diff options
Diffstat (limited to 'o3d/samples/o3djs/plugin_math.js')
-rw-r--r-- | o3d/samples/o3djs/plugin_math.js | 2621 |
1 files changed, 2621 insertions, 0 deletions
diff --git a/o3d/samples/o3djs/plugin_math.js b/o3d/samples/o3djs/plugin_math.js new file mode 100644 index 0000000..799ce78 --- /dev/null +++ b/o3d/samples/o3djs/plugin_math.js @@ -0,0 +1,2621 @@ +/* + * Copyright 2009, Google Inc. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are + * met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above + * copyright notice, this list of conditions and the following disclaimer + * in the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Google Inc. nor the names of its + * contributors may be used to endorse or promote products derived from + * this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + + +/** + * @fileoverview This file contains matrix/vector math functions. + * It adds them to the "math" module on the o3djs object. + * + * o3djs.math supports a row-major and a column-major mode. In both + * modes, vectors are stored as arrays of numbers, and matrices are stored as + * arrays of arrays of numbers. + * + * In row-major mode: + * + * - Rows of a matrix are sub-arrays. + * - Individual entries of a matrix M get accessed in M[row][column] fashion. + * - Tuples of coordinates are interpreted as row-vectors. + * - A vector v gets transformed by a matrix M by multiplying in the order v*M. + * + * In column-major mode: + * + * - Columns of a matrix are sub-arrays. + * - Individual entries of a matrix M get accessed in M[column][row] fashion. + * - Tuples of coordinates are interpreted as column-vectors. + * - A matrix M transforms a vector v by multiplying in the order M*v. + * + * When a function in o3djs.math requires separate row-major and + * column-major versions, a function with the same name gets added to each of + * the namespaces o3djs.math.rowMajor and o3djs.math.columnMajor. The + * function installRowMajorFunctions() or the function + * installColumnMajorFunctions() should get called during initialization to + * establish the mode. installRowMajorFunctions() works by iterating through + * the o3djs.math.rowMajor namespace and for each function foo, setting + * o3djs.math.foo equal to o3djs.math.rowMajor.foo. + * installRowMajorFunctions() works the same way, iterating over the columnMajor + * namespace. At the end of this file, we call installRowMajorFunctions(). + * + * Switching modes changes two things. It changes how a matrix is encoded as an + * array, and it changes how the entries of a matrix get interpreted. Because + * those two things change together, the matrix representing a given + * transformation of space is the same JavaScript object in either mode. + * One consequence of this is that very few functions require separate row-major + * and column-major versions. Typically, a function requires separate versions + * only if it makes matrix multiplication order explicit, like + * mulMatrixMatrix(), mulMatrixVector(), or mulVectorMatrix(). Functions which + * create a new matrix, like scaling(), rotationZYX(), and translation() return + * the same JavaScript object in either mode, and functions which implicitly + * multiply like scale(), rotateZYX() and translate() modify the matrix in the + * same way in either mode. + * + * The convention choice made for math functions in this library is independent + * of the convention choice for how matrices get loaded into shaders. That + * convention is determined on a per-shader basis. + * + * Other utilities in o3djs should avoid making calls to functions that make + * multiplication order explicit. Instead they should appeal to functions like: + * + * o3djs.math.matrix4.transformPoint + * o3djs.math.matrix4.transformDirection + * o3djs.math.matrix4.transformNormal + * o3djs.math.matrix4.transformVector4 + * o3djs.math.matrix4.composition + * o3djs.math.matrix4.compose + * + * These functions multiply matrices implicitly and internally choose the + * multiplication order to get the right result. That way, utilities which use + * o3djs.math work in either major mode. Note that this does not necessarily + * mean all sample code will work even if a line is added which switches major + * modes, but it does mean that calls to o3djs still do what they are supposed + * to. + * + */ + +o3djs.provide('o3djs.math'); + +/** + * A module for math for o3djs.math. + * @namespace + */ +o3djs.math = o3djs.math || {}; + +/** + * A random seed for the pseudoRandom function. + * @private + * @type {number} + */ +o3djs.math.randomSeed_ = 0; + +/** + * A constant for the pseudoRandom function + * @private + * @type {number} + */ +o3djs.math.RANDOM_RANGE_ = Math.pow(2, 32); + +/** + * Functions which deal with 4-by-4 transformation matrices are kept in their + * own namespsace. + * @namespace + */ +o3djs.math.matrix4 = o3djs.math.matrix4 || {}; + +/** + * Functions that are specifically row major are kept in their own namespace. + * @namespace + */ +o3djs.math.rowMajor = o3djs.math.rowMajor || {}; + +/** + * Functions that are specifically column major are kept in their own namespace. + * @namespace + */ +o3djs.math.columnMajor = o3djs.math.columnMajor || {}; + +/** + * Functions that do error checking are stored in their own namespace. + * @namespace + */ +o3djs.math.errorCheck = o3djs.math.errorCheck || {}; + +/** + * Functions that do no error checking and have a separate version that does in + * o3djs.math.errorCheck are stored in their own namespace. + * @namespace + */ +o3djs.math.errorCheckFree = o3djs.math.errorCheckFree || {}; + +/** + * An Array of 2 floats + * @type {(!Array.<number>|!o3d.Float2)} + */ +o3djs.math.Vector2 = goog.typedef; + +/** + * An Array of 3 floats + * @type {(!Array.<number>|!o3d.Float3)} + */ +o3djs.math.Vector3 = goog.typedef; + +/** + * An Array of 4 floats + * @type {(!Array.<number>|!o3d.Float4)} + */ +o3djs.math.Vector4 = goog.typedef; + +/** + * An Array of floats. + * @type {!Array.<number>} + */ +o3djs.math.Vector = goog.typedef; + +/** + * A 1x1 Matrix of floats + * @type {!Array.<!Array.<number>>} + */ +o3djs.math.Matrix1 = goog.typedef; + +/** + * A 2x2 Matrix of floats + * @type {!Array.<!Array.<number>>} + */ +o3djs.math.Matrix2 = goog.typedef; + +/** + * A 3x3 Matrix of floats + * @type {!Array.<!Array.<number>>} + */ +o3djs.math.Matrix3 = goog.typedef; + +/** + * A 4x4 Matrix of floats + * @type {(!Array.<!Array.<number>>|!o3d.Matrix4)} + */ +o3djs.math.Matrix4 = goog.typedef; + +/** + * A arbitrary size Matrix of floats + * @type {(!Array.<!Array.<number>>|!o3d.Matrix4)} + */ +o3djs.math.Matrix = goog.typedef; + + +o3djs.math.makeMatrix = function(a,b,c,d, + e,f,g,h, + i,j,k,l, + m,n,o,p) { + if (p===undefined) { + if (i===undefined) { + return [[a,b], + [c,d]]; + } + return [[a,b,c], + [d,e,f], + [g,h,i]]; + } + return [[a,b,c,d], + [e,f,g,h], + [i,j,k,l], + [m,n,o,p]]; +}; + +o3djs.math.makeMatrix2 = function(a,b, + c,d) { + return [[a,b], + [c,d]]; +}; +o3djs.math.makeMatrix3 = function(a,b,c, + d,e,f, + g,h,i) { + return [[a,b,c], + [d,e,f], + [g,h,i]]; +}; +o3djs.math.makeMatrix4 = function(a,b,c,d, + e,f,g,h, + i,j,k,l, + m,n,o,p) { + return [[a,b,c,d], + [e,f,g,h], + [i,j,k,l], + [m,n,o,p]]; +}; + + + +/** + * Returns a deterministic pseudorandom number between 0 and 1 + * @return {number} a random number between 0 and 1 + */ +o3djs.math.pseudoRandom = function() { + var math = o3djs.math; + return (math.randomSeed_ = + (134775813 * math.randomSeed_ + 1) % + math.RANDOM_RANGE_) / math.RANDOM_RANGE_; +}; + +/** + * Resets the pseudoRandom function sequence. + */ +o3djs.math.resetPseudoRandom = function() { + o3djs.math.randomSeed_ = 0; +}; + +/** + * Converts degrees to radians. + * @param {number} degrees A value in degrees. + * @return {number} the value in radians. + */ +o3djs.math.degToRad = function(degrees) { + return degrees * Math.PI / 180; +}; + +/** + * Converts radians to degrees. + * @param {number} radians A value in radians. + * @return {number} the value in degrees. + */ +o3djs.math.radToDeg = function(radians) { + return radians * 180 / Math.PI; +}; + +/** + * Performs linear interpolation on two scalars. + * Given scalars a and b and interpolation coefficient t, returns + * (1 - t) * a + t * b. + * @param {number} a Operand scalar. + * @param {number} b Operand scalar. + * @param {number} t Interpolation coefficient. + * @return {number} The weighted sum of a and b. + */ +o3djs.math.lerpScalar = function(a, b, t) { + return (1 - t) * a + t * b; +}; + +/** + * Adds two vectors; assumes a and b have the same dimension. + * @param {!o3djs.math.Vector} a Operand vector. + * @param {!o3djs.math.Vector} b Operand vector. + * @return {!o3djs.math.Vector} The sum of a and b. + */ +o3djs.math.addVector = function(a, b) { + var r = []; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) + r[i] = a[i] + b[i]; + return r; +}; + +/** + * Subtracts two vectors. + * @param {!o3djs.math.Vector} a Operand vector. + * @param {!o3djs.math.Vector} b Operand vector. + * @return {!o3djs.math.Vector} The difference of a and b. + */ +o3djs.math.subVector = function(a, b) { + var r = []; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) + r[i] = a[i] - b[i]; + return r; +}; + +/** + * Performs linear interpolation on two vectors. + * Given vectors a and b and interpolation coefficient t, returns + * (1 - t) * a + t * b. + * @param {!o3djs.math.Vector} a Operand vector. + * @param {!o3djs.math.Vector} b Operand vector. + * @param {number} t Interpolation coefficient. + * @return {!o3djs.math.Vector} The weighted sum of a and b. + */ +o3djs.math.lerpVector = function(a, b, t) { + var r = []; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) + r[i] = (1 - t) * a[i] + t * b[i]; + return r; +}; + +/** + * Clamps a value between 0 and range using a modulo. + * @param {number} v Value to clamp mod. + * @param {number} range Range to clamp to. + * @param {number} opt_rangeStart start of range. Default = 0. + * @return {number} Clamp modded value. + */ +o3djs.math.modClamp = function(v, range, opt_rangeStart) { + var start = opt_rangeStart || 0; + if (range < 0.00001) { + return start; + } + v -= start; + if (v < 0) { + v -= Math.floor(v / range) * range; + } else { + v = v % range; + } + return v + start; +}; + +/** + * Lerps in a circle. + * Does a lerp between a and b but inside range so for example if + * range is 100, a is 95 and b is 5 lerping will go in the positive direction. + * @param {number} a Start value. + * @param {number} b Target value. + * @param {number} t Amount to lerp (0 to 1). + * @param {number} range Range of circle. + * @return {number} lerped result. + */ +o3djs.math.lerpCircular = function(a, b, t, range) { + a = o3djs.math.modClamp(a, range); + b = o3djs.math.modClamp(b, range); + var delta = b - a; + if (Math.abs(delta) > range * 0.5) { + if (delta > 0) { + b -= range; + } else { + b += range; + } + } + return o3djs.math.modClamp(o3djs.math.lerpScalar(a, b, t), range); +}; + +/** + * Lerps radians. + * @param {number} a Start value. + * @param {number} b Target value. + * @param {number} t Amount to lerp (0 to 1). + * @return {number} lerped result. + */ +o3djs.math.lerpRadian = function(a, b, t) { + return o3djs.math.lerpCircular(a, b, t, Math.PI * 2); +}; + +/** + * Divides a vector by a scalar. + * @param {!o3djs.math.Vector} v The vector. + * @param {number} k The scalar. + * @return {!o3djs.math.Vector} v The vector v divided by k. + */ +o3djs.math.divVectorScalar = function(v, k) { + var r = []; + var vLength = v.length; + for (var i = 0; i < vLength; ++i) + r[i] = v[i] / k; + return r; +}; + +/** + * Computes the dot product of two vectors; assumes that a and b have + * the same dimension. + * @param {!o3djs.math.Vector} a Operand vector. + * @param {!o3djs.math.Vector} b Operand vector. + * @return {number} The dot product of a and b. + */ +o3djs.math.dot = function(a, b) { + var r = 0.0; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) + r += a[i] * b[i]; + return r; +}; + +/** + * Computes the cross product of two vectors; assumes both vectors have + * three entries. + * @param {!o3djs.math.Vector} a Operand vector. + * @param {!o3djs.math.Vector} b Operand vector. + * @return {!o3djs.math.Vector} The vector a cross b. + */ +o3djs.math.cross = function(a, b) { + return [a[1] * b[2] - a[2] * b[1], + a[2] * b[0] - a[0] * b[2], + a[0] * b[1] - a[1] * b[0]]; +}; + +/** + * Computes the Euclidean length of a vector, i.e. the square root of the + * sum of the squares of the entries. + * @param {!o3djs.math.Vector} a The vector. + * @return {number} The length of a. + */ +o3djs.math.length = function(a) { + var r = 0.0; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) + r += a[i] * a[i]; + return Math.sqrt(r); +}; + +/** + * Computes the square of the Euclidean length of a vector, i.e. the sum + * of the squares of the entries. + * @param {!o3djs.math.Vector} a The vector. + * @return {number} The square of the length of a. + */ +o3djs.math.lengthSquared = function(a) { + var r = 0.0; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) + r += a[i] * a[i]; + return r; +}; + +/** + * Computes the Euclidean distance between two vectors. + * @param {!o3djs.math.Vector} a A vector. + * @param {!o3djs.math.Vector} b A vector. + * @return {number} The distance between a and b. + */ +o3djs.math.distance = function(a, b) { + var r = 0.0; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) { + var t = a[i] - b[i]; + r += t * t; + } + return Math.sqrt(r); +}; + +/** + * Computes the square of the Euclidean distance between two vectors. + * @param {!o3djs.math.Vector} a A vector. + * @param {!o3djs.math.Vector} b A vector. + * @return {number} The distance between a and b. + */ +o3djs.math.distanceSquared = function(a, b) { + var r = 0.0; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) { + var t = a[i] - b[i]; + r += t * t; + } + return r; +}; + +/** + * Divides a vector by its Euclidean length and returns the quotient. + * @param {!o3djs.math.Vector} a The vector. + * @return {!o3djs.math.Vector} The normalized vector. + */ +o3djs.math.normalize = function(a) { + var r = []; + var n = 0.0; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) + n += a[i] * a[i]; + n = Math.sqrt(n); + for (var i = 0; i < aLength; ++i) + r[i] = a[i] / n; + return r; +}; + +/** + * Adds two matrices; assumes a and b are the same size. + * @param {!o3djs.math.Matrix} a Operand matrix. + * @param {!o3djs.math.Matrix} b Operand matrix. + * @return {!o3djs.math.Matrix} The sum of a and b. + */ +o3djs.math.addMatrix = function(a, b) { + var r = []; + var aLength = a.length; + var a0Length = a[0].length; + for (var i = 0; i < aLength; ++i) { + var row = []; + var ai = a[i]; + var bi = b[i]; + for (var j = 0; j < a0Length; ++j) + row[j] = ai[j] + bi[j]; + r[i] = row; + } + return r; +}; + +/** + * Subtracts two matrices; assumes a and b are the same size. + * @param {!o3djs.math.Matrix} a Operand matrix. + * @param {!o3djs.math.Matrix} b Operand matrix. + * @return {!o3djs.math.Matrix} The sum of a and b. + */ +o3djs.math.subMatrix = function(a, b) { + var r = []; + var aLength = a.length; + var a0Length = a[0].length; + for (var i = 0; i < aLength; ++i) { + var row = []; + var ai = a[i]; + var bi = b[i]; + for (var j = 0; j < a0Length; ++j) + row[j] = ai[j] - bi[j]; + r[i] = row; + } + return r; +}; + +/** + * Performs linear interpolation on two matrices. + * Given matrices a and b and interpolation coefficient t, returns + * (1 - t) * a + t * b. + * @param {!o3djs.math.Matrix} a Operand matrix. + * @param {!o3djs.math.Matrix} b Operand matrix. + * @param {number} t Interpolation coefficient. + * @return {!o3djs.math.Matrix} The weighted of a and b. + */ +o3djs.math.lerpMatrix = function(a, b, t) { + var r = []; + var aLength = a.length; + var a0Length = a[0].length; + for (var i = 0; i < aLength; ++i) { + var row = []; + var ai = a[i]; + var bi = b[i]; + for (var j = 0; j < a0Length; ++j) + row[j] = (1 - t) * ai[j] + t * bi[j]; + r[i] = row; + } + return r; +}; + +/** + * Divides a matrix by a scalar. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {number} k The scalar. + * @return {!o3djs.math.Matrix} The matrix m divided by k. + */ +o3djs.math.divMatrixScalar = function(m, k) { + var r = []; + var mLength = m.length; + var m0Length = m[0].length; + for (var i = 0; i < mLength; ++i) { + r[i] = []; + for (var j = 0; j < m0Length; ++j) + r[i][j] = m[i][j] / k; + } + return r; +}; + +/** + * Negates a scalar. + * @param {number} a The scalar. + * @return {number} -a. + */ +o3djs.math.negativeScalar = function(a) { + return -a; +}; + +/** + * Negates a vector. + * @param {!o3djs.math.Vector} v The vector. + * @return {!o3djs.math.Vector} -v. + */ +o3djs.math.negativeVector = function(v) { + var r = []; + var vLength = v.length; + for (var i = 0; i < vLength; ++i) { + r[i] = -v[i]; + } + return r; +}; + +/** + * Negates a matrix. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {!o3djs.math.Matrix} -m. + */ +o3djs.math.negativeMatrix = function(m) { + var r = []; + var mLength = m.length; + var m0Length = m[0].length; + for (var i = 0; i < mLength; ++i) { + r[i] = []; + for (var j = 0; j < m0Length; ++j) + r[i][j] = -m[i][j]; + } + return r; +}; + +/** + * Copies a scalar. + * @param {number} a The scalar. + * @return {number} a. + */ +o3djs.math.copyScalar = function(a) { + return a; +}; + +/** + * Copies a vector. + * @param {!o3djs.math.Vector} v The vector. + * @return {!o3djs.math.Vector} A copy of v. + */ +o3djs.math.copyVector = function(v) { + var r = []; + for (var i = 0; i < v.length; i++) + r[i] = v[i]; + return r; +}; + +/** + * Copies a matrix. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {!o3djs.math.Matrix} A copy of m. + */ +o3djs.math.copyMatrix = function(m) { + var r = []; + var mLength = m.length; + for (var i = 0; i < mLength; ++i) { + r[i] = []; + for (var j = 0; j < m[i].length; j++) { + r[i][j] = m[i][j]; + } + } + return r; +}; + +/** + * Returns the elements of a matrix as a one-dimensional array. The + * rows or columns (depending on whether the matrix is row-major or + * column-major) are concatenated. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {!Array.<number>} The matrix's elements as a one-dimensional array. + */ +o3djs.math.getMatrixElements = function(m) { + var r = []; + var mLength = m.length; + var k = 0; + for (var i = 0; i < mLength; i++) { + for (var j = 0; j < m[i].length; j++) { + r[k++] = m[i][j]; + } + } + return r; +}; + +/** + * Multiplies two scalars. + * @param {number} a Operand scalar. + * @param {number} b Operand scalar. + * @return {number} The product of a and b. + */ +o3djs.math.mulScalarScalar = function(a, b) { + return a * b; +}; + +/** + * Multiplies a scalar by a vector. + * @param {number} k The scalar. + * @param {!o3djs.math.Vector} v The vector. + * @return {!o3djs.math.Vector} The product of k and v. + */ +o3djs.math.mulScalarVector = function(k, v) { + var r = []; + var vLength = v.length; + for (var i = 0; i < vLength; ++i) { + r[i] = k * v[i]; + } + return r; +}; + +/** + * Multiplies a vector by a scalar. + * @param {!o3djs.math.Vector} v The vector. + * @param {number} k The scalar. + * @return {!o3djs.math.Vector} The product of k and v. + */ +o3djs.math.mulVectorScalar = function(v, k) { + return o3djs.math.mulScalarVector(k, v); +}; + +/** + * Multiplies a scalar by a matrix. + * @param {number} k The scalar. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {!o3djs.math.Matrix} The product of m and k. + */ +o3djs.math.mulScalarMatrix = function(k, m) { + var r = []; + var mLength = m.length; + var m0Length = m[0].length; + for (var i = 0; i < mLength; ++i) { + r[i] = []; + for (var j = 0; j < m0Length; ++j) + r[i][j] = k * m[i][j]; + } + return r; +}; + +/** + * Multiplies a matrix by a scalar. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {number} k The scalar. + * @return {!o3djs.math.Matrix} The product of m and k. + */ +o3djs.math.mulMatrixScalar = function(m, k) { + return o3djs.math.mulScalarMatrix(k, m); +}; + +/** + * Multiplies a vector by another vector (component-wise); assumes a and + * b have the same length. + * @param {!o3djs.math.Vector} a Operand vector. + * @param {!o3djs.math.Vector} b Operand vector. + * @return {!o3djs.math.Vector} The vector of products of entries of a and + * b. + */ +o3djs.math.mulVectorVector = function(a, b) { + var r = []; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) + r[i] = a[i] * b[i]; + return r; +}; + +/** + * Divides a vector by another vector (component-wise); assumes a and + * b have the same length. + * @param {!o3djs.math.Vector} a Operand vector. + * @param {!o3djs.math.Vector} b Operand vector. + * @return {!o3djs.math.Vector} The vector of quotients of entries of a and + * b. + */ +o3djs.math.divVectorVector = function(a, b) { + var r = []; + var aLength = a.length; + for (var i = 0; i < aLength; ++i) + r[i] = a[i] / b[i]; + return r; +}; + +/** + * Multiplies a vector by a matrix; treats the vector as a row vector; assumes + * matrix entries are accessed in [row][column] fashion. + * @param {!o3djs.math.Vector} v The vector. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {!o3djs.math.Vector} The product of v and m as a row vector. + */ +o3djs.math.rowMajor.mulVectorMatrix = function(v, m) { + var r = []; + var m0Length = m[0].length; + var vLength = v.length; + for (var i = 0; i < m0Length; ++i) { + r[i] = 0.0; + for (var j = 0; j < vLength; ++j) + r[i] += v[j] * m[j][i]; + } + return r; +}; + +/** + * Multiplies a vector by a matrix; treats the vector as a row vector; assumes + * matrix entries are accessed in [column][row] fashion. + * @param {!o3djs.math.Vector} v The vector. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {!o3djs.math.Vector} The product of v and m as a row vector. + */ +o3djs.math.columnMajor.mulVectorMatrix = function(v, m) { + var r = []; + var mLength = m.length; + var vLength = v.length; + for (var i = 0; i < mLength; ++i) { + r[i] = 0.0; + var column = m[i]; + for (var j = 0; j < vLength; ++j) + r[i] += v[j] * column[j]; + } + return r; +}; + +/** + * Multiplies a vector by a matrix; treats the vector as a row vector. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {!o3djs.math.Vector} v The vector. + * @return {!o3djs.math.Vector} The product of m and v as a row vector. + */ +o3djs.math.mulVectorMatrix = null; + +/** + * Multiplies a matrix by a vector; treats the vector as a column vector. + * assumes matrix entries are accessed in [row][column] fashion. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {!o3djs.math.Vector} v The vector. + * @return {!o3djs.math.Vector} The product of m and v as a column vector. + */ +o3djs.math.rowMajor.mulMatrixVector = function(m, v) { + var r = []; + var mLength = m.length; + var m0Length = m[0].length; + for (var i = 0; i < mLength; ++i) { + r[i] = 0.0; + var row = m[i]; + for (var j = 0; j < m0Length; ++j) + r[i] += row[j] * v[j]; + } + return r; +}; + +/** + * Multiplies a matrix by a vector; treats the vector as a column vector; + * assumes matrix entries are accessed in [column][row] fashion. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {!o3djs.math.Vector} v The vector. + * @return {!o3djs.math.Vector} The product of m and v as a column vector. + */ +o3djs.math.columnMajor.mulMatrixVector = function(m, v) { + var r = []; + var m0Length = m[0].length; + var vLength = v.length; + for (var i = 0; i < m0Length; ++i) { + r[i] = 0.0; + for (var j = 0; j < vLength; ++j) + r[i] += v[j] * m[j][i]; + } + return r; +}; + +/** + * Multiplies a matrix by a vector; treats the vector as a column vector. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {!o3djs.math.Vector} v The vector. + * @return {!o3djs.math.Vector} The product of m and v as a column vector. + */ +o3djs.math.mulMatrixVector = null; + +/** + * Multiplies two 2-by-2 matrices; assumes that the given matrices are 2-by-2; + * assumes matrix entries are accessed in [row][column] fashion. + * @param {!o3djs.math.Matrix2} a The matrix on the left. + * @param {!o3djs.math.Matrix2} b The matrix on the right. + * @return {!o3djs.math.Matrix2} The matrix product of a and b. + */ +o3djs.math.rowMajor.mulMatrixMatrix2 = function(a, b) { + var a0 = a[0]; + var a1 = a[1]; + var b0 = b[0]; + var b1 = b[1]; + var a00 = a0[0]; + var a01 = a0[1]; + var a10 = a1[0]; + var a11 = a1[1]; + var b00 = b0[0]; + var b01 = b0[1]; + var b10 = b1[0]; + var b11 = b1[1]; + return [[a00 * b00 + a01 * b10, a00 * b01 + a01 * b11], + [a10 * b00 + a11 * b10, a10 * b01 + a11 * b11]]; +}; + +/** + * Multiplies two 2-by-2 matrices; assumes that the given matrices are 2-by-2; + * assumes matrix entries are accessed in [column][row] fashion. + * @param {!o3djs.math.Matrix2} a The matrix on the left. + * @param {!o3djs.math.Matrix2} b The matrix on the right. + * @return {!o3djs.math.Matrix2} The matrix product of a and b. + */ +o3djs.math.columnMajor.mulMatrixMatrix2 = function(a, b) { + var a0 = a[0]; + var a1 = a[1]; + var b0 = b[0]; + var b1 = b[1]; + var a00 = a0[0]; + var a01 = a0[1]; + var a10 = a1[0]; + var a11 = a1[1]; + var b00 = b0[0]; + var b01 = b0[1]; + var b10 = b1[0]; + var b11 = b1[1]; + return [[a00 * b00 + a10 * b01, a01 * b00 + a11 * b01], + [a00 * b10 + a10 * b11, a01 * b10 + a11 * b11]]; +}; + +/** + * Multiplies two 2-by-2 matrices. + * @param {!o3djs.math.Matrix2} a The matrix on the left. + * @param {!o3djs.math.Matrix2} b The matrix on the right. + * @return {!o3djs.math.Matrix2} The matrix product of a and b. + */ +o3djs.math.mulMatrixMatrix2 = null; + + +/** + * Multiplies two 3-by-3 matrices; assumes that the given matrices are 3-by-3; + * assumes matrix entries are accessed in [row][column] fashion. + * @param {!o3djs.math.Matrix3} a The matrix on the left. + * @param {!o3djs.math.Matrix3} b The matrix on the right. + * @return {!o3djs.math.Matrix3} The matrix product of a and b. + */ +o3djs.math.rowMajor.mulMatrixMatrix3 = function(a, b) { + var a0 = a[0]; + var a1 = a[1]; + var a2 = a[2]; + var b0 = b[0]; + var b1 = b[1]; + var b2 = b[2]; + var a00 = a0[0]; + var a01 = a0[1]; + var a02 = a0[2]; + var a10 = a1[0]; + var a11 = a1[1]; + var a12 = a1[2]; + var a20 = a2[0]; + var a21 = a2[1]; + var a22 = a2[2]; + var b00 = b0[0]; + var b01 = b0[1]; + var b02 = b0[2]; + var b10 = b1[0]; + var b11 = b1[1]; + var b12 = b1[2]; + var b20 = b2[0]; + var b21 = b2[1]; + var b22 = b2[2]; + return [[a00 * b00 + a01 * b10 + a02 * b20, + a00 * b01 + a01 * b11 + a02 * b21, + a00 * b02 + a01 * b12 + a02 * b22], + [a10 * b00 + a11 * b10 + a12 * b20, + a10 * b01 + a11 * b11 + a12 * b21, + a10 * b02 + a11 * b12 + a12 * b22], + [a20 * b00 + a21 * b10 + a22 * b20, + a20 * b01 + a21 * b11 + a22 * b21, + a20 * b02 + a21 * b12 + a22 * b22]]; +}; + +/** + * Multiplies two 3-by-3 matrices; assumes that the given matrices are 3-by-3; + * assumes matrix entries are accessed in [column][row] fashion. + * @param {!o3djs.math.Matrix3} a The matrix on the left. + * @param {!o3djs.math.Matrix3} b The matrix on the right. + * @return {!o3djs.math.Matrix3} The matrix product of a and b. + */ +o3djs.math.columnMajor.mulMatrixMatrix3 = function(a, b) { + var a0 = a[0]; + var a1 = a[1]; + var a2 = a[2]; + var b0 = b[0]; + var b1 = b[1]; + var b2 = b[2]; + var a00 = a0[0]; + var a01 = a0[1]; + var a02 = a0[2]; + var a10 = a1[0]; + var a11 = a1[1]; + var a12 = a1[2]; + var a20 = a2[0]; + var a21 = a2[1]; + var a22 = a2[2]; + var b00 = b0[0]; + var b01 = b0[1]; + var b02 = b0[2]; + var b10 = b1[0]; + var b11 = b1[1]; + var b12 = b1[2]; + var b20 = b2[0]; + var b21 = b2[1]; + var b22 = b2[2]; + return [[a00 * b00 + a10 * b01 + a20 * b02, + a01 * b00 + a11 * b01 + a21 * b02, + a02 * b00 + a12 * b01 + a22 * b02], + [a00 * b10 + a10 * b11 + a20 * b12, + a01 * b10 + a11 * b11 + a21 * b12, + a02 * b10 + a12 * b11 + a22 * b12], + [a00 * b20 + a10 * b21 + a20 * b22, + a01 * b20 + a11 * b21 + a21 * b22, + a02 * b20 + a12 * b21 + a22 * b22]]; +}; + +/** + * Multiplies two 3-by-3 matrices; assumes that the given matrices are 3-by-3. + * @param {!o3djs.math.Matrix3} a The matrix on the left. + * @param {!o3djs.math.Matrix3} b The matrix on the right. + * @return {!o3djs.math.Matrix3} The matrix product of a and b. + */ +o3djs.math.mulMatrixMatrix3 = null; + +/** + * Multiplies two 4-by-4 matrices; assumes that the given matrices are 4-by-4; + * assumes matrix entries are accessed in [row][column] fashion. + * @param {!o3djs.math.Matrix4} a The matrix on the left. + * @param {!o3djs.math.Matrix4} b The matrix on the right. + * @return {!o3djs.math.Matrix4} The matrix product of a and b. + */ +o3djs.math.rowMajor.mulMatrixMatrix4 = function(a, b) { + var a0 = a[0]; + var a1 = a[1]; + var a2 = a[2]; + var a3 = a[3]; + var b0 = b[0]; + var b1 = b[1]; + var b2 = b[2]; + var b3 = b[3]; + var a00 = a0[0]; + var a01 = a0[1]; + var a02 = a0[2]; + var a03 = a0[3]; + var a10 = a1[0]; + var a11 = a1[1]; + var a12 = a1[2]; + var a13 = a1[3]; + var a20 = a2[0]; + var a21 = a2[1]; + var a22 = a2[2]; + var a23 = a2[3]; + var a30 = a3[0]; + var a31 = a3[1]; + var a32 = a3[2]; + var a33 = a3[3]; + var b00 = b0[0]; + var b01 = b0[1]; + var b02 = b0[2]; + var b03 = b0[3]; + var b10 = b1[0]; + var b11 = b1[1]; + var b12 = b1[2]; + var b13 = b1[3]; + var b20 = b2[0]; + var b21 = b2[1]; + var b22 = b2[2]; + var b23 = b2[3]; + var b30 = b3[0]; + var b31 = b3[1]; + var b32 = b3[2]; + var b33 = b3[3]; + return [[a00 * b00 + a01 * b10 + a02 * b20 + a03 * b30, + a00 * b01 + a01 * b11 + a02 * b21 + a03 * b31, + a00 * b02 + a01 * b12 + a02 * b22 + a03 * b32, + a00 * b03 + a01 * b13 + a02 * b23 + a03 * b33], + [a10 * b00 + a11 * b10 + a12 * b20 + a13 * b30, + a10 * b01 + a11 * b11 + a12 * b21 + a13 * b31, + a10 * b02 + a11 * b12 + a12 * b22 + a13 * b32, + a10 * b03 + a11 * b13 + a12 * b23 + a13 * b33], + [a20 * b00 + a21 * b10 + a22 * b20 + a23 * b30, + a20 * b01 + a21 * b11 + a22 * b21 + a23 * b31, + a20 * b02 + a21 * b12 + a22 * b22 + a23 * b32, + a20 * b03 + a21 * b13 + a22 * b23 + a23 * b33], + [a30 * b00 + a31 * b10 + a32 * b20 + a33 * b30, + a30 * b01 + a31 * b11 + a32 * b21 + a33 * b31, + a30 * b02 + a31 * b12 + a32 * b22 + a33 * b32, + a30 * b03 + a31 * b13 + a32 * b23 + a33 * b33]]; +}; + +/** + * Multiplies two 4-by-4 matrices; assumes that the given matrices are 4-by-4; + * assumes matrix entries are accessed in [column][row] fashion. + * @param {!o3djs.math.Matrix4} a The matrix on the left. + * @param {!o3djs.math.Matrix4} b The matrix on the right. + * @return {!o3djs.math.Matrix4} The matrix product of a and b. + */ +o3djs.math.columnMajor.mulMatrixMatrix4 = function(a, b) { + var a0 = a[0]; + var a1 = a[1]; + var a2 = a[2]; + var a3 = a[3]; + var b0 = b[0]; + var b1 = b[1]; + var b2 = b[2]; + var b3 = b[3]; + var a00 = a0[0]; + var a01 = a0[1]; + var a02 = a0[2]; + var a03 = a0[3]; + var a10 = a1[0]; + var a11 = a1[1]; + var a12 = a1[2]; + var a13 = a1[3]; + var a20 = a2[0]; + var a21 = a2[1]; + var a22 = a2[2]; + var a23 = a2[3]; + var a30 = a3[0]; + var a31 = a3[1]; + var a32 = a3[2]; + var a33 = a3[3]; + var b00 = b0[0]; + var b01 = b0[1]; + var b02 = b0[2]; + var b03 = b0[3]; + var b10 = b1[0]; + var b11 = b1[1]; + var b12 = b1[2]; + var b13 = b1[3]; + var b20 = b2[0]; + var b21 = b2[1]; + var b22 = b2[2]; + var b23 = b2[3]; + var b30 = b3[0]; + var b31 = b3[1]; + var b32 = b3[2]; + var b33 = b3[3]; + return [[a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03, + a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03, + a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03, + a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03], + [a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13, + a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13, + a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13, + a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13], + [a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23, + a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23, + a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23, + a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23], + [a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33, + a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33, + a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33, + a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33]]; +}; + +/** + * Multiplies two 4-by-4 matrices; assumes that the given matrices are 4-by-4. + * @param {!o3djs.math.Matrix4} a The matrix on the left. + * @param {!o3djs.math.Matrix4} b The matrix on the right. + * @return {!o3djs.math.Matrix4} The matrix product of a and b. + */ +o3djs.math.mulMatrixMatrix4 = null; + +/** + * Multiplies two matrices; assumes that the sizes of the matrices are + * appropriately compatible; assumes matrix entries are accessed in + * [row][column] fashion. + * @param {!o3djs.math.Matrix} a The matrix on the left. + * @param {!o3djs.math.Matrix} b The matrix on the right. + * @return {!o3djs.math.Matrix} The matrix product of a and b. + */ +o3djs.math.rowMajor.mulMatrixMatrix = function(a, b) { + var r = []; + var aRows = a.length; + var bColumns = b[0].length; + var bRows = b.length; + for (var i = 0; i < aRows; ++i) { + var v = []; // v becomes a row of the answer. + var ai = a[i]; // ith row of a. + for (var j = 0; j < bColumns; ++j) { + v[j] = 0.0; + for (var k = 0; k < bRows; ++k) + v[j] += ai[k] * b[k][j]; // kth row, jth column. + } + r[i] = v; + } + return r; +}; + +/** + * Multiplies two matrices; assumes that the sizes of the matrices are + * appropriately compatible; assumes matrix entries are accessed in + * [row][column] fashion. + * @param {!o3djs.math.Matrix} a The matrix on the left. + * @param {!o3djs.math.Matrix} b The matrix on the right. + * @return {!o3djs.math.Matrix} The matrix product of a and b. + */ +o3djs.math.columnMajor.mulMatrixMatrix = function(a, b) { + var r = []; + var bColumns = b.length; + var aRows = a[0].length; + var aColumns = a.length; + for (var i = 0; i < bColumns; ++i) { + var v = []; // v becomes a column of the answer. + var bi = b[i]; // ith column of b. + for (var j = 0; j < aRows; ++j) { + v[j] = 0.0; + for (var k = 0; k < aColumns; ++k) + v[j] += bi[k] * a[k][j]; // kth column, jth row. + } + r[i] = v; + } + return r; +}; + +/** + * Multiplies two matrices; assumes that the sizes of the matrices are + * appropriately compatible. + * @param {!o3djs.math.Matrix} a The matrix on the left. + * @param {!o3djs.math.Matrix} b The matrix on the right. + * @return {!o3djs.math.Matrix} The matrix product of a and b. + */ +o3djs.math.mulMatrixMatrix = null; + +/** + * Gets the jth column of the given matrix m; assumes matrix entries are + * accessed in [row][column] fashion. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {number} j The index of the desired column. + * @return {!o3djs.math.Vector} The jth column of m as a vector. + */ +o3djs.math.rowMajor.column = function(m, j) { + var r = []; + var mLength = m.length; + for (var i = 0; i < mLength; ++i) { + r[i] = m[i][j]; + } + return r; +}; + +/** + * Gets the jth column of the given matrix m; assumes matrix entries are + * accessed in [column][row] fashion. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {number} j The index of the desired column. + * @return {!o3djs.math.Vector} The jth column of m as a vector. + */ +o3djs.math.columnMajor.column = function(m, j) { + return m[j].slice(); +}; + +/** + * Gets the jth column of the given matrix m. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {number} j The index of the desired column. + * @return {!o3djs.math.Vector} The jth column of m as a vector. + */ +o3djs.math.column = null; + +/** + * Gets the ith row of the given matrix m; assumes matrix entries are + * accessed in [row][column] fashion. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {number} i The index of the desired row. + * @return {!o3djs.math.Vector} The ith row of m. + */ +o3djs.math.rowMajor.row = function(m, i) { + return m[i].slice(); +}; + +/** + * Gets the ith row of the given matrix m; assumes matrix entries are + * accessed in [column][row] fashion. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {number} i The index of the desired row. + * @return {!o3djs.math.Vector} The ith row of m. + */ +o3djs.math.columnMajor.row = function(m, i) { + var r = []; + var mLength = m.length; + for (var j = 0; j < mLength; ++j) { + r[j] = m[j][i]; + } + return r; +}; + +/** + * Gets the ith row of the given matrix m. + * @param {!o3djs.math.Matrix} m The matrix. + * @param {number} i The index of the desired row. + * @return {!o3djs.math.Vector} The ith row of m. + */ +o3djs.math.row = null; + +/** + * Creates an n-by-n identity matrix. + * @param {number} n The dimension of the identity matrix required. + * @return {!o3djs.math.Matrix} An n-by-n identity matrix. + */ +o3djs.math.identity = function(n) { + var r = []; + for (var j = 0; j < n; ++j) { + r[j] = []; + for (var i = 0; i < n; ++i) + r[j][i] = (i == j) ? 1 : 0; + } + return r; +}; + +/** + * Takes the transpose of a matrix. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {!o3djs.math.Matrix} The transpose of m. + */ +o3djs.math.transpose = function(m) { + var r = []; + var m0Length = m[0].length; + var mLength = m.length; + for (var j = 0; j < m0Length; ++j) { + r[j] = []; + for (var i = 0; i < mLength; ++i) + r[j][i] = m[i][j]; + } + return r; +}; + +/** + * Computes the trace (sum of the diagonal entries) of a square matrix; + * assumes m is square. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {number} The trace of m. + */ +o3djs.math.trace = function(m) { + var r = 0.0; + var mLength = m.length; + for (var i = 0; i < mLength; ++i) + r += m[i][i]; + return r; +}; + +/** + * Computes the determinant of a 1-by-1 matrix. + * @param {!o3djs.math.Matrix1} m The matrix. + * @return {number} The determinant of m. + */ +o3djs.math.det1 = function(m) { + return m[0][0]; +}; + +/** + * Computes the determinant of a 2-by-2 matrix. + * @param {!o3djs.math.Matrix2} m The matrix. + * @return {number} The determinant of m. + */ +o3djs.math.det2 = function(m) { + return m[0][0] * m[1][1] - m[0][1] * m[1][0]; +}; + +/** + * Computes the determinant of a 3-by-3 matrix. + * @param {!o3djs.math.Matrix3} m The matrix. + * @return {number} The determinant of m. + */ +o3djs.math.det3 = function(m) { + return m[2][2] * (m[0][0] * m[1][1] - m[0][1] * m[1][0]) - + m[2][1] * (m[0][0] * m[1][2] - m[0][2] * m[1][0]) + + m[2][0] * (m[0][1] * m[1][2] - m[0][2] * m[1][1]); +}; + +/** + * Computes the determinant of a 4-by-4 matrix. + * @param {!o3djs.math.Matrix4} m The matrix. + * @return {number} The determinant of m. + */ +o3djs.math.det4 = function(m) { + var t01 = m[0][0] * m[1][1] - m[0][1] * m[1][0]; + var t02 = m[0][0] * m[1][2] - m[0][2] * m[1][0]; + var t03 = m[0][0] * m[1][3] - m[0][3] * m[1][0]; + var t12 = m[0][1] * m[1][2] - m[0][2] * m[1][1]; + var t13 = m[0][1] * m[1][3] - m[0][3] * m[1][1]; + var t23 = m[0][2] * m[1][3] - m[0][3] * m[1][2]; + return m[3][3] * (m[2][2] * t01 - m[2][1] * t02 + m[2][0] * t12) - + m[3][2] * (m[2][3] * t01 - m[2][1] * t03 + m[2][0] * t13) + + m[3][1] * (m[2][3] * t02 - m[2][2] * t03 + m[2][0] * t23) - + m[3][0] * (m[2][3] * t12 - m[2][2] * t13 + m[2][1] * t23); +}; + +/** + * Computes the inverse of a 1-by-1 matrix. + * @param {!o3djs.math.Matrix1} m The matrix. + * @return {!o3djs.math.Matrix1} The inverse of m. + */ +o3djs.math.inverse1 = function(m) { + return [[1.0 / m[0][0]]]; +}; + +/** + * Computes the inverse of a 2-by-2 matrix. + * @param {!o3djs.math.Matrix2} m The matrix. + * @return {!o3djs.math.Matrix2} The inverse of m. + */ +o3djs.math.inverse2 = function(m) { + var d = 1.0 / (m[0][0] * m[1][1] - m[0][1] * m[1][0]); + return [[d * m[1][1], -d * m[0][1]], [-d * m[1][0], d * m[0][0]]]; +}; + +/** + * Computes the inverse of a 3-by-3 matrix. + * @param {!o3djs.math.Matrix3} m The matrix. + * @return {!o3djs.math.Matrix3} The inverse of m. + */ +o3djs.math.inverse3 = function(m) { + var t00 = m[1][1] * m[2][2] - m[1][2] * m[2][1]; + var t10 = m[0][1] * m[2][2] - m[0][2] * m[2][1]; + var t20 = m[0][1] * m[1][2] - m[0][2] * m[1][1]; + var d = 1.0 / (m[0][0] * t00 - m[1][0] * t10 + m[2][0] * t20); + return [[d * t00, -d * t10, d * t20], + [-d * (m[1][0] * m[2][2] - m[1][2] * m[2][0]), + d * (m[0][0] * m[2][2] - m[0][2] * m[2][0]), + -d * (m[0][0] * m[1][2] - m[0][2] * m[1][0])], + [d * (m[1][0] * m[2][1] - m[1][1] * m[2][0]), + -d * (m[0][0] * m[2][1] - m[0][1] * m[2][0]), + d * (m[0][0] * m[1][1] - m[0][1] * m[1][0])]]; +}; + +/** + * Computes the inverse of a 4-by-4 matrix. + * @param {!o3djs.math.Matrix4} m The matrix. + * @return {!o3djs.math.Matrix4} The inverse of m. + */ +o3djs.math.inverse4 = function(m) { + var tmp_0 = m[2][2] * m[3][3]; + var tmp_1 = m[3][2] * m[2][3]; + var tmp_2 = m[1][2] * m[3][3]; + var tmp_3 = m[3][2] * m[1][3]; + var tmp_4 = m[1][2] * m[2][3]; + var tmp_5 = m[2][2] * m[1][3]; + var tmp_6 = m[0][2] * m[3][3]; + var tmp_7 = m[3][2] * m[0][3]; + var tmp_8 = m[0][2] * m[2][3]; + var tmp_9 = m[2][2] * m[0][3]; + var tmp_10 = m[0][2] * m[1][3]; + var tmp_11 = m[1][2] * m[0][3]; + var tmp_12 = m[2][0] * m[3][1]; + var tmp_13 = m[3][0] * m[2][1]; + var tmp_14 = m[1][0] * m[3][1]; + var tmp_15 = m[3][0] * m[1][1]; + var tmp_16 = m[1][0] * m[2][1]; + var tmp_17 = m[2][0] * m[1][1]; + var tmp_18 = m[0][0] * m[3][1]; + var tmp_19 = m[3][0] * m[0][1]; + var tmp_20 = m[0][0] * m[2][1]; + var tmp_21 = m[2][0] * m[0][1]; + var tmp_22 = m[0][0] * m[1][1]; + var tmp_23 = m[1][0] * m[0][1]; + + var t0 = (tmp_0 * m[1][1] + tmp_3 * m[2][1] + tmp_4 * m[3][1]) - + (tmp_1 * m[1][1] + tmp_2 * m[2][1] + tmp_5 * m[3][1]); + var t1 = (tmp_1 * m[0][1] + tmp_6 * m[2][1] + tmp_9 * m[3][1]) - + (tmp_0 * m[0][1] + tmp_7 * m[2][1] + tmp_8 * m[3][1]); + var t2 = (tmp_2 * m[0][1] + tmp_7 * m[1][1] + tmp_10 * m[3][1]) - + (tmp_3 * m[0][1] + tmp_6 * m[1][1] + tmp_11 * m[3][1]); + var t3 = (tmp_5 * m[0][1] + tmp_8 * m[1][1] + tmp_11 * m[2][1]) - + (tmp_4 * m[0][1] + tmp_9 * m[1][1] + tmp_10 * m[2][1]); + + var d = 1.0 / (m[0][0] * t0 + m[1][0] * t1 + m[2][0] * t2 + m[3][0] * t3); + + var row0 = [d * t0, d * t1, d * t2, d * t3]; + var row1 = [d * ((tmp_1 * m[1][0] + tmp_2 * m[2][0] + tmp_5 * m[3][0]) - + (tmp_0 * m[1][0] + tmp_3 * m[2][0] + tmp_4 * m[3][0])), + d * ((tmp_0 * m[0][0] + tmp_7 * m[2][0] + tmp_8 * m[3][0]) - + (tmp_1 * m[0][0] + tmp_6 * m[2][0] + tmp_9 * m[3][0])), + d * ((tmp_3 * m[0][0] + tmp_6 * m[1][0] + tmp_11 * m[3][0]) - + (tmp_2 * m[0][0] + tmp_7 * m[1][0] + tmp_10 * m[3][0])), + d * ((tmp_4 * m[0][0] + tmp_9 * m[1][0] + tmp_10 * m[2][0]) - + (tmp_5 * m[0][0] + tmp_8 * m[1][0] + tmp_11 * m[2][0]))]; + var row2 =[d * ((tmp_12 * m[1][3] + tmp_15 * m[2][3] + tmp_16 * m[3][3]) - + (tmp_13 * m[1][3] + tmp_14 * m[2][3] + tmp_17 * m[3][3])), + d * ((tmp_13 * m[0][3] + tmp_18 * m[2][3] + tmp_21 * m[3][3]) - + (tmp_12 * m[0][3] + tmp_19 * m[2][3] + tmp_20 * m[3][3])), + d * ((tmp_14 * m[0][3] + tmp_19 * m[1][3] + tmp_22 * m[3][3]) - + (tmp_15 * m[0][3] + tmp_18 * m[1][3] + tmp_23 * m[3][3])), + d * ((tmp_17 * m[0][3] + tmp_20 * m[1][3] + tmp_23 * m[2][3]) - + (tmp_16 * m[0][3] + tmp_21 * m[1][3] + tmp_22 * m[2][3]))]; + var row3 = [d * ((tmp_14 * m[2][2] + tmp_17 * m[3][2] + tmp_13 * m[1][2]) - + (tmp_16 * m[3][2] + tmp_12 * m[1][2] + tmp_15 * m[2][2])), + d * ((tmp_20 * m[3][2] + tmp_12 * m[0][2] + tmp_19 * m[2][2]) - + (tmp_18 * m[2][2] + tmp_21 * m[3][2] + tmp_13 * m[0][2])), + d * ((tmp_18 * m[1][2] + tmp_23 * m[3][2] + tmp_15 * m[0][2]) - + (tmp_22 * m[3][2] + tmp_14 * m[0][2] + tmp_19 * m[1][2])), + d * ((tmp_22 * m[2][2] + tmp_16 * m[0][2] + tmp_21 * m[1][2]) - + (tmp_20 * m[1][2] + tmp_23 * m[2][2] + tmp_17 * m[0][2]))]; + return [row0, row1, row2, row3]; +}; + +/** + * Computes the determinant of the cofactor matrix obtained by removal + * of a specified row and column. This is a helper function for the general + * determinant and matrix inversion functions. + * @param {!o3djs.math.Matrix} a The original matrix. + * @param {number} x The row to be removed. + * @param {number} y The column to be removed. + * @return {number} The determinant of the matrix obtained by removing + * row x and column y from a. + */ +o3djs.math.codet = function(a, x, y) { + var size = a.length; + var b = []; + var ai = 0; + for (var bi = 0; bi < size - 1; ++bi) { + if (ai == x) + ai++; + b[bi] = []; + var aj = 0; + for (var bj = 0; bj < size - 1; ++bj) { + if (aj == y) + aj++; + b[bi][bj] = a[ai][aj]; + aj++; + } + ai++; + } + return o3djs.math.det(b); +}; + +/** + * Computes the determinant of an arbitrary square matrix. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {number} the determinant of m. + */ +o3djs.math.det = function(m) { + var d = m.length; + if (d <= 4) { + return o3djs.math['det' + d](m); + } + var r = 0.0; + var sign = 1; + var row = m[0]; + var mLength = m.length; + for (var y = 0; y < mLength; y++) { + r += sign * row[y] * o3djs.math.codet(m, 0, y); + sign *= -1; + } + return r; +}; + +/** + * Computes the inverse of an arbitrary square matrix. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {!o3djs.math.Matrix} The inverse of m. + */ +o3djs.math.inverse = function(m) { + var d = m.length; + if (d <= 4) { + return o3djs.math['inverse' + d](m); + } + var r = []; + var size = m.length; + for (var j = 0; j < size; ++j) { + r[j] = []; + for (var i = 0; i < size; ++i) + r[j][i] = ((i + j) % 2 ? -1 : 1) * o3djs.math.codet(m, i, j); + } + return o3djs.math.divMatrixScalar(r, o3djs.math.det(m)); +}; + +/** + * Performs Graham-Schmidt orthogonalization on the vectors which make up the + * given matrix and returns the result in the rows of a new matrix. When + * multiplying many orthogonal matrices together, errors can accumulate causing + * the product to fail to be orthogonal. This function can be used to correct + * that. + * @param {!o3djs.math.Matrix} m The matrix. + * @return {!o3djs.math.Matrix} A matrix whose rows are obtained from the + * rows of m by the Graham-Schmidt process. + */ +o3djs.math.orthonormalize = function(m) { + var r = []; + var mLength = m.length; + for (var i = 0; i < mLength; ++i) { + var v = m[i]; + for (var j = 0; j < i; ++j) { + v = o3djs.math.subVector(v, o3djs.math.mulScalarVector( + o3djs.math.dot(r[j], m[i]), r[j])); + } + r[i] = o3djs.math.normalize(v); + } + return r; +}; + +/** + * Computes the inverse of a 4-by-4 matrix. + * Note: It is faster to call this than o3djs.math.inverse. + * @param {!o3djs.math.Matrix4} m The matrix. + * @return {!o3djs.math.Matrix4} The inverse of m. + */ +o3djs.math.matrix4.inverse = function(m) { + return o3djs.math.inverse4(m); +}; + +/** + * Multiplies two 4-by-4 matrices; assumes that the given matrices are 4-by-4. + * Note: It is faster to call this than o3djs.math.mul. + * @param {!o3djs.math.Matrix4} a The matrix on the left. + * @param {!o3djs.math.Matrix4} b The matrix on the right. + * @return {!o3djs.math.Matrix4} The matrix product of a and b. + */ +o3djs.math.matrix4.mul = function(a, b) { + return o3djs.math.mulMatrixMatrix4(a, b); +}; + +/** + * Computes the determinant of a 4-by-4 matrix. + * Note: It is faster to call this than o3djs.math.det. + * @param {!o3djs.math.Matrix4} m The matrix. + * @return {number} The determinant of m. + */ +o3djs.math.matrix4.det = function(m) { + return o3djs.math.det4(m); +}; + +/** + * Copies a Matrix4. + * Note: It is faster to call this than o3djs.math.copy. + * @param {!o3djs.math.Matrix4} m The matrix. + * @return {!o3djs.math.Matrix4} A copy of m. + */ +o3djs.math.matrix4.copy = function(m) { + return o3djs.math.copyMatrix(m); +}; + +/** + * Sets the upper 3-by-3 block of matrix a to the upper 3-by-3 block of matrix + * b; assumes that a and b are big enough to contain an upper 3-by-3 block. + * @param {!o3djs.math.Matrix4} a A matrix. + * @param {!o3djs.math.Matrix3} b A 3-by-3 matrix. + * @return {!o3djs.math.Matrix4} a once modified. + */ +o3djs.math.matrix4.setUpper3x3 = function(a, b) { + var b0 = b[0]; + var b1 = b[1]; + var b2 = b[2]; + + a[0].splice(0, 3, b0[0], b0[1], b0[2]); + a[1].splice(0, 3, b1[0], b1[1], b1[2]); + a[2].splice(0, 3, b2[0], b2[1], b2[2]); + + return a; +}; + +/** + * Returns a 3-by-3 matrix mimicking the upper 3-by-3 block of m; assumes m + * is big enough to contain an upper 3-by-3 block. + * @param {!o3djs.math.Matrix4} m The matrix. + * @return {!o3djs.math.Matrix3} The upper 3-by-3 block of m. + */ +o3djs.math.matrix4.getUpper3x3 = function(m) { + return [m[0].slice(0, 3), m[1].slice(0, 3), m[2].slice(0, 3)]; +}; + +/** + * Sets the translation component of a 4-by-4 matrix to the given + * vector. + * @param {!o3djs.math.Matrix4} a The matrix. + * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} v The vector. + * @return {!o3djs.math.Matrix4} a once modified. + */ +o3djs.math.matrix4.setTranslation = function(a, v) { + a[3].splice(0, 4, v[0], v[1], v[2], 1); + return a; +}; + +/** + * Returns the translation component of a 4-by-4 matrix as a vector with 3 + * entries. + * @param {!o3djs.math.Matrix4} m The matrix. + * @return {!o3djs.math.Vector3} The translation component of m. + */ +o3djs.math.matrix4.getTranslation = function(m) { + return m[3].slice(0, 3); +}; + +/** + * Takes a 4-by-4 matrix and a vector with 3 entries, + * interprets the vector as a point, transforms that point by the matrix, and + * returns the result as a vector with 3 entries. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {!o3djs.math.Vector3} v The point. + * @return {!o3djs.math.Vector3} The transformed point. + */ +o3djs.math.matrix4.transformPoint = function(m, v) { + var v0 = v[0]; + var v1 = v[1]; + var v2 = v[2]; + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + + var d = v0 * m0[3] + v1 * m1[3] + v2 * m2[3] + m3[3]; + return [(v0 * m0[0] + v1 * m1[0] + v2 * m2[0] + m3[0]) / d, + (v0 * m0[1] + v1 * m1[1] + v2 * m2[1] + m3[1]) / d, + (v0 * m0[2] + v1 * m1[2] + v2 * m2[2] + m3[2]) / d]; +}; + +/** + * Takes a 4-by-4 matrix and a vector with 4 entries, transforms that vector by + * the matrix, and returns the result as a vector with 4 entries. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {!o3djs.math.Vector4} v The point in homogenous coordinates. + * @return {!o3djs.math.Vector4} The transformed point in homogenous + * coordinates. + */ +o3djs.math.matrix4.transformVector4 = function(m, v) { + var v0 = v[0]; + var v1 = v[1]; + var v2 = v[2]; + var v3 = v[3]; + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + + return [v0 * m0[0] + v1 * m1[0] + v2 * m2[0] + v3 * m3[0], + v0 * m0[1] + v1 * m1[1] + v2 * m2[1] + v3 * m3[1], + v0 * m0[2] + v1 * m1[2] + v2 * m2[2] + v3 * m3[2], + v0 * m0[3] + v1 * m1[3] + v2 * m2[3] + v3 * m3[3]]; +}; + +/** + * Takes a 4-by-4 matrix and a vector with 3 entries, interprets the vector as a + * direction, transforms that direction by the matrix, and returns the result; + * assumes the transformation of 3-dimensional space represented by the matrix + * is parallel-preserving, i.e. any combination of rotation, scaling and + * translation, but not a perspective distortion. Returns a vector with 3 + * entries. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {!o3djs.math.Vector3} v The direction. + * @return {!o3djs.math.Vector3} The transformed direction. + */ +o3djs.math.matrix4.transformDirection = function(m, v) { + var v0 = v[0]; + var v1 = v[1]; + var v2 = v[2]; + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + + return [v0 * m0[0] + v1 * m1[0] + v2 * m2[0], + v0 * m0[1] + v1 * m1[1] + v2 * m2[1], + v0 * m0[2] + v1 * m1[2] + v2 * m2[2]]; +}; + +/** + * Takes a 4-by-4 matrix m and a vector v with 3 entries, interprets the vector + * as a normal to a surface, and computes a vector which is normal upon + * transforming that surface by the matrix. The effect of this function is the + * same as transforming v (as a direction) by the inverse-transpose of m. This + * function assumes the transformation of 3-dimensional space represented by the + * matrix is parallel-preserving, i.e. any combination of rotation, scaling and + * translation, but not a perspective distortion. Returns a vector with 3 + * entries. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {!o3djs.math.Vector3} v The normal. + * @return {!o3djs.math.Vector3} The transformed normal. + */ +o3djs.math.matrix4.transformNormal = function(m, v) { + var mInverse = o3djs.math.inverse4(m); + var v0 = v[0]; + var v1 = v[1]; + var v2 = v[2]; + var mi0 = mInverse[0]; + var mi1 = mInverse[1]; + var mi2 = mInverse[2]; + var mi3 = mInverse[3]; + + return [v0 * mi0[0] + v1 * mi0[1] + v2 * mi0[2], + v0 * mi1[0] + v1 * mi1[1] + v2 * mi1[2], + v0 * mi2[0] + v1 * mi2[1] + v2 * mi2[2]]; +}; + +/** + * Creates a 4-by-4 identity matrix. + * @return {!o3djs.math.Matrix4} The 4-by-4 identity. + */ +o3djs.math.matrix4.identity = function() { + return [ + [1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1] + ]; +}; + +/** + * Sets the given 4-by-4 matrix to the identity matrix. + * @param {!o3djs.math.Matrix4} m The matrix to set to identity. + * @return {!o3djs.math.Matrix4} m once modified. + */ +o3djs.math.matrix4.setIdentity = function(m) { + for (var i = 0; i < 4; i++) { + for (var j = 0; j < 4; j++) { + if (i == j) { + m[i][j] = 1; + } else { + m[i][j] = 0; + } + } + } + return m; +}; + +/** + * Computes a 4-by-4 perspective transformation matrix given the angular height + * of the frustum, the aspect ratio, and the near and far clipping planes. The + * arguments define a frustum extending in the negative z direction. The given + * angle is the vertical angle of the frustum, and the horizontal angle is + * determined to produce the given aspect ratio. The arguments near and far are + * the distances to the near and far clipping planes. Note that near and far + * are not z coordinates, but rather they are distances along the negative + * z-axis. The matrix generated sends the viewing frustum to the unit box. + * We assume a unit box extending from -1 to 1 in the x and y dimensions and + * from 0 to 1 in the z dimension. + * @param {number} angle The camera angle from top to bottom (in radians). + * @param {number} aspect The aspect ratio width / height. + * @param {number} near The depth (negative z coordinate) + * of the near clipping plane. + * @param {number} far The depth (negative z coordinate) + * of the far clipping plane. + * @return {!o3djs.math.Matrix4} The perspective matrix. + */ +o3djs.math.matrix4.perspective = function(angle, aspect, near, far) { + var f = Math.tan(0.5 * (Math.PI - angle)); + var range = near - far; + + return [ + [f / aspect, 0, 0, 0], + [0, f, 0, 0], + [0, 0, far / range, -1], + [0, 0, near * far / range, 0] + ]; +}; + +/** + * Computes a 4-by-4 orthographic projection matrix given the coordinates of the + * planes defining the axis-aligned, box-shaped viewing volume. The matrix + * generated sends that box to the unit box. Note that although left and right + * are x coordinates and bottom and top are y coordinates, near and far + * are not z coordinates, but rather they are distances along the negative + * z-axis. We assume a unit box extending from -1 to 1 in the x and y + * dimensions and from 0 to 1 in the z dimension. + * @param {number} left The x coordinate of the left plane of the box. + * @param {number} right The x coordinate of the right plane of the box. + * @param {number} bottom The y coordinate of the bottom plane of the box. + * @param {number} top The y coordinate of the right plane of the box. + * @param {number} near The negative z coordinate of the near plane of the box. + * @param {number} far The negative z coordinate of the far plane of the box. + * @return {!o3djs.math.Matrix4} The orthographic projection matrix. + */ +o3djs.math.matrix4.orthographic = + function(left, right, bottom, top, near, far) { + return [ + [2 / (right - left), 0, 0, 0], + [0, 2 / (top - bottom), 0, 0], + [0, 0, 1 / (near - far), 0], + [(left + right) / (left - right), + (bottom + top) / (bottom - top), + near / (near - far), 1] + ]; +}; + +/** + * Computes a 4-by-4 perspective transformation matrix given the left, right, + * top, bottom, near and far clipping planes. The arguments define a frustum + * extending in the negative z direction. The arguments near and far are the + * distances to the near and far clipping planes. Note that near and far are not + * z coordinates, but rather they are distances along the negative z-axis. The + * matrix generated sends the viewing frustum to the unit box. We assume a unit + * box extending from -1 to 1 in the x and y dimensions and from 0 to 1 in the z + * dimension. + * @param {number} left The x coordinate of the left plane of the box. + * @param {number} right The x coordinate of the right plane of the box. + * @param {number} bottom The y coordinate of the bottom plane of the box. + * @param {number} top The y coordinate of the right plane of the box. + * @param {number} near The negative z coordinate of the near plane of the box. + * @param {number} far The negative z coordinate of the far plane of the box. + * @return {!o3djs.math.Matrix4} The perspective projection matrix. + */ +o3djs.math.matrix4.frustum = function(left, right, bottom, top, near, far) { + var dx = (right - left); + var dy = (top - bottom); + var dz = (near - far); + return [ + [2 * near / dx, 0, 0, 0], + [0, 2 * near / dy, 0, 0], + [(left + right) / dx, (top + bottom) / dy, far / dz, -1], + [0, 0, near * far / dz, 0]]; +}; + +/** + * Computes a 4-by-4 look-at transformation. The transformation generated is + * an orthogonal rotation matrix with translation component. The translation + * component sends the eye to the origin. The rotation component sends the + * vector pointing from the eye to the target to a vector pointing in the + * negative z direction, and also sends the up vector into the upper half of + * the yz plane. + * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} eye The position + * of the eye. + * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} target The + * position meant to be viewed. + * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} up A vector + * pointing up. + * @return {!o3djs.math.Matrix4} The look-at matrix. + */ +o3djs.math.matrix4.lookAt = function(eye, target, up) { + var vz = o3djs.math.normalize( + o3djs.math.subVector(eye, target).slice(0, 3)).concat(0); + var vx = o3djs.math.normalize( + o3djs.math.cross(up, vz)).concat(0); + var vy = o3djs.math.cross(vz, vx).concat(0); + + return o3djs.math.inverse([vx, vy, vz, eye.concat(1)]); +}; + +/** + * Takes two 4-by-4 matrices, a and b, and computes the product in the order + * that pre-composes b with a. In other words, the matrix returned will + * transform by b first and then a. Note this is subtly different from just + * multiplying the matrices together. For given a and b, this function returns + * the same object in both row-major and column-major mode. + * @param {!o3djs.math.Matrix4} a A 4-by-4 matrix. + * @param {!o3djs.math.Matrix4} b A 4-by-4 matrix. + * @return {!o3djs.math.Matrix4} the composition of a and b, b first then a. + */ +o3djs.math.matrix4.composition = function(a, b) { + var a0 = a[0]; + var a1 = a[1]; + var a2 = a[2]; + var a3 = a[3]; + var b0 = b[0]; + var b1 = b[1]; + var b2 = b[2]; + var b3 = b[3]; + var a00 = a0[0]; + var a01 = a0[1]; + var a02 = a0[2]; + var a03 = a0[3]; + var a10 = a1[0]; + var a11 = a1[1]; + var a12 = a1[2]; + var a13 = a1[3]; + var a20 = a2[0]; + var a21 = a2[1]; + var a22 = a2[2]; + var a23 = a2[3]; + var a30 = a3[0]; + var a31 = a3[1]; + var a32 = a3[2]; + var a33 = a3[3]; + var b00 = b0[0]; + var b01 = b0[1]; + var b02 = b0[2]; + var b03 = b0[3]; + var b10 = b1[0]; + var b11 = b1[1]; + var b12 = b1[2]; + var b13 = b1[3]; + var b20 = b2[0]; + var b21 = b2[1]; + var b22 = b2[2]; + var b23 = b2[3]; + var b30 = b3[0]; + var b31 = b3[1]; + var b32 = b3[2]; + var b33 = b3[3]; + return [[a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03, + a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03, + a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03, + a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03], + [a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13, + a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13, + a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13, + a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13], + [a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23, + a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23, + a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23, + a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23], + [a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33, + a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33, + a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33, + a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33]]; +}; + +/** + * Takes two 4-by-4 matrices, a and b, and modifies a to be the product in the + * order that pre-composes b with a. The matrix a, upon modification will + * transform by b first and then a. Note this is subtly different from just + * multiplying the matrices together. For given a and b, a, upon modification, + * will be the same object in both row-major and column-major mode. + * @param {!o3djs.math.Matrix4} a A 4-by-4 matrix. + * @param {!o3djs.math.Matrix4} b A 4-by-4 matrix. + * @return {!o3djs.math.Matrix4} a once modified. + */ +o3djs.math.matrix4.compose = function(a, b) { + var a0 = a[0]; + var a1 = a[1]; + var a2 = a[2]; + var a3 = a[3]; + var b0 = b[0]; + var b1 = b[1]; + var b2 = b[2]; + var b3 = b[3]; + var a00 = a0[0]; + var a01 = a0[1]; + var a02 = a0[2]; + var a03 = a0[3]; + var a10 = a1[0]; + var a11 = a1[1]; + var a12 = a1[2]; + var a13 = a1[3]; + var a20 = a2[0]; + var a21 = a2[1]; + var a22 = a2[2]; + var a23 = a2[3]; + var a30 = a3[0]; + var a31 = a3[1]; + var a32 = a3[2]; + var a33 = a3[3]; + var b00 = b0[0]; + var b01 = b0[1]; + var b02 = b0[2]; + var b03 = b0[3]; + var b10 = b1[0]; + var b11 = b1[1]; + var b12 = b1[2]; + var b13 = b1[3]; + var b20 = b2[0]; + var b21 = b2[1]; + var b22 = b2[2]; + var b23 = b2[3]; + var b30 = b3[0]; + var b31 = b3[1]; + var b32 = b3[2]; + var b33 = b3[3]; + a[0].splice(0, 4, a00 * b00 + a10 * b01 + a20 * b02 + a30 * b03, + a01 * b00 + a11 * b01 + a21 * b02 + a31 * b03, + a02 * b00 + a12 * b01 + a22 * b02 + a32 * b03, + a03 * b00 + a13 * b01 + a23 * b02 + a33 * b03); + a[1].splice(0, 4, a00 * b10 + a10 * b11 + a20 * b12 + a30 * b13, + a01 * b10 + a11 * b11 + a21 * b12 + a31 * b13, + a02 * b10 + a12 * b11 + a22 * b12 + a32 * b13, + a03 * b10 + a13 * b11 + a23 * b12 + a33 * b13); + a[2].splice(0, 4, a00 * b20 + a10 * b21 + a20 * b22 + a30 * b23, + a01 * b20 + a11 * b21 + a21 * b22 + a31 * b23, + a02 * b20 + a12 * b21 + a22 * b22 + a32 * b23, + a03 * b20 + a13 * b21 + a23 * b22 + a33 * b23), + a[3].splice(0, 4, a00 * b30 + a10 * b31 + a20 * b32 + a30 * b33, + a01 * b30 + a11 * b31 + a21 * b32 + a31 * b33, + a02 * b30 + a12 * b31 + a22 * b32 + a32 * b33, + a03 * b30 + a13 * b31 + a23 * b32 + a33 * b33); + return a; +}; + +/** + * Creates a 4-by-4 matrix which translates by the given vector v. + * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} v The vector by + * which to translate. + * @return {!o3djs.math.Matrix4} The translation matrix. + */ +o3djs.math.matrix4.translation = function(v) { + return [ + [1, 0, 0, 0], + [0, 1, 0, 0], + [0, 0, 1, 0], + [v[0], v[1], v[2], 1] + ]; +}; + +/** + * Modifies the given 4-by-4 matrix by translation by the given vector v. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} v The vector by + * which to translate. + * @return {!o3djs.math.Matrix4} m once modified. + */ +o3djs.math.matrix4.translate = function(m, v) { + var v0 = v[0]; + var v1 = v[1]; + var v2 = v[2]; + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + var m00 = m0[0]; + var m01 = m0[1]; + var m02 = m0[2]; + var m03 = m0[3]; + var m10 = m1[0]; + var m11 = m1[1]; + var m12 = m1[2]; + var m13 = m1[3]; + var m20 = m2[0]; + var m21 = m2[1]; + var m22 = m2[2]; + var m23 = m2[3]; + var m30 = m3[0]; + var m31 = m3[1]; + var m32 = m3[2]; + var m33 = m3[3]; + + m3.splice(0, 4, m00 * v0 + m10 * v1 + m20 * v2 + m30, + m01 * v0 + m11 * v1 + m21 * v2 + m31, + m02 * v0 + m12 * v1 + m22 * v2 + m32, + m03 * v0 + m13 * v1 + m23 * v2 + m33); + + return m; +}; + +/** + * Creates a 4-by-4 matrix which scales in each dimension by an amount given by + * the corresponding entry in the given vector; assumes the vector has three + * entries. + * @param {!o3djs.math.Vector3} v A vector of + * three entries specifying the factor by which to scale in each dimension. + * @return {!o3djs.math.Matrix4} The scaling matrix. + */ +o3djs.math.matrix4.scaling = function(v) { + return [ + [v[0], 0, 0, 0], + [0, v[1], 0, 0], + [0, 0, v[2], 0], + [0, 0, 0, 1] + ]; +}; + +/** + * Modifies the given 4-by-4 matrix, scaling in each dimension by an amount + * given by the corresponding entry in the given vector; assumes the vector has + * three entries. + * @param {!o3djs.math.Matrix4} m The matrix to be modified. + * @param {!o3djs.math.Vector3} v A vector of three entries specifying the + * factor by which to scale in each dimension. + * @return {!o3djs.math.Matrix4} m once modified. + */ +o3djs.math.matrix4.scale = function(m, v) { + var v0 = v[0]; + var v1 = v[1]; + var v2 = v[2]; + + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + + m0.splice(0, 4, v0 * m0[0], v0 * m0[1], v0 * m0[2], v0 * m0[3]); + m1.splice(0, 4, v1 * m1[0], v1 * m1[1], v1 * m1[2], v1 * m1[3]); + m2.splice(0, 4, v2 * m2[0], v2 * m2[1], v2 * m2[2], v2 * m2[3]); + + return m; +}; + +/** + * Creates a 4-by-4 matrix which rotates around the x-axis by the given angle. + * @param {number} angle The angle by which to rotate (in radians). + * @return {!o3djs.math.Matrix4} The rotation matrix. + */ +o3djs.math.matrix4.rotationX = function(angle) { + var c = Math.cos(angle); + var s = Math.sin(angle); + + return [ + [1, 0, 0, 0], + [0, c, s, 0], + [0, -s, c, 0], + [0, 0, 0, 1] + ]; +}; + +/** + * Modifies the given 4-by-4 matrix by a rotation around the x-axis by the given + * angle. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {number} angle The angle by which to rotate (in radians). + * @return {!o3djs.math.Matrix4} m once modified. + */ +o3djs.math.matrix4.rotateX = function(m, angle) { + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + var m10 = m1[0]; + var m11 = m1[1]; + var m12 = m1[2]; + var m13 = m1[3]; + var m20 = m2[0]; + var m21 = m2[1]; + var m22 = m2[2]; + var m23 = m2[3]; + var c = Math.cos(angle); + var s = Math.sin(angle); + + m1.splice(0, 4, c * m10 + s * m20, + c * m11 + s * m21, + c * m12 + s * m22, + c * m13 + s * m23); + m2.splice(0, 4, c * m20 - s * m10, + c * m21 - s * m11, + c * m22 - s * m12, + c * m23 - s * m13); + + return m; +}; + +/** + * Creates a 4-by-4 matrix which rotates around the y-axis by the given angle. + * @param {number} angle The angle by which to rotate (in radians). + * @return {!o3djs.math.Matrix4} The rotation matrix. + */ +o3djs.math.matrix4.rotationY = function(angle) { + var c = Math.cos(angle); + var s = Math.sin(angle); + + return [ + [c, 0, -s, 0], + [0, 1, 0, 0], + [s, 0, c, 0], + [0, 0, 0, 1] + ]; +}; + +/** + * Modifies the given 4-by-4 matrix by a rotation around the y-axis by the given + * angle. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {number} angle The angle by which to rotate (in radians). + * @return {!o3djs.math.Matrix4} m once modified. + */ +o3djs.math.matrix4.rotateY = function(m, angle) { + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + var m00 = m0[0]; + var m01 = m0[1]; + var m02 = m0[2]; + var m03 = m0[3]; + var m20 = m2[0]; + var m21 = m2[1]; + var m22 = m2[2]; + var m23 = m2[3]; + var c = Math.cos(angle); + var s = Math.sin(angle); + + m0.splice(0, 4, c * m00 - s * m20, + c * m01 - s * m21, + c * m02 - s * m22, + c * m03 - s * m23); + m2.splice(0, 4, c * m20 + s * m00, + c * m21 + s * m01, + c * m22 + s * m02, + c * m23 + s * m03); + + return m; +}; + +/** + * Creates a 4-by-4 matrix which rotates around the z-axis by the given angle. + * @param {number} angle The angle by which to rotate (in radians). + * @return {!o3djs.math.Matrix4} The rotation matrix. + */ +o3djs.math.matrix4.rotationZ = function(angle) { + var c = Math.cos(angle); + var s = Math.sin(angle); + + return [ + [c, s, 0, 0], + [-s, c, 0, 0], + [0, 0, 1, 0], + [0, 0, 0, 1] + ]; +}; + +/** + * Modifies the given 4-by-4 matrix by a rotation around the z-axis by the given + * angle. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {number} angle The angle by which to rotate (in radians). + * @return {!o3djs.math.Matrix4} m once modified. + */ +o3djs.math.matrix4.rotateZ = function(m, angle) { + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + var m00 = m0[0]; + var m01 = m0[1]; + var m02 = m0[2]; + var m03 = m0[3]; + var m10 = m1[0]; + var m11 = m1[1]; + var m12 = m1[2]; + var m13 = m1[3]; + var c = Math.cos(angle); + var s = Math.sin(angle); + + m0.splice(0, 4, c * m00 + s * m10, + c * m01 + s * m11, + c * m02 + s * m12, + c * m03 + s * m13); + m1.splice(0, 4, c * m10 - s * m00, + c * m11 - s * m01, + c * m12 - s * m02, + c * m13 - s * m03); + + return m; +}; + +/** + * Creates a 4-by-4 rotation matrix. Interprets the entries of the given + * vector as angles by which to rotate around the x, y and z axes, returns a + * a matrix which rotates around the x-axis first, then the y-axis, then the + * z-axis. + * @param {!o3djs.math.Vector3} v A vector of angles (in radians). + * @return {!o3djs.math.Matrix4} The rotation matrix. + */ +o3djs.math.matrix4.rotationZYX = function(v) { + var sinx = Math.sin(v[0]); + var cosx = Math.cos(v[0]); + var siny = Math.sin(v[1]); + var cosy = Math.cos(v[1]); + var sinz = Math.sin(v[2]); + var cosz = Math.cos(v[2]); + + var coszsiny = cosz * siny; + var sinzsiny = sinz * siny; + + return [ + [cosz * cosy, sinz * cosy, -siny, 0], + [coszsiny * sinx - sinz * cosx, + sinzsiny * sinx + cosz * cosx, + cosy * sinx, + 0], + [coszsiny * cosx + sinz * sinx, + sinzsiny * cosx - cosz * sinx, + cosy * cosx, + 0], + [0, 0, 0, 1] + ]; +}; + +/** + * Modifies a 4-by-4 matrix by a rotation. Interprets the coordinates of the + * given vector as angles by which to rotate around the x, y and z axes, rotates + * around the x-axis first, then the y-axis, then the z-axis. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {!o3djs.math.Vector3} v A vector of angles (in radians). + * @return {!o3djs.math.Matrix4} m once modified. + */ +o3djs.math.matrix4.rotateZYX = function(m, v) { + var sinX = Math.sin(v[0]); + var cosX = Math.cos(v[0]); + var sinY = Math.sin(v[1]); + var cosY = Math.cos(v[1]); + var sinZ = Math.sin(v[2]); + var cosZ = Math.cos(v[2]); + + var cosZSinY = cosZ * sinY; + var sinZSinY = sinZ * sinY; + + var r00 = cosZ * cosY; + var r01 = sinZ * cosY; + var r02 = -sinY; + var r10 = cosZSinY * sinX - sinZ * cosX; + var r11 = sinZSinY * sinX + cosZ * cosX; + var r12 = cosY * sinX; + var r20 = cosZSinY * cosX + sinZ * sinX; + var r21 = sinZSinY * cosX - cosZ * sinX; + var r22 = cosY * cosX; + + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + + var m00 = m0[0]; + var m01 = m0[1]; + var m02 = m0[2]; + var m03 = m0[3]; + var m10 = m1[0]; + var m11 = m1[1]; + var m12 = m1[2]; + var m13 = m1[3]; + var m20 = m2[0]; + var m21 = m2[1]; + var m22 = m2[2]; + var m23 = m2[3]; + var m30 = m3[0]; + var m31 = m3[1]; + var m32 = m3[2]; + var m33 = m3[3]; + + m0.splice(0, 4, + r00 * m00 + r01 * m10 + r02 * m20, + r00 * m01 + r01 * m11 + r02 * m21, + r00 * m02 + r01 * m12 + r02 * m22, + r00 * m03 + r01 * m13 + r02 * m23); + + m1.splice(0, 4, + r10 * m00 + r11 * m10 + r12 * m20, + r10 * m01 + r11 * m11 + r12 * m21, + r10 * m02 + r11 * m12 + r12 * m22, + r10 * m03 + r11 * m13 + r12 * m23); + + m2.splice(0, 4, + r20 * m00 + r21 * m10 + r22 * m20, + r20 * m01 + r21 * m11 + r22 * m21, + r20 * m02 + r21 * m12 + r22 * m22, + r20 * m03 + r21 * m13 + r22 * m23); + + return m; +}; + +/** + * Creates a 4-by-4 matrix which rotates around the given axis by the given + * angle. + * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} axis The axis + * about which to rotate. + * @param {number} angle The angle by which to rotate (in radians). + * @return {!o3djs.math.Matrix4} A matrix which rotates angle radians + * around the axis. + */ +o3djs.math.matrix4.axisRotation = function(axis, angle) { + var x = axis[0]; + var y = axis[1]; + var z = axis[2]; + var n = Math.sqrt(x * x + y * y + z * z); + x /= n; + y /= n; + z /= n; + var xx = x * x; + var yy = y * y; + var zz = z * z; + var c = Math.cos(angle); + var s = Math.sin(angle); + var oneMinusCosine = 1 - c; + + return [ + [xx + (1 - xx) * c, + x * y * oneMinusCosine + z * s, + x * z * oneMinusCosine - y * s, + 0], + [x * y * oneMinusCosine - z * s, + yy + (1 - yy) * c, + y * z * oneMinusCosine + x * s, + 0], + [x * z * oneMinusCosine + y * s, + y * z * oneMinusCosine - x * s, + zz + (1 - zz) * c, + 0], + [0, 0, 0, 1] + ]; +}; + +/** + * Modifies the given 4-by-4 matrix by rotation around the given axis by the + * given angle. + * @param {!o3djs.math.Matrix4} m The matrix. + * @param {(!o3djs.math.Vector3|!o3djs.math.Vector4)} axis The axis + * about which to rotate. + * @param {number} angle The angle by which to rotate (in radians). + * @return {!o3djs.math.Matrix4} m once modified. + */ +o3djs.math.matrix4.axisRotate = function(m, axis, angle) { + var x = axis[0]; + var y = axis[1]; + var z = axis[2]; + var n = Math.sqrt(x * x + y * y + z * z); + x /= n; + y /= n; + z /= n; + var xx = x * x; + var yy = y * y; + var zz = z * z; + var c = Math.cos(angle); + var s = Math.sin(angle); + var oneMinusCosine = 1 - c; + + var r00 = xx + (1 - xx) * c; + var r01 = x * y * oneMinusCosine + z * s; + var r02 = x * z * oneMinusCosine - y * s; + var r10 = x * y * oneMinusCosine - z * s; + var r11 = yy + (1 - yy) * c; + var r12 = y * z * oneMinusCosine + x * s; + var r20 = x * z * oneMinusCosine + y * s; + var r21 = y * z * oneMinusCosine - x * s; + var r22 = zz + (1 - zz) * c; + + var m0 = m[0]; + var m1 = m[1]; + var m2 = m[2]; + var m3 = m[3]; + + var m00 = m0[0]; + var m01 = m0[1]; + var m02 = m0[2]; + var m03 = m0[3]; + var m10 = m1[0]; + var m11 = m1[1]; + var m12 = m1[2]; + var m13 = m1[3]; + var m20 = m2[0]; + var m21 = m2[1]; + var m22 = m2[2]; + var m23 = m2[3]; + var m30 = m3[0]; + var m31 = m3[1]; + var m32 = m3[2]; + var m33 = m3[3]; + + m0.splice(0, 4, + r00 * m00 + r01 * m10 + r02 * m20, + r00 * m01 + r01 * m11 + r02 * m21, + r00 * m02 + r01 * m12 + r02 * m22, + r00 * m03 + r01 * m13 + r02 * m23); + + m1.splice(0, 4, + r10 * m00 + r11 * m10 + r12 * m20, + r10 * m01 + r11 * m11 + r12 * m21, + r10 * m02 + r11 * m12 + r12 * m22, + r10 * m03 + r11 * m13 + r12 * m23); + + m2.splice(0, 4, + r20 * m00 + r21 * m10 + r22 * m20, + r20 * m01 + r21 * m11 + r22 * m21, + r20 * m02 + r21 * m12 + r22 * m22, + r20 * m03 + r21 * m13 + r22 * m23); + + return m; +}; + +/** + * Sets each function in the namespace o3djs.math to the row major + * version in o3djs.math.rowMajor (provided such a function exists in + * o3djs.math.rowMajor). Call this function to establish the row major + * convention. + */ +o3djs.math.installRowMajorFunctions = function() { + for (var f in o3djs.math.rowMajor) { + o3djs.math[f] = o3djs.math.rowMajor[f]; + } +}; + +/** + * Sets each function in the namespace o3djs.math to the column major + * version in o3djs.math.columnMajor (provided such a function exists in + * o3djs.math.columnMajor). Call this function to establish the column + * major convention. + */ +o3djs.math.installColumnMajorFunctions = function() { + for (var f in o3djs.math.columnMajor) { + o3djs.math[f] = o3djs.math.columnMajor[f]; + } +}; + +/** + * Sets each function in the namespace o3djs.math to the error checking + * version in o3djs.math.errorCheck (provided such a function exists in + * o3djs.math.errorCheck). + */ +o3djs.math.installErrorCheckFunctions = function() { + for (var f in o3djs.math.errorCheck) { + o3djs.math[f] = o3djs.math.errorCheck[f]; + } +}; + +/** + * Sets each function in the namespace o3djs.math to the error checking free + * version in o3djs.math.errorCheckFree (provided such a function exists in + * o3djs.math.errorCheckFree). + */ +o3djs.math.installErrorCheckFreeFunctions = function() { + for (var f in o3djs.math.errorCheckFree) { + o3djs.math[f] = o3djs.math.errorCheckFree[f]; + } +} + +// By default, install the row-major functions. +o3djs.math.installRowMajorFunctions(); + +// By default, install prechecking. +o3djs.math.installErrorCheckFunctions(); + + +/** + * True if we are using the plugin math library in which matrices are + * represented by 2-dimensional arrays. + * @type {boolean} + * @private + */ +o3djs.math.usePluginMath_ = true; |