diff options
Diffstat (limited to 'skia/include/corecg/SkScalar.h')
-rw-r--r-- | skia/include/corecg/SkScalar.h | 254 |
1 files changed, 0 insertions, 254 deletions
diff --git a/skia/include/corecg/SkScalar.h b/skia/include/corecg/SkScalar.h deleted file mode 100644 index 86341eb..0000000 --- a/skia/include/corecg/SkScalar.h +++ /dev/null @@ -1,254 +0,0 @@ -/* - * Copyright (C) 2006 The Android Open Source Project - * - * Licensed under the Apache License, Version 2.0 (the "License"); - * you may not use this file except in compliance with the License. - * You may obtain a copy of the License at - * - * http://www.apache.org/licenses/LICENSE-2.0 - * - * Unless required by applicable law or agreed to in writing, software - * distributed under the License is distributed on an "AS IS" BASIS, - * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. - * See the License for the specific language governing permissions and - * limitations under the License. - */ - -#ifndef SkScalar_DEFINED -#define SkScalar_DEFINED - -#include "SkFixed.h" - -/** \file SkScalar.h - - Types and macros for the data type SkScalar. This is the fractional numeric type - that, depending on the compile-time flag SK_SCALAR_IS_FLOAT, may be implemented - either as an IEEE float, or as a 16.16 SkFixed. The macros in this file are written - to allow the calling code to manipulate SkScalar values without knowing which representation - is in effect. -*/ - -#ifdef SK_SCALAR_IS_FLOAT - #include "SkFloatingPoint.h" - - /** SkScalar is our type for fractional values and coordinates. Depending on - compile configurations, it is either represented as an IEEE float, or - as a 16.16 fixed point integer. - */ - typedef float SkScalar; - extern const uint32_t gIEEENotANumber; - extern const uint32_t gIEEEInfinity; - - /** SK_Scalar1 is defined to be 1.0 represented as an SkScalar - */ - #define SK_Scalar1 (1.0f) - /** SK_Scalar1 is defined to be 1/2 represented as an SkScalar - */ - #define SK_ScalarHalf (0.5f) - /** SK_ScalarInfinity is defined to be infinity as an SkScalar - */ - #define SK_ScalarInfinity (*(const float*)&gIEEEInfinity) - /** SK_ScalarMax is defined to be the largest value representable as an SkScalar - */ - #define SK_ScalarMax (3.4028235e+38f) - /** SK_ScalarMin is defined to be the smallest value representable as an SkScalar - */ - #define SK_ScalarMin (1.1754944e-38f) - /** SK_ScalarNaN is defined to be 'Not a Number' as an SkScalar - */ - #define SK_ScalarNaN (*(const float*)(const void*)&gIEEENotANumber) - /** SkScalarIsNaN(n) returns true if argument is not a number - */ - static inline bool SkScalarIsNaN(float x) { return x != x; } - /** SkIntToScalar(n) returns its integer argument as an SkScalar - */ - #define SkIntToScalar(n) ((float)(n)) - /** SkFixedToScalar(n) returns its SkFixed argument as an SkScalar - */ - #define SkFixedToScalar(x) SkFixedToFloat(x) - /** SkScalarToFixed(n) returns its SkScalar argument as an SkFixed - */ - #define SkScalarToFixed(x) SkFloatToFixed(x) - - #define SkScalarToFloat(n) (n) - #define SkFloatToScalar(n) (n) - - #define SkScalarToDouble(n) (double)(n) - #define SkDoubleToScalar(n) (float)(n) - - /** SkScalarFraction(x) returns the signed fractional part of the argument - */ - #define SkScalarFraction(x) sk_float_mod(x, 1.0f) - /** Rounds the SkScalar to the nearest integer value - */ - #define SkScalarRound(x) sk_float_round2int(x) - /** Returns the smallest integer that is >= the specified SkScalar - */ - #define SkScalarCeil(x) sk_float_ceil2int(x) - /** Returns the largest integer that is <= the specified SkScalar - */ - #define SkScalarFloor(x) sk_float_floor2int(x) - /** Returns the absolute value of the specified SkScalar - */ - #define SkScalarAbs(x) sk_float_abs(x) - /** Returns the value pinned between 0 and max inclusive - */ - inline SkScalar SkScalarClampMax(SkScalar x, SkScalar max) { - return x < 0 ? 0 : x > max ? max : x; - } - /** Returns the value pinned between min and max inclusive - */ - inline SkScalar SkScalarPin(SkScalar x, SkScalar min, SkScalar max) { - return x < min ? min : x > max ? max : x; - } - /** Returns the specified SkScalar squared (x*x) - */ - inline SkScalar SkScalarSquare(SkScalar x) { return x * x; } - /** Returns the product of two SkScalars - */ - #define SkScalarMul(a, b) ((float)(a) * (b)) - /** Returns the product of two SkScalars plus a third SkScalar - */ - #define SkScalarMulAdd(a, b, c) ((float)(a) * (b) + (c)) - /** Returns the product of a SkScalar and an int rounded to the nearest integer value - */ - #define SkScalarMulRound(a, b) SkScalarRound((float)(a) * (b)) - /** Returns the product of a SkScalar and an int promoted to the next larger int - */ - #define SkScalarMulCeil(a, b) SkScalarCeil((float)(a) * (b)) - /** Returns the product of a SkScalar and an int truncated to the next smaller int - */ - #define SkScalarMulFloor(a, b) SkScalarFloor((float)(a) * (b)) - /** Returns the quotient of two SkScalars (a/b) - */ - #define SkScalarDiv(a, b) ((float)(a) / (b)) - /** Returns the mod of two SkScalars (a mod b) - */ - #define SkScalarMod(x,y) sk_float_mod(x,y) - /** Returns the product of the first two arguments, divided by the third argument - */ - #define SkScalarMulDiv(a, b, c) ((float)(a) * (b) / (c)) - /** Returns the multiplicative inverse of the SkScalar (1/x) - */ - #define SkScalarInvert(x) (SK_Scalar1 / (x)) - #define SkScalarFastInvert(x) (SK_Scalar1 / (x)) - /** Returns the square root of the SkScalar - */ - #define SkScalarSqrt(x) sk_float_sqrt(x) - /** Returns the average of two SkScalars (a+b)/2 - */ - #define SkScalarAve(a, b) (((a) + (b)) * 0.5f) - /** Returns the geometric mean of two SkScalars - */ - #define SkScalarMean(a, b) sk_float_sqrt((float)(a) * (b)) - /** Returns one half of the specified SkScalar - */ - #define SkScalarHalf(a) ((a) * 0.5f) - - #define SK_ScalarSqrt2 1.41421356f - #define SK_ScalarPI 3.14159265f - #define SK_ScalarTanPIOver8 0.414213562f - #define SK_ScalarRoot2Over2 0.707106781f - - #define SkDegreesToRadians(degrees) ((degrees) * (SK_ScalarPI / 180)) - float SkScalarSinCos(SkScalar radians, SkScalar* cosValue); - #define SkScalarSin(radians) (float)sk_float_sin(radians) - #define SkScalarCos(radians) (float)sk_float_cos(radians) - #define SkScalarTan(radians) (float)sk_float_tan(radians) - #define SkScalarASin(val) (float)sk_float_asin(val) - #define SkScalarACos(val) (float)sk_float_acos(val) - #define SkScalarATan2(y, x) (float)sk_float_atan2(y,x) - #define SkScalarExp(x) (float)sk_float_exp(x) - #define SkScalarLog(x) (float)sk_float_log(x) - - inline SkScalar SkMaxScalar(SkScalar a, SkScalar b) { return a > b ? a : b; } - inline SkScalar SkMinScalar(SkScalar a, SkScalar b) { return a < b ? a : b; } - -#else - typedef SkFixed SkScalar; - - #define SK_Scalar1 SK_Fixed1 - #define SK_ScalarHalf SK_FixedHalf - #define SK_ScalarInfinity SK_FixedMax - #define SK_ScalarMax SK_FixedMax - #define SK_ScalarMin SK_FixedMin - #define SK_ScalarNaN SK_FixedNaN - #define SkScalarIsNaN(x) ((x) == SK_FixedNaN) - #define SkIntToScalar(n) SkIntToFixed(n) - #define SkFixedToScalar(x) (x) - #define SkScalarToFixed(x) (x) - #ifdef SK_CAN_USE_FLOAT - #define SkScalarToFloat(n) SkFixedToFloat(n) - #define SkFloatToScalar(n) SkFloatToFixed(n) - - #define SkScalarToDouble(n) SkFixedToDouble(n) - #define SkDoubleToScalar(n) SkDoubleToFixed(n) - #endif - #define SkScalarFraction(x) SkFixedFraction(x) - #define SkScalarRound(x) SkFixedRound(x) - #define SkScalarCeil(x) SkFixedCeil(x) - #define SkScalarFloor(x) SkFixedFloor(x) - #define SkScalarAbs(x) SkFixedAbs(x) - #define SkScalarClampMax(x, max) SkClampMax(x, max) - #define SkScalarPin(x, min, max) SkPin32(x, min, max) - #define SkScalarSquare(x) SkFixedSquare(x) - #define SkScalarMul(a, b) SkFixedMul(a, b) - #define SkScalarMulAdd(a, b, c) SkFixedMulAdd(a, b, c) - #define SkScalarMulRound(a, b) SkFixedMulCommon(a, b, SK_FixedHalf) - #define SkScalarMulCeil(a, b) SkFixedMulCommon(a, b, SK_Fixed1 - 1) - #define SkScalarMulFloor(a, b) SkFixedMulCommon(a, b, 0) - #define SkScalarDiv(a, b) SkFixedDiv(a, b) - #define SkScalarMod(a, b) SkFixedMod(a, b) - #define SkScalarMulDiv(a, b, c) SkMulDiv(a, b, c) - #define SkScalarInvert(x) SkFixedInvert(x) - #define SkScalarFastInvert(x) SkFixedFastInvert(x) - #define SkScalarSqrt(x) SkFixedSqrt(x) - #define SkScalarAve(a, b) SkFixedAve(a, b) - #define SkScalarMean(a, b) SkFixedMean(a, b) - #define SkScalarHalf(a) ((a) >> 1) - - #define SK_ScalarSqrt2 SK_FixedSqrt2 - #define SK_ScalarPI SK_FixedPI - #define SK_ScalarTanPIOver8 SK_FixedTanPIOver8 - #define SK_ScalarRoot2Over2 SK_FixedRoot2Over2 - - #define SkDegreesToRadians(degrees) SkFractMul(degrees, SK_FractPIOver180) - #define SkScalarSinCos(radians, cosPtr) SkFixedSinCos(radians, cosPtr) - #define SkScalarSin(radians) SkFixedSin(radians) - #define SkScalarCos(radians) SkFixedCos(radians) - #define SkScalarTan(val) SkFixedTan(val) - #define SkScalarASin(val) SkFixedASin(val) - #define SkScalarACos(val) SkFixedACos(val) - #define SkScalarATan2(y, x) SkFixedATan2(y,x) - #define SkScalarExp(x) SkFixedExp(x) - #define SkScalarLog(x) SkFixedLog(x) - - #define SkMaxScalar(a, b) SkMax32(a, b) - #define SkMinScalar(a, b) SkMin32(a, b) -#endif - -#define SK_ScalarNearlyZero (SK_Scalar1 / (1 << 12)) - -/* <= is slower than < for floats, so we use < for our tolerance test -*/ - -inline bool SkScalarNearlyZero(SkScalar x, SkScalar tolerance = SK_ScalarNearlyZero) -{ - SkASSERT(tolerance > 0); - return SkScalarAbs(x) < tolerance; -} - -/** Linearly interpolate between A and B, based on t. - If t is 0, return A - If t is 1, return B - else interpolate. - t must be [0..SK_Scalar1] -*/ -inline SkScalar SkScalarInterp(SkScalar A, SkScalar B, SkScalar t) -{ - SkASSERT(t >= 0 && t <= SK_Scalar1); - return A + SkScalarMul(B - A, t); -} - -#endif - |