diff options
Diffstat (limited to 'skia/ext/convolver.cc')
-rw-r--r-- | skia/ext/convolver.cc | 336 |
1 files changed, 0 insertions, 336 deletions
diff --git a/skia/ext/convolver.cc b/skia/ext/convolver.cc deleted file mode 100644 index c854019..0000000 --- a/skia/ext/convolver.cc +++ /dev/null @@ -1,336 +0,0 @@ -// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. -// Use of this source code is governed by a BSD-style license that can be -// found in the LICENSE file. - -#include <algorithm> - -#include "skia/ext/convolver.h" - -#include "base/basictypes.h" -#include "base/logging.h" - -namespace skia { - -namespace { - -// Converts the argument to an 8-bit unsigned value by clamping to the range -// 0-255. -inline uint8 ClampTo8(int32 a) { - if (static_cast<uint32>(a) < 256) - return a; // Avoid the extra check in the common case. - if (a < 0) - return 0; - return 255; -} - -// Stores a list of rows in a circular buffer. The usage is you write into it -// by calling AdvanceRow. It will keep track of which row in the buffer it -// should use next, and the total number of rows added. -class CircularRowBuffer { - public: - // The number of pixels in each row is given in |source_row_pixel_width|. - // The maximum number of rows needed in the buffer is |max_y_filter_size| - // (we only need to store enough rows for the biggest filter). - // - // We use the |first_input_row| to compute the coordinates of all of the - // following rows returned by Advance(). - CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, - int first_input_row) - : row_byte_width_(dest_row_pixel_width * 4), - num_rows_(max_y_filter_size), - next_row_(0), - next_row_coordinate_(first_input_row) { - buffer_.resize(row_byte_width_ * max_y_filter_size); - row_addresses_.resize(num_rows_); - } - - // Moves to the next row in the buffer, returning a pointer to the beginning - // of it. - uint8* AdvanceRow() { - uint8* row = &buffer_[next_row_ * row_byte_width_]; - next_row_coordinate_++; - - // Set the pointer to the next row to use, wrapping around if necessary. - next_row_++; - if (next_row_ == num_rows_) - next_row_ = 0; - return row; - } - - // Returns a pointer to an "unrolled" array of rows. These rows will start - // at the y coordinate placed into |*first_row_index| and will continue in - // order for the maximum number of rows in this circular buffer. - // - // The |first_row_index_| may be negative. This means the circular buffer - // starts before the top of the image (it hasn't been filled yet). - uint8* const* GetRowAddresses(int* first_row_index) { - // Example for a 4-element circular buffer holding coords 6-9. - // Row 0 Coord 8 - // Row 1 Coord 9 - // Row 2 Coord 6 <- next_row_ = 2, next_row_coordinate_ = 10. - // Row 3 Coord 7 - // - // The "next" row is also the first (lowest) coordinate. This computation - // may yield a negative value, but that's OK, the math will work out - // since the user of this buffer will compute the offset relative - // to the first_row_index and the negative rows will never be used. - *first_row_index = next_row_coordinate_ - num_rows_; - - int cur_row = next_row_; - for (int i = 0; i < num_rows_; i++) { - row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; - - // Advance to the next row, wrapping if necessary. - cur_row++; - if (cur_row == num_rows_) - cur_row = 0; - } - return &row_addresses_[0]; - } - - private: - // The buffer storing the rows. They are packed, each one row_byte_width_. - std::vector<uint8> buffer_; - - // Number of bytes per row in the |buffer_|. - int row_byte_width_; - - // The number of rows available in the buffer. - int num_rows_; - - // The next row index we should write into. This wraps around as the - // circular buffer is used. - int next_row_; - - // The y coordinate of the |next_row_|. This is incremented each time a - // new row is appended and does not wrap. - int next_row_coordinate_; - - // Buffer used by GetRowAddresses(). - std::vector<uint8*> row_addresses_; -}; - -// Convolves horizontally along a single row. The row data is given in -// |src_data| and continues for the num_values() of the filter. -template<bool has_alpha> -void ConvolveHorizontally(const uint8* src_data, - const ConvolusionFilter1D& filter, - unsigned char* out_row) { - // Loop over each pixel on this row in the output image. - int num_values = filter.num_values(); - for (int out_x = 0; out_x < num_values; out_x++) { - // Get the filter that determines the current output pixel. - int filter_offset, filter_length; - const int16* filter_values = - filter.FilterForValue(out_x, &filter_offset, &filter_length); - - // Compute the first pixel in this row that the filter affects. It will - // touch |filter_length| pixels (4 bytes each) after this. - const uint8* row_to_filter = &src_data[filter_offset * 4]; - - // Apply the filter to the row to get the destination pixel in |accum|. - int32 accum[4] = {0}; - for (int filter_x = 0; filter_x < filter_length; filter_x++) { - int16 cur_filter = filter_values[filter_x]; - accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; - accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; - accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; - if (has_alpha) - accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; - } - - // Bring this value back in range. All of the filter scaling factors - // are in fixed point with kShiftBits bits of fractional part. - accum[0] >>= ConvolusionFilter1D::kShiftBits; - accum[1] >>= ConvolusionFilter1D::kShiftBits; - accum[2] >>= ConvolusionFilter1D::kShiftBits; - if (has_alpha) - accum[3] >>= ConvolusionFilter1D::kShiftBits; - - // Store the new pixel. - out_row[out_x * 4 + 0] = ClampTo8(accum[0]); - out_row[out_x * 4 + 1] = ClampTo8(accum[1]); - out_row[out_x * 4 + 2] = ClampTo8(accum[2]); - if (has_alpha) - out_row[out_x * 4 + 3] = ClampTo8(accum[3]); - } -} - -// Does vertical convolusion to produce one output row. The filter values and -// length are given in the first two parameters. These are applied to each -// of the rows pointed to in the |source_data_rows| array, with each row -// being |pixel_width| wide. -// -// The output must have room for |pixel_width * 4| bytes. -template<bool has_alpha> -void ConvolveVertically(const int16* filter_values, - int filter_length, - uint8* const* source_data_rows, - int pixel_width, - uint8* out_row) { - // We go through each column in the output and do a vertical convolusion, - // generating one output pixel each time. - for (int out_x = 0; out_x < pixel_width; out_x++) { - // Compute the number of bytes over in each row that the current column - // we're convolving starts at. The pixel will cover the next 4 bytes. - int byte_offset = out_x * 4; - - // Apply the filter to one column of pixels. - int32 accum[4] = {0}; - for (int filter_y = 0; filter_y < filter_length; filter_y++) { - int16 cur_filter = filter_values[filter_y]; - accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; - accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; - accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; - if (has_alpha) - accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; - } - - // Bring this value back in range. All of the filter scaling factors - // are in fixed point with kShiftBits bits of precision. - accum[0] >>= ConvolusionFilter1D::kShiftBits; - accum[1] >>= ConvolusionFilter1D::kShiftBits; - accum[2] >>= ConvolusionFilter1D::kShiftBits; - if (has_alpha) - accum[3] >>= ConvolusionFilter1D::kShiftBits; - - // Store the new pixel. - out_row[byte_offset + 0] = ClampTo8(accum[0]); - out_row[byte_offset + 1] = ClampTo8(accum[1]); - out_row[byte_offset + 2] = ClampTo8(accum[2]); - if (has_alpha) { - uint8 alpha = ClampTo8(accum[3]); - - // Make sure the alpha channel doesn't come out larger than any of the - // color channels. We use premultipled alpha channels, so this should - // never happen, but rounding errors will cause this from time to time. - // These "impossible" colors will cause overflows (and hence random pixel - // values) when the resulting bitmap is drawn to the screen. - // - // We only need to do this when generating the final output row (here). - int max_color_channel = std::max(out_row[byte_offset + 0], - std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); - if (alpha < max_color_channel) - out_row[byte_offset + 3] = max_color_channel; - else - out_row[byte_offset + 3] = alpha; - } else { - // No alpha channel, the image is opaque. - out_row[byte_offset + 3] = 0xff; - } - } -} - -} // namespace - -// ConvolusionFilter1D --------------------------------------------------------- - -void ConvolusionFilter1D::AddFilter(int filter_offset, - const float* filter_values, - int filter_length) { - FilterInstance instance; - instance.data_location = static_cast<int>(filter_values_.size()); - instance.offset = filter_offset; - instance.length = filter_length; - filters_.push_back(instance); - - DCHECK(filter_length > 0); - for (int i = 0; i < filter_length; i++) - filter_values_.push_back(FloatToFixed(filter_values[i])); - - max_filter_ = std::max(max_filter_, filter_length); -} - -void ConvolusionFilter1D::AddFilter(int filter_offset, - const int16* filter_values, - int filter_length) { - FilterInstance instance; - instance.data_location = static_cast<int>(filter_values_.size()); - instance.offset = filter_offset; - instance.length = filter_length; - filters_.push_back(instance); - - DCHECK(filter_length > 0); - for (int i = 0; i < filter_length; i++) - filter_values_.push_back(filter_values[i]); - - max_filter_ = std::max(max_filter_, filter_length); -} - -// BGRAConvolve2D ------------------------------------------------------------- - -void BGRAConvolve2D(const uint8* source_data, - int source_byte_row_stride, - bool source_has_alpha, - const ConvolusionFilter1D& filter_x, - const ConvolusionFilter1D& filter_y, - uint8* output) { - int max_y_filter_size = filter_y.max_filter(); - - // The next row in the input that we will generate a horizontally - // convolved row for. If the filter doesn't start at the beginning of the - // image (this is the case when we are only resizing a subset), then we - // don't want to generate any output rows before that. Compute the starting - // row for convolusion as the first pixel for the first vertical filter. - int filter_offset, filter_length; - const int16* filter_values = - filter_y.FilterForValue(0, &filter_offset, &filter_length); - int next_x_row = filter_offset; - - // We loop over each row in the input doing a horizontal convolusion. This - // will result in a horizontally convolved image. We write the results into - // a circular buffer of convolved rows and do vertical convolusion as rows - // are available. This prevents us from having to store the entire - // intermediate image and helps cache coherency. - CircularRowBuffer row_buffer(filter_x.num_values(), max_y_filter_size, - filter_offset); - - // Loop over every possible output row, processing just enough horizontal - // convolusions to run each subsequent vertical convolusion. - int output_row_byte_width = filter_x.num_values() * 4; - int num_output_rows = filter_y.num_values(); - for (int out_y = 0; out_y < num_output_rows; out_y++) { - filter_values = filter_y.FilterForValue(out_y, - &filter_offset, &filter_length); - - // Generate output rows until we have enough to run the current filter. - while (next_x_row < filter_offset + filter_length) { - if (source_has_alpha) { - ConvolveHorizontally<true>( - &source_data[next_x_row * source_byte_row_stride], - filter_x, row_buffer.AdvanceRow()); - } else { - ConvolveHorizontally<false>( - &source_data[next_x_row * source_byte_row_stride], - filter_x, row_buffer.AdvanceRow()); - } - next_x_row++; - } - - // Compute where in the output image this row of final data will go. - uint8* cur_output_row = &output[out_y * output_row_byte_width]; - - // Get the list of rows that the circular buffer has, in order. - int first_row_in_circular_buffer; - uint8* const* rows_to_convolve = - row_buffer.GetRowAddresses(&first_row_in_circular_buffer); - - // Now compute the start of the subset of those rows that the filter - // needs. - uint8* const* first_row_for_filter = - &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; - - if (source_has_alpha) { - ConvolveVertically<true>(filter_values, filter_length, - first_row_for_filter, - filter_x.num_values(), cur_output_row); - } else { - ConvolveVertically<false>(filter_values, filter_length, - first_row_for_filter, - filter_x.num_values(), cur_output_row); - } - } -} - -} // namespace skia - |