summaryrefslogtreecommitdiffstats
path: root/gfx/skbitmap_operations_unittest.cc
diff options
context:
space:
mode:
Diffstat (limited to 'gfx/skbitmap_operations_unittest.cc')
-rw-r--r--gfx/skbitmap_operations_unittest.cc383
1 files changed, 383 insertions, 0 deletions
diff --git a/gfx/skbitmap_operations_unittest.cc b/gfx/skbitmap_operations_unittest.cc
new file mode 100644
index 0000000..4082b22
--- /dev/null
+++ b/gfx/skbitmap_operations_unittest.cc
@@ -0,0 +1,383 @@
+// Copyright (c) 2009 The Chromium Authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "gfx/skbitmap_operations.h"
+
+#include "testing/gtest/include/gtest/gtest.h"
+#include "third_party/skia/include/core/SkBitmap.h"
+#include "third_party/skia/include/core/SkColorPriv.h"
+#include "third_party/skia/include/core/SkUnPreMultiply.h"
+
+namespace {
+
+// Returns true if each channel of the given two colors are "close." This is
+// used for comparing colors where rounding errors may cause off-by-one.
+bool ColorsClose(uint32_t a, uint32_t b) {
+ return abs(static_cast<int>(SkColorGetB(a) - SkColorGetB(b))) < 2 &&
+ abs(static_cast<int>(SkColorGetG(a) - SkColorGetG(b))) < 2 &&
+ abs(static_cast<int>(SkColorGetR(a) - SkColorGetR(b))) < 2 &&
+ abs(static_cast<int>(SkColorGetA(a) - SkColorGetA(b))) < 2;
+}
+
+void FillDataToBitmap(int w, int h, SkBitmap* bmp) {
+ bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h);
+ bmp->allocPixels();
+
+ unsigned char* src_data =
+ reinterpret_cast<unsigned char*>(bmp->getAddr32(0, 0));
+ for (int i = 0; i < w * h; i++) {
+ src_data[i * 4 + 0] = static_cast<unsigned char>(i % 255);
+ src_data[i * 4 + 1] = static_cast<unsigned char>(i % 255);
+ src_data[i * 4 + 2] = static_cast<unsigned char>(i % 255);
+ src_data[i * 4 + 3] = static_cast<unsigned char>(i % 255);
+ }
+}
+
+} // namespace
+
+// Invert bitmap and verify the each pixel is inverted and the alpha value is
+// not changed.
+TEST(SkBitmapOperationsTest, CreateInvertedBitmap) {
+ int src_w = 16, src_h = 16;
+ SkBitmap src;
+ src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
+ src.allocPixels();
+
+ for (int y = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ int i = y * src_w + x;
+ *src.getAddr32(x, y) =
+ SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0);
+ }
+ }
+
+ SkBitmap inverted = SkBitmapOperations::CreateInvertedBitmap(src);
+ SkAutoLockPixels src_lock(src);
+ SkAutoLockPixels inverted_lock(inverted);
+
+ for (int y = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ int i = y * src_w + x;
+ EXPECT_EQ(static_cast<unsigned int>((255 - i) % 255),
+ SkColorGetA(*inverted.getAddr32(x, y)));
+ EXPECT_EQ(static_cast<unsigned int>(255 - (i % 255)),
+ SkColorGetR(*inverted.getAddr32(x, y)));
+ EXPECT_EQ(static_cast<unsigned int>(255 - (i * 4 % 255)),
+ SkColorGetG(*inverted.getAddr32(x, y)));
+ EXPECT_EQ(static_cast<unsigned int>(255),
+ SkColorGetB(*inverted.getAddr32(x, y)));
+ }
+ }
+}
+
+// Blend two bitmaps together at 50% alpha and verify that the result
+// is the middle-blend of the two.
+TEST(SkBitmapOperationsTest, CreateBlendedBitmap) {
+ int src_w = 16, src_h = 16;
+ SkBitmap src_a;
+ src_a.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
+ src_a.allocPixels();
+
+ SkBitmap src_b;
+ src_b.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
+ src_b.allocPixels();
+
+ for (int y = 0, i = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ *src_a.getAddr32(x, y) = SkColorSetARGB(255, 0, i * 2 % 255, i % 255);
+ *src_b.getAddr32(x, y) =
+ SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0);
+ i++;
+ }
+ }
+
+ // Shift to red.
+ SkBitmap blended = SkBitmapOperations::CreateBlendedBitmap(
+ src_a, src_b, 0.5);
+ SkAutoLockPixels srca_lock(src_a);
+ SkAutoLockPixels srcb_lock(src_b);
+ SkAutoLockPixels blended_lock(blended);
+
+ for (int y = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ int i = y * src_w + x;
+ EXPECT_EQ(static_cast<unsigned int>((255 + ((255 - i) % 255)) / 2),
+ SkColorGetA(*blended.getAddr32(x, y)));
+ EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2),
+ SkColorGetR(*blended.getAddr32(x, y)));
+ EXPECT_EQ((static_cast<unsigned int>((i * 2) % 255 + (i * 4) % 255) / 2),
+ SkColorGetG(*blended.getAddr32(x, y)));
+ EXPECT_EQ(static_cast<unsigned int>(i % 255 / 2),
+ SkColorGetB(*blended.getAddr32(x, y)));
+ }
+ }
+}
+
+// Test our masking functions.
+TEST(SkBitmapOperationsTest, CreateMaskedBitmap) {
+ int src_w = 16, src_h = 16;
+
+ SkBitmap src;
+ FillDataToBitmap(src_w, src_h, &src);
+
+ // Generate alpha mask
+ SkBitmap alpha;
+ alpha.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
+ alpha.allocPixels();
+ for (int y = 0, i = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ *alpha.getAddr32(x, y) = SkColorSetARGB((i + 128) % 255,
+ (i + 128) % 255,
+ (i + 64) % 255,
+ (i + 0) % 255);
+ i++;
+ }
+ }
+
+ SkBitmap masked = SkBitmapOperations::CreateMaskedBitmap(src, alpha);
+
+ SkAutoLockPixels src_lock(src);
+ SkAutoLockPixels alpha_lock(alpha);
+ SkAutoLockPixels masked_lock(masked);
+ for (int y = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ // Test that the alpha is equal.
+ SkColor src_pixel = SkUnPreMultiply::PMColorToColor(*src.getAddr32(x, y));
+ SkColor alpha_pixel =
+ SkUnPreMultiply::PMColorToColor(*alpha.getAddr32(x, y));
+ SkColor masked_pixel = *masked.getAddr32(x, y);
+
+ int alpha_value = SkAlphaMul(SkColorGetA(src_pixel),
+ SkColorGetA(alpha_pixel));
+ SkColor expected_pixel = SkColorSetARGB(
+ alpha_value,
+ SkAlphaMul(SkColorGetR(src_pixel), alpha_value),
+ SkAlphaMul(SkColorGetG(src_pixel), alpha_value),
+ SkAlphaMul(SkColorGetB(src_pixel), alpha_value));
+
+ EXPECT_TRUE(ColorsClose(expected_pixel, masked_pixel));
+ }
+ }
+}
+
+// Make sure that when shifting a bitmap without any shift parameters,
+// the end result is close enough to the original (rounding errors
+// notwithstanding).
+TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapToSame) {
+ int src_w = 4, src_h = 4;
+ SkBitmap src;
+ src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
+ src.allocPixels();
+
+ for (int y = 0, i = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ *src.getAddr32(x, y) = SkColorSetARGB(i + 128 % 255,
+ i + 128 % 255, i + 64 % 255, i + 0 % 255);
+ i++;
+ }
+ }
+
+ color_utils::HSL hsl = { -1, -1, -1 };
+
+ SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl);
+
+ SkAutoLockPixels src_lock(src);
+ SkAutoLockPixels shifted_lock(shifted);
+
+ for (int y = 0; y < src_w; y++) {
+ for (int x = 0; x < src_h; x++) {
+ SkColor src_pixel = *src.getAddr32(x, y);
+ SkColor shifted_pixel = *shifted.getAddr32(x, y);
+ EXPECT_TRUE(ColorsClose(src_pixel, shifted_pixel));
+ }
+ }
+}
+
+// Shift a blue bitmap to red.
+TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapHueOnly) {
+ int src_w = 16, src_h = 16;
+ SkBitmap src;
+ src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h);
+ src.allocPixels();
+
+ for (int y = 0, i = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ *src.getAddr32(x, y) = SkColorSetARGB(255, 0, 0, i % 255);
+ i++;
+ }
+ }
+
+ // Shift to red.
+ color_utils::HSL hsl = { 0, -1, -1 };
+
+ SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl);
+
+ SkAutoLockPixels src_lock(src);
+ SkAutoLockPixels shifted_lock(shifted);
+
+ for (int y = 0, i = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ EXPECT_TRUE(ColorsClose(*shifted.getAddr32(x, y),
+ SkColorSetARGB(255, i % 255, 0, 0)));
+ i++;
+ }
+ }
+}
+
+// Test our cropping.
+TEST(SkBitmapOperationsTest, CreateCroppedBitmap) {
+ int src_w = 16, src_h = 16;
+ SkBitmap src;
+ FillDataToBitmap(src_w, src_h, &src);
+
+ SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap(src, 4, 4,
+ 8, 8);
+ ASSERT_EQ(8, cropped.width());
+ ASSERT_EQ(8, cropped.height());
+
+ SkAutoLockPixels src_lock(src);
+ SkAutoLockPixels cropped_lock(cropped);
+ for (int y = 4; y < 12; y++) {
+ for (int x = 4; x < 12; x++) {
+ EXPECT_EQ(*src.getAddr32(x, y),
+ *cropped.getAddr32(x - 4, y - 4));
+ }
+ }
+}
+
+// Test whether our cropping correctly wraps across image boundaries.
+TEST(SkBitmapOperationsTest, CreateCroppedBitmapWrapping) {
+ int src_w = 16, src_h = 16;
+ SkBitmap src;
+ FillDataToBitmap(src_w, src_h, &src);
+
+ SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap(
+ src, src_w / 2, src_h / 2, src_w, src_h);
+ ASSERT_EQ(src_w, cropped.width());
+ ASSERT_EQ(src_h, cropped.height());
+
+ SkAutoLockPixels src_lock(src);
+ SkAutoLockPixels cropped_lock(cropped);
+ for (int y = 0; y < src_h; y++) {
+ for (int x = 0; x < src_w; x++) {
+ EXPECT_EQ(*src.getAddr32(x, y),
+ *cropped.getAddr32((x + src_w / 2) % src_w,
+ (y + src_h / 2) % src_h));
+ }
+ }
+}
+
+TEST(SkBitmapOperationsTest, DownsampleByTwo) {
+ // Use an odd-sized bitmap to make sure the edge cases where there isn't a
+ // 2x2 block of pixels is handled correctly.
+ // Here's the ARGB example
+ //
+ // 50% transparent green opaque 50% blue white
+ // 80008000 FF000080 FFFFFFFF
+ //
+ // 50% transparent red opaque 50% gray black
+ // 80800000 80808080 FF000000
+ //
+ // black white 50% gray
+ // FF000000 FFFFFFFF FF808080
+ //
+ // The result of this computation should be:
+ // A0404040 FF808080
+ // FF808080 FF808080
+ SkBitmap input;
+ input.setConfig(SkBitmap::kARGB_8888_Config, 3, 3);
+ input.allocPixels();
+
+ // The color order may be different, but we don't care (the channels are
+ // trated the same).
+ *input.getAddr32(0, 0) = 0x80008000;
+ *input.getAddr32(1, 0) = 0xFF000080;
+ *input.getAddr32(2, 0) = 0xFFFFFFFF;
+ *input.getAddr32(0, 1) = 0x80800000;
+ *input.getAddr32(1, 1) = 0x80808080;
+ *input.getAddr32(2, 1) = 0xFF000000;
+ *input.getAddr32(0, 2) = 0xFF000000;
+ *input.getAddr32(1, 2) = 0xFFFFFFFF;
+ *input.getAddr32(2, 2) = 0xFF808080;
+
+ SkBitmap result = SkBitmapOperations::DownsampleByTwo(input);
+ EXPECT_EQ(2, result.width());
+ EXPECT_EQ(2, result.height());
+
+ // Some of the values are off-by-one due to rounding.
+ SkAutoLockPixels lock(result);
+ EXPECT_EQ(0x9f404040, *result.getAddr32(0, 0));
+ EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(1, 0));
+ EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(0, 1));
+ EXPECT_EQ(0xFF808080, *result.getAddr32(1, 1));
+}
+
+// Test edge cases for DownsampleByTwo.
+TEST(SkBitmapOperationsTest, DownsampleByTwoSmall) {
+ SkPMColor reference = 0xFF4080FF;
+
+ // Test a 1x1 bitmap.
+ SkBitmap one_by_one;
+ one_by_one.setConfig(SkBitmap::kARGB_8888_Config, 1, 1);
+ one_by_one.allocPixels();
+ *one_by_one.getAddr32(0, 0) = reference;
+ SkBitmap result = SkBitmapOperations::DownsampleByTwo(one_by_one);
+ SkAutoLockPixels lock1(result);
+ EXPECT_EQ(1, result.width());
+ EXPECT_EQ(1, result.height());
+ EXPECT_EQ(reference, *result.getAddr32(0, 0));
+
+ // Test an n by 1 bitmap.
+ SkBitmap one_by_n;
+ one_by_n.setConfig(SkBitmap::kARGB_8888_Config, 300, 1);
+ one_by_n.allocPixels();
+ result = SkBitmapOperations::DownsampleByTwo(one_by_n);
+ SkAutoLockPixels lock2(result);
+ EXPECT_EQ(300, result.width());
+ EXPECT_EQ(1, result.height());
+
+ // Test a 1 by n bitmap.
+ SkBitmap n_by_one;
+ n_by_one.setConfig(SkBitmap::kARGB_8888_Config, 1, 300);
+ n_by_one.allocPixels();
+ result = SkBitmapOperations::DownsampleByTwo(n_by_one);
+ SkAutoLockPixels lock3(result);
+ EXPECT_EQ(1, result.width());
+ EXPECT_EQ(300, result.height());
+
+ // Test an empty bitmap
+ SkBitmap empty;
+ result = SkBitmapOperations::DownsampleByTwo(empty);
+ EXPECT_TRUE(result.isNull());
+ EXPECT_EQ(0, result.width());
+ EXPECT_EQ(0, result.height());
+}
+
+// Here we assume DownsampleByTwo works correctly (it's tested above) and
+// just make sure that the wrapper function does the right thing.
+TEST(SkBitmapOperationsTest, DownsampleByTwoUntilSize) {
+ // First make sure a "too small" bitmap doesn't get modified at all.
+ SkBitmap too_small;
+ too_small.setConfig(SkBitmap::kARGB_8888_Config, 10, 10);
+ too_small.allocPixels();
+ SkBitmap result = SkBitmapOperations::DownsampleByTwoUntilSize(
+ too_small, 16, 16);
+ EXPECT_EQ(10, result.width());
+ EXPECT_EQ(10, result.height());
+
+ // Now make sure giving it a 0x0 target returns something reasonable.
+ result = SkBitmapOperations::DownsampleByTwoUntilSize(too_small, 0, 0);
+ EXPECT_EQ(1, result.width());
+ EXPECT_EQ(1, result.height());
+
+ // Test multiple steps of downsampling.
+ SkBitmap large;
+ large.setConfig(SkBitmap::kARGB_8888_Config, 100, 43);
+ large.allocPixels();
+ result = SkBitmapOperations::DownsampleByTwoUntilSize(large, 6, 6);
+
+ // The result should be divided in half 100x43 -> 50x22 -> 25x11
+ EXPECT_EQ(25, result.width());
+ EXPECT_EQ(11, result.height());
+}