summaryrefslogtreecommitdiffstats
path: root/testing/gmock/include/gmock/gmock-generated-matchers.h.pump
diff options
context:
space:
mode:
Diffstat (limited to 'testing/gmock/include/gmock/gmock-generated-matchers.h.pump')
-rw-r--r--testing/gmock/include/gmock/gmock-generated-matchers.h.pump634
1 files changed, 634 insertions, 0 deletions
diff --git a/testing/gmock/include/gmock/gmock-generated-matchers.h.pump b/testing/gmock/include/gmock/gmock-generated-matchers.h.pump
new file mode 100644
index 0000000..09dfedf
--- /dev/null
+++ b/testing/gmock/include/gmock/gmock-generated-matchers.h.pump
@@ -0,0 +1,634 @@
+$$ -*- mode: c++; -*-
+$$ This is a Pump source file. Please use Pump to convert it to
+$$ gmock-generated-variadic-actions.h.
+$$
+$var n = 10 $$ The maximum arity we support.
+// Copyright 2008, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// Google Mock - a framework for writing C++ mock classes.
+//
+// This file implements some commonly used variadic matchers.
+
+#ifndef GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
+#define GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_
+
+#include <sstream>
+#include <string>
+#include <vector>
+#include <gmock/gmock-matchers.h>
+#include <gmock/gmock-printers.h>
+
+namespace testing {
+namespace internal {
+
+// Implements ElementsAre() and ElementsAreArray().
+template <typename Container>
+class ElementsAreMatcherImpl : public MatcherInterface<Container> {
+ public:
+ typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container)) RawContainer;
+ typedef typename RawContainer::value_type Element;
+
+ // Constructs the matcher from a sequence of element values or
+ // element matchers.
+ template <typename InputIter>
+ ElementsAreMatcherImpl(InputIter first, size_t count) {
+ matchers_.reserve(count);
+ InputIter it = first;
+ for (size_t i = 0; i != count; ++i, ++it) {
+ matchers_.push_back(MatcherCast<const Element&>(*it));
+ }
+ }
+
+ // Returns true iff 'container' matches.
+ virtual bool Matches(Container container) const {
+ if (container.size() != count())
+ return false;
+
+ typename RawContainer::const_iterator container_iter = container.begin();
+ for (size_t i = 0; i != count(); ++container_iter, ++i) {
+ if (!matchers_[i].Matches(*container_iter))
+ return false;
+ }
+
+ return true;
+ }
+
+ // Describes what this matcher does.
+ virtual void DescribeTo(::std::ostream* os) const {
+ if (count() == 0) {
+ *os << "is empty";
+ } else if (count() == 1) {
+ *os << "has 1 element that ";
+ matchers_[0].DescribeTo(os);
+ } else {
+ *os << "has " << Elements(count()) << " where\n";
+ for (size_t i = 0; i != count(); ++i) {
+ *os << "element " << i << " ";
+ matchers_[i].DescribeTo(os);
+ if (i + 1 < count()) {
+ *os << ",\n";
+ }
+ }
+ }
+ }
+
+ // Describes what the negation of this matcher does.
+ virtual void DescribeNegationTo(::std::ostream* os) const {
+ if (count() == 0) {
+ *os << "is not empty";
+ return;
+ }
+
+ *os << "does not have " << Elements(count()) << ", or\n";
+ for (size_t i = 0; i != count(); ++i) {
+ *os << "element " << i << " ";
+ matchers_[i].DescribeNegationTo(os);
+ if (i + 1 < count()) {
+ *os << ", or\n";
+ }
+ }
+ }
+
+ // Explains why 'container' matches, or doesn't match, this matcher.
+ virtual void ExplainMatchResultTo(Container container,
+ ::std::ostream* os) const {
+ if (Matches(container)) {
+ // We need to explain why *each* element matches (the obvious
+ // ones can be skipped).
+
+ bool reason_printed = false;
+ typename RawContainer::const_iterator container_iter = container.begin();
+ for (size_t i = 0; i != count(); ++container_iter, ++i) {
+ ::std::stringstream ss;
+ matchers_[i].ExplainMatchResultTo(*container_iter, &ss);
+
+ const string s = ss.str();
+ if (!s.empty()) {
+ if (reason_printed) {
+ *os << ",\n";
+ }
+ *os << "element " << i << " " << s;
+ reason_printed = true;
+ }
+ }
+ } else {
+ // We need to explain why the container doesn't match.
+ const size_t actual_count = container.size();
+ if (actual_count != count()) {
+ // The element count doesn't match. If the container is
+ // empty, there's no need to explain anything as Google Mock
+ // already prints the empty container. Otherwise we just need
+ // to show how many elements there actually are.
+ if (actual_count != 0) {
+ *os << "has " << Elements(actual_count);
+ }
+ return;
+ }
+
+ // The container has the right size but at least one element
+ // doesn't match expectation. We need to find this element and
+ // explain why it doesn't match.
+ typename RawContainer::const_iterator container_iter = container.begin();
+ for (size_t i = 0; i != count(); ++container_iter, ++i) {
+ if (matchers_[i].Matches(*container_iter)) {
+ continue;
+ }
+
+ *os << "element " << i << " doesn't match";
+
+ ::std::stringstream ss;
+ matchers_[i].ExplainMatchResultTo(*container_iter, &ss);
+ const string s = ss.str();
+ if (!s.empty()) {
+ *os << " (" << s << ")";
+ }
+ return;
+ }
+ }
+ }
+
+ private:
+ static Message Elements(size_t count) {
+ return Message() << count << (count == 1 ? " element" : " elements");
+ }
+
+ size_t count() const { return matchers_.size(); }
+ std::vector<Matcher<const Element&> > matchers_;
+};
+
+// Implements ElementsAre() of 0-10 arguments.
+
+class ElementsAreMatcher0 {
+ public:
+ ElementsAreMatcher0() {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
+ RawContainer;
+ typedef typename RawContainer::value_type Element;
+
+ const Matcher<const Element&>* const matchers = NULL;
+ return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, 0));
+ }
+};
+
+
+$range i 1..n
+$for i [[
+$range j 1..i
+template <$for j, [[typename T$j]]>
+class ElementsAreMatcher$i {
+ public:
+ $if i==1 [[explicit ]]ElementsAreMatcher$i($for j, [[const T$j& e$j]])$if i > 0 [[ : ]]
+ $for j, [[e$j[[]]_(e$j)]] {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
+ RawContainer;
+ typedef typename RawContainer::value_type Element;
+
+ const Matcher<const Element&> matchers[] = {
+
+$for j [[
+ MatcherCast<const Element&>(e$j[[]]_),
+
+]]
+ };
+
+ return MakeMatcher(new ElementsAreMatcherImpl<Container>(matchers, $i));
+ }
+
+ private:
+
+$for j [[
+ const T$j& e$j[[]]_;
+
+]]
+};
+
+
+]]
+// Implements ElementsAreArray().
+template <typename T>
+class ElementsAreArrayMatcher {
+ public:
+ ElementsAreArrayMatcher(const T* first, size_t count) :
+ first_(first), count_(count) {}
+
+ template <typename Container>
+ operator Matcher<Container>() const {
+ typedef GMOCK_REMOVE_CONST_(GMOCK_REMOVE_REFERENCE_(Container))
+ RawContainer;
+ typedef typename RawContainer::value_type Element;
+
+ return MakeMatcher(new ElementsAreMatcherImpl<Container>(first_, count_));
+ }
+
+ private:
+ const T* const first_;
+ const size_t count_;
+};
+
+} // namespace internal
+
+// ElementsAre(e0, e1, ..., e_n) matches an STL-style container with
+// (n + 1) elements, where the i-th element in the container must
+// match the i-th argument in the list. Each argument of
+// ElementsAre() can be either a value or a matcher. We support up to
+// $n arguments.
+//
+// NOTE: Since ElementsAre() cares about the order of the elements, it
+// must not be used with containers whose elements's order is
+// undefined (e.g. hash_map).
+
+inline internal::ElementsAreMatcher0 ElementsAre() {
+ return internal::ElementsAreMatcher0();
+}
+
+$for i [[
+$range j 1..i
+
+template <$for j, [[typename T$j]]>
+inline internal::ElementsAreMatcher$i<$for j, [[T$j]]> ElementsAre($for j, [[const T$j& e$j]]) {
+ return internal::ElementsAreMatcher$i<$for j, [[T$j]]>($for j, [[e$j]]);
+}
+
+]]
+
+// ElementsAreArray(array) and ElementAreArray(array, count) are like
+// ElementsAre(), except that they take an array of values or
+// matchers. The former form infers the size of 'array', which must
+// be a static C-style array. In the latter form, 'array' can either
+// be a static array or a pointer to a dynamically created array.
+
+template <typename T>
+inline internal::ElementsAreArrayMatcher<T> ElementsAreArray(
+ const T* first, size_t count) {
+ return internal::ElementsAreArrayMatcher<T>(first, count);
+}
+
+template <typename T, size_t N>
+inline internal::ElementsAreArrayMatcher<T>
+ElementsAreArray(const T (&array)[N]) {
+ return internal::ElementsAreArrayMatcher<T>(array, N);
+}
+
+} // namespace testing
+$$ } // This Pump meta comment fixes auto-indentation in Emacs. It will not
+$$ // show up in the generated code.
+
+
+// The MATCHER* family of macros can be used in a namespace scope to
+// define custom matchers easily. The syntax:
+//
+// MATCHER(name, description_string) { statements; }
+//
+// will define a matcher with the given name that executes the
+// statements, which must return a bool to indicate if the match
+// succeeds. Inside the statements, you can refer to the value being
+// matched by 'arg', and refer to its type by 'arg_type'.
+//
+// The description string documents what the matcher does, and is used
+// to generate the failure message when the match fails. Since a
+// MATCHER() is usually defined in a header file shared by multiple
+// C++ source files, we require the description to be a C-string
+// literal to avoid possible side effects. It can be empty, in which
+// case we'll use the sequence of words in the matcher name as the
+// description.
+//
+// For example:
+//
+// MATCHER(IsEven, "") { return (arg % 2) == 0; }
+//
+// allows you to write
+//
+// // Expects mock_foo.Bar(n) to be called where n is even.
+// EXPECT_CALL(mock_foo, Bar(IsEven()));
+//
+// or,
+//
+// // Verifies that the value of some_expression is even.
+// EXPECT_THAT(some_expression, IsEven());
+//
+// If the above assertion fails, it will print something like:
+//
+// Value of: some_expression
+// Expected: is even
+// Actual: 7
+//
+// where the description "is even" is automatically calculated from the
+// matcher name IsEven.
+//
+// Note that the type of the value being matched (arg_type) is
+// determined by the context in which you use the matcher and is
+// supplied to you by the compiler, so you don't need to worry about
+// declaring it (nor can you). This allows the matcher to be
+// polymorphic. For example, IsEven() can be used to match any type
+// where the value of "(arg % 2) == 0" can be implicitly converted to
+// a bool. In the "Bar(IsEven())" example above, if method Bar()
+// takes an int, 'arg_type' will be int; if it takes an unsigned long,
+// 'arg_type' will be unsigned long; and so on.
+//
+// Sometimes you'll want to parameterize the matcher. For that you
+// can use another macro:
+//
+// MATCHER_P(name, param_name, description_string) { statements; }
+//
+// For example:
+//
+// MATCHER_P(HasAbsoluteValue, value, "") { return abs(arg) == value; }
+//
+// will allow you to write:
+//
+// EXPECT_THAT(Blah("a"), HasAbsoluteValue(n));
+//
+// which may lead to this message (assuming n is 10):
+//
+// Value of: Blah("a")
+// Expected: has absolute value 10
+// Actual: -9
+//
+// Note that both the matcher description and its parameter are
+// printed, making the message human-friendly.
+//
+// In the matcher definition body, you can write 'foo_type' to
+// reference the type of a parameter named 'foo'. For example, in the
+// body of MATCHER_P(HasAbsoluteValue, value) above, you can write
+// 'value_type' to refer to the type of 'value'.
+//
+// We also provide MATCHER_P2, MATCHER_P3, ..., up to MATCHER_P$n to
+// support multi-parameter matchers.
+//
+// When defining a parameterized matcher, you can use Python-style
+// interpolations in the description string to refer to the parameter
+// values. We support the following syntax currently:
+//
+// %% a single '%' character
+// %(*)s all parameters of the matcher printed as a tuple
+// %(foo)s value of the matcher parameter named 'foo'
+//
+// For example,
+//
+// MATCHER_P2(InClosedRange, low, hi, "is in range [%(low)s, %(hi)s]") {
+// return low <= arg && arg <= hi;
+// }
+// ...
+// EXPECT_THAT(3, InClosedRange(4, 6));
+//
+// would generate a failure that contains the message:
+//
+// Expected: is in range [4, 6]
+//
+// If you specify "" as the description, the failure message will
+// contain the sequence of words in the matcher name followed by the
+// parameter values printed as a tuple. For example,
+//
+// MATCHER_P2(InClosedRange, low, hi, "") { ... }
+// ...
+// EXPECT_THAT(3, InClosedRange(4, 6));
+//
+// would generate a failure that contains the text:
+//
+// Expected: in closed range (4, 6)
+//
+// For the purpose of typing, you can view
+//
+// MATCHER_Pk(Foo, p1, ..., pk, description_string) { ... }
+//
+// as shorthand for
+//
+// template <typename p1_type, ..., typename pk_type>
+// FooMatcherPk<p1_type, ..., pk_type>
+// Foo(p1_type p1, ..., pk_type pk) { ... }
+//
+// When you write Foo(v1, ..., vk), the compiler infers the types of
+// the parameters v1, ..., and vk for you. If you are not happy with
+// the result of the type inference, you can specify the types by
+// explicitly instantiating the template, as in Foo<long, bool>(5,
+// false). As said earlier, you don't get to (or need to) specify
+// 'arg_type' as that's determined by the context in which the matcher
+// is used. You can assign the result of expression Foo(p1, ..., pk)
+// to a variable of type FooMatcherPk<p1_type, ..., pk_type>. This
+// can be useful when composing matchers.
+//
+// While you can instantiate a matcher template with reference types,
+// passing the parameters by pointer usually makes your code more
+// readable. If, however, you still want to pass a parameter by
+// reference, be aware that in the failure message generated by the
+// matcher you will see the value of the referenced object but not its
+// address.
+//
+// You can overload matchers with different numbers of parameters:
+//
+// MATCHER_P(Blah, a, description_string1) { ... }
+// MATCHER_P2(Blah, a, b, description_string2) { ... }
+//
+// While it's tempting to always use the MATCHER* macros when defining
+// a new matcher, you should also consider implementing
+// MatcherInterface or using MakePolymorphicMatcher() instead,
+// especially if you need to use the matcher a lot. While these
+// approaches require more work, they give you more control on the
+// types of the value being matched and the matcher parameters, which
+// in general leads to better compiler error messages that pay off in
+// the long run. They also allow overloading matchers based on
+// parameter types (as opposed to just based on the number of
+// parameters).
+//
+// CAVEAT:
+//
+// MATCHER*() can only be used in a namespace scope. The reason is
+// that C++ doesn't yet allow function-local types to be used to
+// instantiate templates. The up-coming C++0x standard will fix this.
+// Once that's done, we'll consider supporting using MATCHER*() inside
+// a function.
+//
+// MORE INFORMATION:
+//
+// To learn more about using these macros, please search for 'MATCHER'
+// on http://code.google.com/p/googlemock/wiki/CookBook.
+
+namespace testing {
+namespace internal {
+
+// Constants denoting interpolations in a matcher description string.
+const int kTupleInterpolation = -1; // "%(*)s"
+const int kPercentInterpolation = -2; // "%%"
+const int kInvalidInterpolation = -3; // "%" followed by invalid text
+
+// Records the location and content of an interpolation.
+struct Interpolation {
+ Interpolation(const char* start, const char* end, int param)
+ : start_pos(start), end_pos(end), param_index(param) {}
+
+ // Points to the start of the interpolation (the '%' character).
+ const char* start_pos;
+ // Points to the first character after the interpolation.
+ const char* end_pos;
+ // 0-based index of the interpolated matcher parameter;
+ // kTupleInterpolation for "%(*)s"; kPercentInterpolation for "%%".
+ int param_index;
+};
+
+typedef ::std::vector<Interpolation> Interpolations;
+
+// Parses a matcher description string and returns a vector of
+// interpolations that appear in the string; generates non-fatal
+// failures iff 'description' is an invalid matcher description.
+// 'param_names' is a NULL-terminated array of parameter names in the
+// order they appear in the MATCHER_P*() parameter list.
+Interpolations ValidateMatcherDescription(
+ const char* param_names[], const char* description);
+
+// Returns the actual matcher description, given the matcher name,
+// user-supplied description template string, interpolations in the
+// string, and the printed values of the matcher parameters.
+string FormatMatcherDescription(
+ const char* matcher_name, const char* description,
+ const Interpolations& interp, const Strings& param_values);
+
+} // namespace internal
+} // namespace testing
+
+$range i 0..n
+$for i
+
+[[
+$var macro_name = [[$if i==0 [[MATCHER]] $elif i==1 [[MATCHER_P]]
+ $else [[MATCHER_P$i]]]]
+$var class_name = [[name##Matcher[[$if i==0 [[]] $elif i==1 [[P]]
+ $else [[P$i]]]]]]
+$range j 0..i-1
+$var template = [[$if i==0 [[]] $else [[
+
+ template <$for j, [[typename p$j##_type]]>\
+]]]]
+$var ctor_param_list = [[$for j, [[p$j##_type gmock_p$j]]]]
+$var impl_ctor_param_list = [[$for j [[p$j##_type gmock_p$j, ]]
+const ::testing::internal::Interpolations& gmock_interp]]
+$var impl_inits = [[ : $for j [[p$j(gmock_p$j), ]]gmock_interp_(gmock_interp)]]
+$var inits = [[$if i==0 [[]] $else [[ : $for j, [[p$j(gmock_p$j)]]]]]]
+$var params_and_interp = [[$for j [[p$j, ]]gmock_interp_]]
+$var params = [[$for j, [[p$j]]]]
+$var param_types = [[$if i==0 [[]] $else [[<$for j, [[p$j##_type]]>]]]]
+$var param_types_and_names = [[$for j, [[p$j##_type p$j]]]]
+$var param_field_decls = [[$for j
+[[
+
+ p$j##_type p$j;\
+]]]]
+$var param_field_decls2 = [[$for j
+[[
+
+ p$j##_type p$j;\
+]]]]
+
+#define $macro_name(name$for j [[, p$j]], description)\$template
+ class $class_name {\
+ public:\
+ template <typename arg_type>\
+ class gmock_Impl : public ::testing::MatcherInterface<arg_type> {\
+ public:\
+ [[$if i==1 [[explicit ]]]]gmock_Impl($impl_ctor_param_list)\
+ $impl_inits {}\
+ virtual bool Matches(arg_type arg) const;\
+ virtual void DescribeTo(::std::ostream* gmock_os) const {\
+ const ::testing::internal::Strings& gmock_printed_params = \
+ ::testing::internal::UniversalTersePrintTupleFieldsToStrings(\
+ ::std::tr1::tuple<$for j, [[p$j##_type]]>($for j, [[p$j]]));\
+ *gmock_os << ::testing::internal::FormatMatcherDescription(\
+ #name, description, gmock_interp_, gmock_printed_params);\
+ }\$param_field_decls
+ const ::testing::internal::Interpolations gmock_interp_;\
+ };\
+ template <typename arg_type>\
+ operator ::testing::Matcher<arg_type>() const {\
+ return ::testing::Matcher<arg_type>(\
+ new gmock_Impl<arg_type>($params_and_interp));\
+ }\
+ $class_name($ctor_param_list)$inits {\
+ const char* gmock_param_names[] = { $for j [[#p$j, ]]NULL };\
+ gmock_interp_ = ::testing::internal::ValidateMatcherDescription(\
+ gmock_param_names, ("" description ""));\
+ }\$param_field_decls2
+ ::testing::internal::Interpolations gmock_interp_;\
+ };\$template
+ inline $class_name$param_types name($param_types_and_names) {\
+ return $class_name$param_types($params);\
+ }\$template
+ template <typename arg_type>\
+ bool $class_name$param_types::\
+ gmock_Impl<arg_type>::Matches(arg_type arg) const
+]]
+
+
+namespace testing {
+namespace internal {
+
+// Returns true iff element is in the STL-style container.
+template <typename Container, typename Element>
+inline bool Contains(const Container& container, const Element& element) {
+ return ::std::find(container.begin(), container.end(), element) !=
+ container.end();
+}
+
+// Returns true iff element is in the C-style array.
+template <typename ArrayElement, size_t N, typename Element>
+inline bool Contains(const ArrayElement (&array)[N], const Element& element) {
+ return ::std::find(array, array + N, element) != array + N;
+}
+
+} // namespace internal
+
+// Matches an STL-style container or a C-style array that contains the given
+// element.
+//
+// Examples:
+// ::std::set<int> page_ids;
+// page_ids.insert(3);
+// page_ids.insert(1);
+// EXPECT_THAT(page_ids, Contains(1));
+// EXPECT_THAT(page_ids, Contains(3.0));
+// EXPECT_THAT(page_ids, Not(Contains(4)));
+//
+// ::std::map<int, size_t> page_lengths;
+// page_lengths[1] = 100;
+// EXPECT_THAT(map_int, Contains(::std::pair<const int, size_t>(1, 100)));
+//
+// const char* user_ids[] = { "joe", "mike", "tom" };
+// EXPECT_THAT(user_ids, Contains(::std::string("tom")));
+MATCHER_P(Contains, element, "") {
+ return internal::Contains(arg, element);
+}
+
+} // namespace testing
+
+#endif // GMOCK_INCLUDE_GMOCK_GMOCK_GENERATED_MATCHERS_H_