect, current_screen_rect, time_delta, view_rect);
+
+ TilePriority priority(
+ resolution_,
+ time_to_visible_in_seconds,
+ distance_to_visible_in_pixels);
+ if (store_screen_space_quads_on_tiles) {
+ bool clipped;
+ priority.set_current_screen_quad(
+ MathUtil::MapQuad(current_screen_transform,
+ gfx::QuadF(current_layer_content_rect),
+ &clipped));
+ }
+ tile->SetPriority(tree, priority);
+ }
+ }
+
+ last_source_frame_number_ = current_source_frame_number;
+ last_impl_frame_time_ = current_frame_time;
+}
+
+void PictureLayerTiling::DidBecomeActive() {
+ for (TileMap::const_iterator it = tiles_.begin(); it != tiles_.end(); ++it) {
+ it->second->SetPriority(ACTIVE_TREE, it->second->priority(PENDING_TREE));
+ it->second->SetPriority(PENDING_TREE, TilePriority());
+
+ // Tile holds a ref onto a picture pile. If the tile never gets invalidated
+ // and recreated, then that picture pile ref could exist indefinitely. To
+ // prevent this, ask the client to update the pile to its own ref. This
+ // will cause PicturePileImpls and their clones to get deleted once the
+ // corresponding PictureLayerImpl and any in flight raster jobs go out of
+ // scope.
+ client_->UpdatePile(it->second);
+ }
+}
+
+scoped_ptr<base::Value> PictureLayerTiling::AsValue() const {
+ scoped_ptr<base::DictionaryValue> state(new base::DictionaryValue());
+ state->SetInteger("num_tiles", tiles_.size());
+ state->SetDouble("content_scale", contents_scale_);
+ state->Set("content_bounds",
+ MathUtil::AsValue(ContentRect().size()).release());
+ return state.PassAs<base::Value>();
+}
+
+namespace {
+
+int ComputeOffsetToExpand4EdgesEqually(int old_width,
+ int old_height,
+ int64 target_area) {
+ // We need to expand the rect in 4 directions, we can compute the
+ // amount to expand along each axis with a quadratic equation:
+ // (old_w + add) * (old_h + add) = target_area
+ // old_w * old_h + old_w * add + add * old_h + add * add = target_area
+ // add^2 + add * (old_w + old_h) - target_area + old_w * old_h = 0
+ // Therefore, we solve the quadratic equation with:
+ // a = 1
+ // b = old_w + old_h
+ // c = -target_area + old_w * old_h
+ int a = 1;
+ int64 b = old_width + old_height;
+ int64 c = -target_area + old_width * old_height;
+ int sqrt_part = std::sqrt(b * b - 4.0 * a * c);
+ int add_each_axis = (-b + sqrt_part) / 2 / a;
+ return add_each_axis / 2;
+}
+
+int ComputeOffsetToExpand3EdgesEqually(int old_width,
+ int old_height,
+ int64 target_area,
+ bool left_complete,
+ bool top_complete,
+ bool right_complete,
+ bool bottom_complete) {
+ // We need to expand the rect in three directions, so we will have to
+ // expand along one axis twice as much as the other. Otherwise, this
+ // is very similar to the case where we expand in all 4 directions.
+
+ if (left_complete || right_complete) {
+ // Expanding twice as much vertically as horizontally.
+ // (old_w + add) * (old_h + add*2) = target_area
+ // old_w * old_h + old_w * add*2 + add * old_h + add * add*2 = target_area
+ // (add^2)*2 + add * (old_w*2 + old_h) - target_area + old_w * old_h = 0
+ // Therefore, we solve the quadratic equation with:
+ // a = 2
+ // b = old_w*2 + old_h
+ // c = -target_area + old_w * old_h
+ int a = 2;
+ int64 b = old_width * 2 + old_height;
+ int64 c = -target_area + old_width * old_height;
+ int sqrt_part = std::sqrt(b * b - 4.0 * a * c);
+ int add_each_direction = (-b + sqrt_part) / 2 / a;
+ return add_each_direction;
+ } else {
+ // Expanding twice as much horizontally as vertically.
+ // (old_w + add*2) * (old_h + add) = target_area
+ // old_w * old_h + old_w * add + add*2 * old_h + add*2 * add = target_area
+ // (add^2)*2 + add * (old_w + old_h*2) - target_area + old_w * old_h = 0
+ // Therefore, we solve the quadratic equation with:
+ // a = 2
+ // b = old_w + old_h*2
+ // c = -target_area + old_w * old_h
+ int a = 2;
+ int64 b = old_width + old_height * 2;
+ int64 c = -target_area + old_width * old_height;
+ int sqrt_part = std::sqrt(b * b - 4.0 * a * c);
+ int add_each_direction = (-b + sqrt_part) / 2 / a;
+ return add_each_direction;
+ }
+}
+
+int ComputeOffsetToExpand2EdgesEqually(int old_width,
+ int old_height,
+ int64 target_area,
+ bool left_complete,
+ bool top_complete,
+ bool right_complete,
+ bool bottom_complete) {
+ // We need to expand the rect along two directions. If the two directions
+ // are opposite from each other then we only need to compute a distance
+ // along a single axis.
+ if (left_complete && right_complete) {
+ // Expanding along the vertical axis only:
+ // old_w * (old_h + add) = target_area
+ // old_w * old_h + old_w * add = target_area
+ // add_vertically = (target_area - old_w * old_h) / old_w
+ int add_vertically = target_area / old_width - old_height;
+ return add_vertically / 2;
+ } else if (top_complete && bottom_complete) {
+ // Expanding along the horizontal axis only:
+ // (old_w + add) * old_h = target_area
+ // old_w * old_h + add * old_h = target_area
+ // add_horizontally = (target_area - old_w * old_h) / old_h
+ int add_horizontally = target_area / old_height - old_width;
+ return add_horizontally / 2;
+ } else {
+ // If we need to expand along both horizontal and vertical axes, we can use
+ // the same result as if we were expanding all four edges. But we apply the
+ // offset computed for opposing edges to a single edge.
+ int add_each_direction = ComputeOffsetToExpand4EdgesEqually(
+ old_width, old_height, target_area);
+ return add_each_direction * 2;
+ }
+}
+
+int ComputeOffsetToExpand1Edge(int old_width,
+ int old_height,
+ int64 target_area,
+ bool left_complete,
+ bool top_complete,
+ bool right_complete,
+ bool bottom_complete) {
+ // We need to expand the rect in a single direction, so we are either
+ // moving just a verical edge, or just a horizontal edge.
+ if (!top_complete || !bottom_complete) {
+ // Moving a vertical edge:
+ // old_w * (old_h + add) = target_area
+ // old_w * old_h + old_w * add = target_area
+ // add_vertically = (target_area - old_w * old_h) / old_w
+ int add_vertically = target_area / old_width - old_height;
+ return add_vertically;
+ } else {
+ // Moving a horizontal edge:
+ // (old_w + add) * old_h = target_area
+ // old_w * old_h + add * old_h = target_area
+ // add_horizontally = (target_area - old_w * old_h) / old_h
+ int add_horizontally = target_area / old_height - old_width;
+ return add_horizontally;
+ }
+}
+
+} // namespace
+
+// static
+gfx::Rect PictureLayerTiling::ExpandRectEquallyToAreaBoundedBy(
+ gfx::Rect starting_rect,
+ int64 target_area,
+ gfx::Rect bounding_rect) {
+
+ bool left_complete = false;
+ bool top_complete = false;
+ bool right_complete = false;
+ bool bottom_complete = false;
+ int num_edges_complete = 0;
+
+ gfx::Rect working_rect = starting_rect;
+ for (int i = 0; i < 4; ++i) {
+ if (num_edges_complete != i)
+ continue;
+ int offset_for_each_edge = 0;
+ switch (num_edges_complete) {
+ case 0:
+ offset_for_each_edge = ComputeOffsetToExpand4EdgesEqually(
+ working_rect.width(),
+ working_rect.height(),
+ target_area);
+ break;
+ case 1:
+ offset_for_each_edge = ComputeOffsetToExpand3EdgesEqually(
+ working_rect.width(),
+ working_rect.height(),
+ target_area,
+ left_complete,
+ top_complete,
+ right_complete,
+ bottom_complete);
+ break;
+ case 2:
+ offset_for_each_edge = ComputeOffsetToExpand2EdgesEqually(
+ working_rect.width(),
+ working_rect.height(),
+ target_area,
+ left_complete,
+ top_complete,
+ right_complete,
+ bottom_complete);
+ break;
+ case 3:
+ offset_for_each_edge = ComputeOffsetToExpand1Edge(
+ working_rect.width(),
+ working_rect.height(),
+ target_area,
+ left_complete,
+ top_complete,
+ right_complete,
+ bottom_complete);
+ }
+
+ working_rect.Inset((left_complete ? 0 : -offset_for_each_edge),
+ (top_complete ? 0 : -offset_for_each_edge),
+ (right_complete ? 0 : -offset_for_each_edge),
+ (bottom_complete ? 0 : -offset_for_each_edge));
+
+ if (bounding_rect.Contains(working_rect))
+ return working_rect;
+ working_rect.Intersect(bounding_rect);
+
+ if (working_rect.x() == bounding_rect.x()) left_complete = true;
+ if (working_rect.y() == bounding_rect.y()) top_complete = true;
+ if (working_rect.right() == bounding_rect.right()) right_complete = true;
+ if (working_rect.bottom() == bounding_rect.bottom()) bottom_complete = true;
+
+ num_edges_complete = (left_complete ? 1 : 0) +
+ (top_complete ? 1 : 0) +
+ (right_complete ? 1 : 0) +
+ (bottom_complete ? 1 : 0);
+ if (num_edges_complete == 4)
+ return working_rect;
+ }
+
+ NOTREACHED();
+ return starting_rect;
+}
+
+} // namespace cc