diff options
Diffstat (limited to 'native_client_sdk/src/examples/tumbler/trackball.js')
-rw-r--r-- | native_client_sdk/src/examples/tumbler/trackball.js | 296 |
1 files changed, 296 insertions, 0 deletions
diff --git a/native_client_sdk/src/examples/tumbler/trackball.js b/native_client_sdk/src/examples/tumbler/trackball.js new file mode 100644 index 0000000..88b9a62 --- /dev/null +++ b/native_client_sdk/src/examples/tumbler/trackball.js @@ -0,0 +1,296 @@ +// Copyright (c) 2011 The Native Client Authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +/** + * @fileoverview Implement a virtual trackball in the tumbler.Trackball + * class. This class maps 2D mouse events to 3D rotations by simulating a + * trackball that you roll by dragging the mouse. There are two principle + * methods in the class: startAtPointInFrame which you use to begin a trackball + * simulation and rollToPoint, which you use while dragging the mouse. The + * rollToPoint method returns a rotation expressed as a quaternion. + */ + + +// Requires tumbler.Application +// Requires tumbler.DragEvent +// Requires tumbler.Vector3 + +/** + * Constructor for the Trackball object. This class maps 2D mouse drag events + * into 3D rotations by simulating a trackball. The idea is to simulate + * clicking on the trackball, and then rolling it as you drag the mouse. + * The math behind the trackball is simple: start with a vector from the first + * mouse-click on the ball to the center of the 3D view. At the same time, set + * the radius of the ball to be the smaller dimension of the 3D view. As you + * drag the mouse around in the 3D view, a second vector is computed from the + * surface of the ball to the center. The axis of rotation is the cross + * product of these two vectors, and the angle of rotation is the angle between + * the two vectors. + * @constructor + */ +tumbler.Trackball = function() { + /** + * The square of the trackball's radius. The math never looks at the radius, + * but looks at the radius squared. + * @type {number} + * @private + */ + this.sqrRadius_ = 0; + + /** + * The 3D vector representing the point on the trackball where the mouse + * was clicked. Default is pointing stright through the center of the ball. + * @type {Object} + * @private + */ + this.rollStart_ = new tumbler.Vector3(0, 0, 1); + + /** + * The 2D center of the frame that encloses the trackball. + * @type {!Object} + * @private + */ + this.center_ = { x: 0, y: 0 }; + + /** + * Cached camera orientation. When a drag START event happens this is set to + * the current orientation in the calling view's plugin. The default is the + * identity quaternion. + * @type {Array.<number>} + * @private + */ + this.cameraOrientation_ = [0, 0, 0, 1]; +}; + +/** + * Compute the dimensions of the virtual trackball to fit inside |frameSize|. + * The radius of the trackball is set to be 1/2 of the smaller of the two frame + * dimensions, the center point is at the midpoint of each side. + * @param {!goog.math.Size} frameSize 2D-point representing the size of the + * element that encloses the virtual trackball. + * @private + */ +tumbler.Trackball.prototype.initInFrame_ = function(frameSize) { + // Compute the radius of the virtual trackball. This is 1/2 of the smaller + // of the frame's width and height. + var halfFrameSize = 0.5 * Math.min(frameSize.width, frameSize.height); + // Cache the square of the trackball's radius. + this.sqrRadius_ = halfFrameSize * halfFrameSize; + // Figure the center of the view. + this.center_.x = frameSize.width * 0.5; + this.center_.y = frameSize.height * 0.5; +}; + +/** + * Method to convert (by translation) a 2D client point from a coordinate space + * with origin in the lower-left corner of the client view to a space with + * origin in the center of the client view. Use this method before mapping the + * 2D point to he 3D tackball point (see also the projectOnTrackball_() method). + * Call the startAtPointInFrame before calling this method so that the + * |center_| property is correctly initialized. + * @param {!Object} clientPoint map this point to the coordinate space with + * origin in thecenter of the client view. + * @return {Object} the converted point. + * @private + */ +tumbler.Trackball.prototype.convertClientPoint_ = function(clientPoint) { + var difference = { x: clientPoint.x - this.center_.x, + y: clientPoint.y - this.center_.y } + return difference; +}; + +/** + * Method to map a 2D point to a 3D point on the virtual trackball that was set + * up using the startAtPointInFrame method. If the point lies outside of the + * radius of the virtual trackball, then the z-coordinate of the 3D point + * is set to 0. + * @param {!Object.<x, y>} point 2D-point in the coordinate space with origin + * in the center of the client view. + * @return {tumbler.Vector3} the 3D point on the virtual trackball. + * @private + */ +tumbler.Trackball.prototype.projectOnTrackball_ = function(point) { + var sqrRadius2D = point.x * point.x + point.y * point.y; + var zValue; + if (sqrRadius2D > this.sqrRadius_) { + // |point| lies outside the virtual trackball's sphere, so use a virtual + // z-value of 0. This is equivalent to clicking on the horizontal equator + // of the trackball. + zValue = 0; + } else { + // A sphere can be defined as: r^2 = x^2 + y^2 + z^2, so z = + // sqrt(r^2 - (x^2 + y^2)). + zValue = Math.sqrt(this.sqrRadius_ - sqrRadius2D); + } + var trackballPoint = new tumbler.Vector3(point.x, point.y, zValue); + return trackballPoint; +}; + +/** + * Method to start up the trackball. The trackball works by pretending that a + * ball encloses the 3D view. You roll this pretend ball with the mouse. For + * example, if you click on the center of the ball and move the mouse straight + * to the right, you roll the ball around its Y-axis. This produces a Y-axis + * rotation. You can click on the "edge" of the ball and roll it around + * in a circle to get a Z-axis rotation. + * @param {!Object.<x, y>} startPoint 2D-point, usually the mouse-down + * point. + * @param {!Object.<width, height>} frameSize 2D-point representing the size of + * the element that encloses the virtual trackball. + */ +tumbler.Trackball.prototype.startAtPointInFrame = + function(startPoint, frameSize) { + this.initInFrame_(frameSize); + // Compute the starting vector from the surface of the ball to its center. + this.rollStart_ = this.projectOnTrackball_( + this.convertClientPoint_(startPoint)); +}; + +/** + * Method to roll the virtual trackball; call this in response to a mouseDrag + * event. Takes |dragPoint| and projects it from 2D mouse coordinates onto the + * virtual track ball that was set up in startAtPointInFrame method. + * Returns a quaternion that represents the rotation from |rollStart_| to + * |rollEnd_|. + * @param {!Object.<x, y>} dragPoint 2D-point representing the + * destination mouse point. + * @return {Array.<number>} a quaternion that represents the rotation from + * the point wnere the mouse was clicked on the trackball to this point. + * The quaternion looks like this: [[v], cos(angle/2)], where [v] is the + * imaginary part of the quaternion and is computed as [x, y, z] * + * sin(angle/2). + */ +tumbler.Trackball.prototype.rollToPoint = function(dragPoint) { + var rollTo = this.convertClientPoint_(dragPoint); + if ((Math.abs(this.rollStart_.x - rollTo.x) < + tumbler.Trackball.DOUBLE_EPSILON) && + (Math.abs(this.rollStart_.y, rollTo.y) < + tumbler.Trackball.DOUBLE_EPSILON)) { + // Not enough change in the vectors to roll the ball, return the identity + // quaternion. + return [0, 0, 0, 1]; + } + + // Compute the ending vector from the surface of the ball to its center. + var rollEnd = this.projectOnTrackball_(rollTo); + + // Take the cross product of the two vectors. r = s X e + var rollVector = this.rollStart_.cross(rollEnd); + var invStartMag = 1.0 / this.rollStart_.magnitude(); + var invEndMag = 1.0 / rollEnd.magnitude(); + + // cos(a) = (s . e) / (||s|| ||e||) + var cosAng = this.rollStart_.dot(rollEnd) * invStartMag * invEndMag; + // sin(a) = ||(s X e)|| / (||s|| ||e||) + var sinAng = rollVector.magnitude() * invStartMag * invEndMag; + // Build a quaternion that represents the rotation about |rollVector|. + // Use atan2 for a better angle. If you use only cos or sin, you only get + // half the possible angles, and you can end up with rotations that flip + // around near the poles. + var rollHalfAngle = Math.atan2(sinAng, cosAng) * 0.5; + rollVector.normalize(); + // The quaternion looks like this: [[v], cos(angle/2)], where [v] is the + // imaginary part of the quaternion and is computed as [x, y, z] * + // sin(angle/2). + rollVector.scale(Math.sin(rollHalfAngle)); + var ballQuaternion = [rollVector.x, + rollVector.y, + rollVector.z, + Math.cos(rollHalfAngle)]; + return ballQuaternion; +}; + +/** + * Handle the drag START event: grab the current camera orientation from the + * sending view and set up the virtual trackball. + * @param {!tumbler.Application} view The view controller that called this + * method. + * @param {!tumbler.DragEvent} dragStartEvent The DRAG_START event that + * triggered this handler. + */ +tumbler.Trackball.prototype.handleStartDrag = + function(controller, dragStartEvent) { + // Cache the camera orientation. The orientations from the trackball as it + // rolls are concatenated to this orientation and pushed back into the + // plugin on the other side of the JavaScript bridge. + controller.setCameraOrientation(this.cameraOrientation_); + // Invert the y-coordinate for the trackball computations. + var frameSize = { width: controller.offsetWidth, + height: controller.offsetHeight }; + var flippedY = { x: dragStartEvent.clientX, + y: frameSize.height - dragStartEvent.clientY }; + this.startAtPointInFrame(flippedY, frameSize); +}; + +/** + * Handle the drag DRAG event: concatenate the current orientation to the + * cached orientation. Send this final value through to the GSPlugin via the + * setValueForKey() method. + * @param {!tumbler.Application} view The view controller that called this + * method. + * @param {!tumbler.DragEvent} dragEvent The DRAG event that triggered this + * handler. + */ +tumbler.Trackball.prototype.handleDrag = + function(controller, dragEvent) { + // Flip the y-coordinate so that the 2D origin is in the lower-left corner. + var frameSize = { width: controller.offsetWidth, + height: controller.offsetHeight }; + var flippedY = { x: dragEvent.clientX, + y: frameSize.height - dragEvent.clientY }; + controller.setCameraOrientation( + tumbler.multQuaternions(this.rollToPoint(flippedY), + this.cameraOrientation_)); +}; + +/** + * Handle the drag END event: get the final orientation and concatenate it to + * the cached orientation. + * @param {!tumbler.Application} view The view controller that called this + * method. + * @param {!tumbler.DragEvent} dragEndEvent The DRAG_END event that triggered + * this handler. + */ +tumbler.Trackball.prototype.handleEndDrag = + function(controller, dragEndEvent) { + // Flip the y-coordinate so that the 2D origin is in the lower-left corner. + var frameSize = { width: controller.offsetWidth, + height: controller.offsetHeight }; + var flippedY = { x: dragEndEvent.clientX, + y: frameSize.height - dragEndEvent.clientY }; + this.cameraOrientation_ = tumbler.multQuaternions(this.rollToPoint(flippedY), + this.cameraOrientation_); + controller.setCameraOrientation(this.cameraOrientation_); +}; + +/** + * A utility function to multiply two quaterions. Returns the product q0 * q1. + * This is effectively the same thing as concatenating the two rotations + * represented in each quaternion together. Note that quaternion multiplication + * is NOT commutative: q0 * q1 != q1 * q0. + * @param {!Array.<number>} q0 A 4-element array representing the first + * quaternion. + * @param {!Array.<number>} q1 A 4-element array representing the second + * quaternion. + * @return {Array.<number>} A 4-element array representing the product q0 * q1. + */ +tumbler.multQuaternions = function(q0, q1) { + // Return q0 * q1 (note the order). + var qMult = [ + q0[3] * q1[0] + q0[0] * q1[3] + q0[1] * q1[2] - q0[2] * q1[1], + q0[3] * q1[1] - q0[0] * q1[2] + q0[1] * q1[3] + q0[2] * q1[0], + q0[3] * q1[2] + q0[0] * q1[1] - q0[1] * q1[0] + q0[2] * q1[3], + q0[3] * q1[3] - q0[0] * q1[0] - q0[1] * q1[1] - q0[2] * q1[2] + ]; + return qMult; +}; + +/** + * Real numbers that are less than this distance apart are considered + * equivalent. + * TODO(dspringer): It seems as though there should be a const like this + * in Closure somewhere (goog.math?). + * @type {number} + */ +tumbler.Trackball.DOUBLE_EPSILON = 1.0e-16; |