diff options
Diffstat (limited to 'crypto')
-rw-r--r-- | crypto/p224.cc | 142 | ||||
-rw-r--r-- | crypto/p224_unittest.cc | 15 |
2 files changed, 113 insertions, 44 deletions
diff --git a/crypto/p224.cc b/crypto/p224.cc index 575b51f..ac0a081 100644 --- a/crypto/p224.cc +++ b/crypto/p224.cc @@ -32,6 +32,46 @@ using base::NetToHost32; using crypto::p224::FieldElement; +// kP is the P224 prime. +const FieldElement kP = { + 1, 0, 0, 268431360, + 268435455, 268435455, 268435455, 268435455, +}; + +void Contract(FieldElement* inout); + +// IsZero returns 0xffffffff if a == 0 mod p and 0 otherwise. +uint32 IsZero(const FieldElement& a) { + FieldElement minimal; + memcpy(&minimal, &a, sizeof(minimal)); + Contract(&minimal); + + uint32 is_zero = 0, is_p = 0; + for (unsigned i = 0; i < 8; i++) { + is_zero |= minimal[i]; + is_p |= minimal[i] - kP[i]; + } + + // If either is_zero or is_p is 0, then we should return 1. + is_zero |= is_zero >> 16; + is_zero |= is_zero >> 8; + is_zero |= is_zero >> 4; + is_zero |= is_zero >> 2; + is_zero |= is_zero >> 1; + + is_p |= is_p >> 16; + is_p |= is_p >> 8; + is_p |= is_p >> 4; + is_p |= is_p >> 2; + is_p |= is_p >> 1; + + // For is_zero and is_p, the LSB is 0 iff all the bits are zero. + is_zero &= is_p & 1; + is_zero = (~is_zero) << 31; + is_zero = static_cast<int32>(is_zero) >> 31; + return is_zero; +} + // Add computes *out = a+b // // a[i] + b[i] < 2**32 @@ -313,52 +353,52 @@ void Contract(FieldElement* inout) { // unique, minimal value we see if the value is >= p and, if so, subtract p. // First we build a mask from the top four limbs, which must all be - // equal to bottom28Bits if the whole value is >= p. If top4AllOnes + // equal to bottom28Bits if the whole value is >= p. If top_4_all_ones // ends up with any zero bits in the bottom 28 bits, then this wasn't // true. - uint32 top4AllOnes = 0xffffffffu; + uint32 top_4_all_ones = 0xffffffffu; for (int i = 4; i < 8; i++) { - top4AllOnes &= (out[i] & kBottom28Bits) - 1; - } - top4AllOnes |= 0xf0000000; - // Now we replicate any zero bits to all the bits in top4AllOnes. - top4AllOnes &= top4AllOnes >> 16; - top4AllOnes &= top4AllOnes >> 8; - top4AllOnes &= top4AllOnes >> 4; - top4AllOnes &= top4AllOnes >> 2; - top4AllOnes &= top4AllOnes >> 1; - top4AllOnes = - static_cast<uint32>(static_cast<int32>(top4AllOnes << 31) >> 31); + top_4_all_ones &= out[i]; + } + top_4_all_ones |= 0xf0000000; + // Now we replicate any zero bits to all the bits in top_4_all_ones. + top_4_all_ones &= top_4_all_ones >> 16; + top_4_all_ones &= top_4_all_ones >> 8; + top_4_all_ones &= top_4_all_ones >> 4; + top_4_all_ones &= top_4_all_ones >> 2; + top_4_all_ones &= top_4_all_ones >> 1; + top_4_all_ones = + static_cast<uint32>(static_cast<int32>(top_4_all_ones << 31) >> 31); // Now we test whether the bottom three limbs are non-zero. - uint32 bottom3NonZero = out[0] | out[1] | out[2]; - bottom3NonZero |= bottom3NonZero >> 16; - bottom3NonZero |= bottom3NonZero >> 8; - bottom3NonZero |= bottom3NonZero >> 4; - bottom3NonZero |= bottom3NonZero >> 2; - bottom3NonZero |= bottom3NonZero >> 1; - bottom3NonZero = - static_cast<uint32>(static_cast<int32>(bottom3NonZero << 31) >> 31); + uint32 bottom_3_non_zero = out[0] | out[1] | out[2]; + bottom_3_non_zero |= bottom_3_non_zero >> 16; + bottom_3_non_zero |= bottom_3_non_zero >> 8; + bottom_3_non_zero |= bottom_3_non_zero >> 4; + bottom_3_non_zero |= bottom_3_non_zero >> 2; + bottom_3_non_zero |= bottom_3_non_zero >> 1; + bottom_3_non_zero = + static_cast<uint32>(static_cast<int32>(bottom_3_non_zero) >> 31); // Everything depends on the value of out[3]. - // If it's > 0xffff000 and top4AllOnes != 0 then the whole value is >= p - // If it's = 0xffff000 and top4AllOnes != 0 and bottom3NonZero != 0, + // If it's > 0xffff000 and top_4_all_ones != 0 then the whole value is >= p + // If it's = 0xffff000 and top_4_all_ones != 0 and bottom_3_non_zero != 0, // then the whole value is >= p // If it's < 0xffff000, then the whole value is < p uint32 n = out[3] - 0xffff000; - uint32 out3Equal = n; - out3Equal |= out3Equal >> 16; - out3Equal |= out3Equal >> 8; - out3Equal |= out3Equal >> 4; - out3Equal |= out3Equal >> 2; - out3Equal |= out3Equal >> 1; - out3Equal = - ~static_cast<uint32>(static_cast<int32>(out3Equal << 31) >> 31); + uint32 out_3_equal = n; + out_3_equal |= out_3_equal >> 16; + out_3_equal |= out_3_equal >> 8; + out_3_equal |= out_3_equal >> 4; + out_3_equal |= out_3_equal >> 2; + out_3_equal |= out_3_equal >> 1; + out_3_equal = + ~static_cast<uint32>(static_cast<int32>(out_3_equal << 31) >> 31); // If out[3] > 0xffff000 then n's MSB will be zero. - uint32 out3GT = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); + uint32 out_3_gt = ~static_cast<uint32>(static_cast<int32>(n << 31) >> 31); - uint32 mask = top4AllOnes & ((out3Equal & bottom3NonZero) | out3GT); + uint32 mask = top_4_all_ones & ((out_3_equal & bottom_3_non_zero) | out_3_gt); out[0] -= 1 & mask; out[3] -= 0xffff000 & mask; out[4] -= 0xfffffff & mask; @@ -375,18 +415,15 @@ void Contract(FieldElement* inout) { using crypto::p224::Point; -// kP is the P224 prime. -const FieldElement kP = { - 1, 0, 0, 268431360, - 268435455, 268435455, 268435455, 268435455, -}; - // kB is parameter of the elliptic curve. const FieldElement kB = { 55967668, 11768882, 265861671, 185302395, 39211076, 180311059, 84673715, 188764328, }; +void CopyConditional(Point* out, const Point& a, uint32 mask); +void DoubleJacobian(Point* out, const Point& a); + // AddJacobian computes *out = a+b where a != b. void AddJacobian(Point *out, const Point& a, @@ -394,6 +431,9 @@ void AddJacobian(Point *out, // See http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl FieldElement z1z1, z2z2, u1, u2, s1, s2, h, i, j, r, v; + uint32 z1_is_zero = IsZero(a.z); + uint32 z2_is_zero = IsZero(b.z); + // Z1Z1 = Z1² Square(&z1z1, a.z); @@ -417,6 +457,7 @@ void AddJacobian(Point *out, // H = U2-U1 Subtract(&h, u2, u1); Reduce(&h); + uint32 x_equal = IsZero(h); // I = (2*H)² for (int j = 0; j < 8; j++) { @@ -430,6 +471,15 @@ void AddJacobian(Point *out, // r = 2*(S2-S1) Subtract(&r, s2, s1); Reduce(&r); + uint32 y_equal = IsZero(r); + + if (x_equal && y_equal && !z1_is_zero && !z2_is_zero) { + // The two input points are the same therefore we must use the dedicated + // doubling function as the slope of the line is undefined. + DoubleJacobian(out, a); + return; + } + for (int i = 0; i < 8; i++) { r[i] <<= 1; } @@ -467,6 +517,9 @@ void AddJacobian(Point *out, Mul(&z1z1, z1z1, r); Subtract(&out->y, z1z1, s1); Reduce(&out->y); + + CopyConditional(out, a, z2_is_zero); + CopyConditional(out, b, z1_is_zero); } // DoubleJacobian computes *out = a+a. @@ -542,16 +595,13 @@ void ScalarMult(Point* out, const Point& a, memset(out, 0, sizeof(*out)); Point tmp; - uint32 first_bit = 0xffffffff; for (size_t i = 0; i < scalar_len; i++) { for (unsigned int bit_num = 0; bit_num < 8; bit_num++) { DoubleJacobian(out, *out); uint32 bit = static_cast<uint32>(static_cast<int32>( (((scalar[i] >> (7 - bit_num)) & 1) << 31) >> 31)); AddJacobian(&tmp, a, *out); - CopyConditional(out, a, first_bit & bit); - CopyConditional(out, tmp, ~first_bit & bit); - first_bit = first_bit & ~bit; + CopyConditional(out, tmp, bit); } } } @@ -628,6 +678,12 @@ bool Point::SetFromString(const base::StringPiece& in) { std::string Point::ToString() const { FieldElement zinv, zinv_sq, x, y; + // If this is the point at infinity we return a string of all zeros. + if (IsZero(this->z)) { + static const char zeros[56] = {0}; + return std::string(zeros, sizeof(zeros)); + } + Invert(&zinv, this->z); Square(&zinv_sq, zinv); Mul(&x, this->x, zinv_sq); diff --git a/crypto/p224_unittest.cc b/crypto/p224_unittest.cc index 1ab2ff7..c6acfdd 100644 --- a/crypto/p224_unittest.cc +++ b/crypto/p224_unittest.cc @@ -1,4 +1,4 @@ -// Copyright (c) 2011 The Chromium Authors. All rights reserved. +// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. @@ -806,3 +806,16 @@ TEST(P224, Addition) { p224::Add(minus_b, sum, &a_again); EXPECT_TRUE(a_again.ToString() == a.ToString()); } + +TEST(P224, Infinity) { + char zeros[56]; + memset(zeros, 0, sizeof(zeros)); + + // Test that x^0 = ∞. + Point a; + p224::ScalarBaseMult(reinterpret_cast<const uint8*>(zeros), &a); + EXPECT_TRUE(memcmp(zeros, a.ToString().data(), sizeof(zeros)) == 0); + + // We shouldn't allow ∞ to be imported. + EXPECT_FALSE(a.SetFromString(std::string(zeros, sizeof(zeros)))); +} |