diff options
Diffstat (limited to 'third_party/jemalloc')
-rw-r--r-- | third_party/jemalloc/chromium/jemalloc.c | 14535 | ||||
-rw-r--r-- | third_party/jemalloc/chromium/jemalloc.h | 443 | ||||
-rw-r--r-- | third_party/jemalloc/chromium/ql.h | 229 | ||||
-rw-r--r-- | third_party/jemalloc/chromium/qr.h | 197 | ||||
-rw-r--r-- | third_party/jemalloc/chromium/rb.h | 1965 |
5 files changed, 8695 insertions, 8674 deletions
diff --git a/third_party/jemalloc/chromium/jemalloc.c b/third_party/jemalloc/chromium/jemalloc.c index a3952de..65eb0b3 100644 --- a/third_party/jemalloc/chromium/jemalloc.c +++ b/third_party/jemalloc/chromium/jemalloc.c @@ -1,7259 +1,7276 @@ -/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */ -/* vim:set softtabstop=8 shiftwidth=8: */ -/*- - * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice(s), this list of conditions and the following disclaimer as - * the first lines of this file unmodified other than the possible - * addition of one or more copyright notices. - * 2. Redistributions in binary form must reproduce the above copyright - * notice(s), this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR - * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, - * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE - * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, - * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - ******************************************************************************* - * - * This allocator implementation is designed to provide scalable performance - * for multi-threaded programs on multi-processor systems. The following - * features are included for this purpose: - * - * + Multiple arenas are used if there are multiple CPUs, which reduces lock - * contention and cache sloshing. - * - * + Cache line sharing between arenas is avoided for internal data - * structures. - * - * + Memory is managed in chunks and runs (chunks can be split into runs), - * rather than as individual pages. This provides a constant-time - * mechanism for associating allocations with particular arenas. - * - * Allocation requests are rounded up to the nearest size class, and no record - * of the original request size is maintained. Allocations are broken into - * categories according to size class. Assuming runtime defaults, 4 kB pages - * and a 16 byte quantum on a 32-bit system, the size classes in each category - * are as follows: - * - * |=====================================| - * | Category | Subcategory | Size | - * |=====================================| - * | Small | Tiny | 2 | - * | | | 4 | - * | | | 8 | - * | |----------------+---------| - * | | Quantum-spaced | 16 | - * | | | 32 | - * | | | 48 | - * | | | ... | - * | | | 480 | - * | | | 496 | - * | | | 512 | - * | |----------------+---------| - * | | Sub-page | 1 kB | - * | | | 2 kB | - * |=====================================| - * | Large | 4 kB | - * | | 8 kB | - * | | 12 kB | - * | | ... | - * | | 1012 kB | - * | | 1016 kB | - * | | 1020 kB | - * |=====================================| - * | Huge | 1 MB | - * | | 2 MB | - * | | 3 MB | - * | | ... | - * |=====================================| - * - * A different mechanism is used for each category: - * - * Small : Each size class is segregated into its own set of runs. Each run - * maintains a bitmap of which regions are free/allocated. - * - * Large : Each allocation is backed by a dedicated run. Metadata are stored - * in the associated arena chunk header maps. - * - * Huge : Each allocation is backed by a dedicated contiguous set of chunks. - * Metadata are stored in a separate red-black tree. - * - ******************************************************************************* - */ - -/* - * MALLOC_PRODUCTION disables assertions and statistics gathering. It also - * defaults the A and J runtime options to off. These settings are appropriate - * for production systems. - */ -#ifndef MOZ_MEMORY_DEBUG -# define MALLOC_PRODUCTION -#endif - -/* - * Use only one arena by default. Mozilla does not currently make extensive - * use of concurrent allocation, so the increased fragmentation associated with - * multiple arenas is not warranted. - */ -#define MOZ_MEMORY_NARENAS_DEFAULT_ONE - -/* - * MALLOC_STATS enables statistics calculation, and is required for - * jemalloc_stats(). - */ -#define MALLOC_STATS - -#ifndef MALLOC_PRODUCTION - /* - * MALLOC_DEBUG enables assertions and other sanity checks, and disables - * inline functions. - */ -# define MALLOC_DEBUG - - /* Memory filling (junk/zero). */ -# define MALLOC_FILL - - /* Allocation tracing. */ -# ifndef MOZ_MEMORY_WINDOWS -# define MALLOC_UTRACE -# endif - - /* Support optional abort() on OOM. */ -# define MALLOC_XMALLOC - - /* Support SYSV semantics. */ -# define MALLOC_SYSV -#endif - -/* - * MALLOC_VALIDATE causes malloc_usable_size() to perform some pointer - * validation. There are many possible errors that validation does not even - * attempt to detect. - */ -#define MALLOC_VALIDATE - -/* Embed no-op macros that support memory allocation tracking via valgrind. */ -#ifdef MOZ_VALGRIND -# define MALLOC_VALGRIND -#endif -#ifdef MALLOC_VALGRIND -# include <valgrind/valgrind.h> -#else -# define VALGRIND_MALLOCLIKE_BLOCK(addr, sizeB, rzB, is_zeroed) -# define VALGRIND_FREELIKE_BLOCK(addr, rzB) -#endif - -/* - * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically - * re-balances arena load if exponentially averaged contention exceeds a - * certain threshold. - */ -/* #define MALLOC_BALANCE */ - -#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN)) - /* - * MALLOC_PAGEFILE causes all mmap()ed memory to be backed by temporary - * files, so that if a chunk is mapped, it is guaranteed to be swappable. - * This avoids asynchronous OOM failures that are due to VM over-commit. - * - * XXX OS X over-commits, so we should probably use mmap() instead of - * vm_allocate(), so that MALLOC_PAGEFILE works. - */ -#define MALLOC_PAGEFILE -#endif - -#ifdef MALLOC_PAGEFILE -/* Write size when initializing a page file. */ -# define MALLOC_PAGEFILE_WRITE_SIZE 512 -#endif - -#ifdef MOZ_MEMORY_LINUX -#define _GNU_SOURCE /* For mremap(2). */ -#define issetugid() 0 -#if 0 /* Enable in order to test decommit code on Linux. */ -# define MALLOC_DECOMMIT -#endif -#endif - -#ifndef MOZ_MEMORY_WINCE -#include <sys/types.h> - -#include <errno.h> -#include <stdlib.h> -#endif -#include <limits.h> -#include <stdarg.h> -#include <stdio.h> -#include <string.h> - -#ifdef MOZ_MEMORY_WINDOWS -#ifndef MOZ_MEMORY_WINCE -#include <cruntime.h> -#include <internal.h> -#include <io.h> -#else -#include <cmnintrin.h> -#include <crtdefs.h> -#define SIZE_MAX UINT_MAX -#endif -#include <windows.h> - -#pragma warning( disable: 4267 4996 4146 ) - -#define false FALSE -#define true TRUE -#define inline __inline -#define SIZE_T_MAX SIZE_MAX -#define STDERR_FILENO 2 -#define PATH_MAX MAX_PATH -#define vsnprintf _vsnprintf - -#ifndef NO_TLS -static unsigned long tlsIndex = 0xffffffff; -#endif - -#define __thread -#ifdef MOZ_MEMORY_WINCE -#define _pthread_self() GetCurrentThreadId() -#else -#define _pthread_self() __threadid() -#endif -#define issetugid() 0 - -#ifndef MOZ_MEMORY_WINCE -/* use MSVC intrinsics */ -#pragma intrinsic(_BitScanForward) -static __forceinline int -ffs(int x) -{ - unsigned long i; - - if (_BitScanForward(&i, x) != 0) - return (i + 1); - - return (0); -} - -/* Implement getenv without using malloc */ -static char mozillaMallocOptionsBuf[64]; - -#define getenv xgetenv -static char * -getenv(const char *name) -{ - - if (GetEnvironmentVariableA(name, (LPSTR)&mozillaMallocOptionsBuf, - sizeof(mozillaMallocOptionsBuf)) > 0) - return (mozillaMallocOptionsBuf); - - return (NULL); -} - -#else /* WIN CE */ - -#define ENOMEM 12 -#define EINVAL 22 - -static __forceinline int -ffs(int x) -{ - - return 32 - _CountLeadingZeros((-x) & x); -} -#endif - -typedef unsigned char uint8_t; -typedef unsigned uint32_t; -typedef unsigned long long uint64_t; -typedef unsigned long long uintmax_t; -typedef long ssize_t; - -#define MALLOC_DECOMMIT -#endif - -#ifndef MOZ_MEMORY_WINDOWS -#ifndef MOZ_MEMORY_SOLARIS -#include <sys/cdefs.h> -#endif -#ifndef __DECONST -# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var)) -#endif -#ifndef MOZ_MEMORY -__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 180599 2008-07-18 19:35:44Z jasone $"); -#include "libc_private.h" -#ifdef MALLOC_DEBUG -# define _LOCK_DEBUG -#endif -#include "spinlock.h" -#include "namespace.h" -#endif -#include <sys/mman.h> -#ifndef MADV_FREE -# define MADV_FREE MADV_DONTNEED -#endif -#ifndef MAP_NOSYNC -# define MAP_NOSYNC 0 -#endif -#include <sys/param.h> -#ifndef MOZ_MEMORY -#include <sys/stddef.h> -#endif -#include <sys/time.h> -#include <sys/types.h> -#ifndef MOZ_MEMORY_SOLARIS -#include <sys/sysctl.h> -#endif -#include <sys/uio.h> -#ifndef MOZ_MEMORY -#include <sys/ktrace.h> /* Must come after several other sys/ includes. */ - -#include <machine/atomic.h> -#include <machine/cpufunc.h> -#include <machine/vmparam.h> -#endif - -#include <errno.h> -#include <limits.h> -#ifndef SIZE_T_MAX -# define SIZE_T_MAX SIZE_MAX -#endif -#include <pthread.h> -#ifdef MOZ_MEMORY_DARWIN -#define _pthread_self pthread_self -#define _pthread_mutex_init pthread_mutex_init -#define _pthread_mutex_trylock pthread_mutex_trylock -#define _pthread_mutex_lock pthread_mutex_lock -#define _pthread_mutex_unlock pthread_mutex_unlock -#endif -#include <sched.h> -#include <stdarg.h> -#include <stdbool.h> -#include <stdio.h> -#include <stdint.h> -#include <stdlib.h> -#include <string.h> -#ifndef MOZ_MEMORY_DARWIN -#include <strings.h> -#endif -#include <unistd.h> - -#ifdef MOZ_MEMORY_DARWIN -#include <libkern/OSAtomic.h> -#include <mach/mach_error.h> -#include <mach/mach_init.h> -#include <mach/vm_map.h> -#include <malloc/malloc.h> -#endif - -#ifndef MOZ_MEMORY -#include "un-namespace.h" -#endif - -#endif - -#include "jemalloc.h" - -#undef bool -#define bool jemalloc_bool - -#ifdef MOZ_MEMORY_DARWIN -static const bool __isthreaded = true; -#endif - -#if defined(MOZ_MEMORY_SOLARIS) && defined(MAP_ALIGN) && !defined(JEMALLOC_NEVER_USES_MAP_ALIGN) -#define JEMALLOC_USES_MAP_ALIGN /* Required on Solaris 10. Might improve performance elsewhere. */ -#endif - -#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6) -#define JEMALLOC_USES_MAP_ALIGN /* Required for Windows CE < 6 */ -#endif - -#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var)) - -#include "qr.h" -#include "ql.h" -#ifdef MOZ_MEMORY_WINDOWS - /* MSVC++ does not support C99 variable-length arrays. */ -# define RB_NO_C99_VARARRAYS -#endif -#include "rb.h" - -#ifdef MALLOC_DEBUG - /* Disable inlining to make debugging easier. */ -#ifdef inline -#undef inline -#endif - -# define inline -#endif - -/* Size of stack-allocated buffer passed to strerror_r(). */ -#define STRERROR_BUF 64 - -/* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */ -# define QUANTUM_2POW_MIN 4 -#ifdef MOZ_MEMORY_SIZEOF_PTR_2POW -# define SIZEOF_PTR_2POW MOZ_MEMORY_SIZEOF_PTR_2POW -#else -# define SIZEOF_PTR_2POW 2 -#endif -#define PIC -#ifndef MOZ_MEMORY_DARWIN -static const bool __isthreaded = true; -#else -# define NO_TLS -#endif -#if 0 -#ifdef __i386__ -# define QUANTUM_2POW_MIN 4 -# define SIZEOF_PTR_2POW 2 -# define CPU_SPINWAIT __asm__ volatile("pause") -#endif -#ifdef __ia64__ -# define QUANTUM_2POW_MIN 4 -# define SIZEOF_PTR_2POW 3 -#endif -#ifdef __alpha__ -# define QUANTUM_2POW_MIN 4 -# define SIZEOF_PTR_2POW 3 -# define NO_TLS -#endif -#ifdef __sparc64__ -# define QUANTUM_2POW_MIN 4 -# define SIZEOF_PTR_2POW 3 -# define NO_TLS -#endif -#ifdef __amd64__ -# define QUANTUM_2POW_MIN 4 -# define SIZEOF_PTR_2POW 3 -# define CPU_SPINWAIT __asm__ volatile("pause") -#endif -#ifdef __arm__ -# define QUANTUM_2POW_MIN 3 -# define SIZEOF_PTR_2POW 2 -# define NO_TLS -#endif -#ifdef __mips__ -# define QUANTUM_2POW_MIN 3 -# define SIZEOF_PTR_2POW 2 -# define NO_TLS -#endif -#ifdef __powerpc__ -# define QUANTUM_2POW_MIN 4 -# define SIZEOF_PTR_2POW 2 -#endif -#endif - -#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW) - -/* sizeof(int) == (1U << SIZEOF_INT_2POW). */ -#ifndef SIZEOF_INT_2POW -# define SIZEOF_INT_2POW 2 -#endif - -/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */ -#if (!defined(PIC) && !defined(NO_TLS)) -# define NO_TLS -#endif - -#ifdef NO_TLS - /* MALLOC_BALANCE requires TLS. */ -# ifdef MALLOC_BALANCE -# undef MALLOC_BALANCE -# endif -#endif - -/* - * Size and alignment of memory chunks that are allocated by the OS's virtual - * memory system. - */ -#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6) -#define CHUNK_2POW_DEFAULT 21 -#else -#define CHUNK_2POW_DEFAULT 20 -#endif -/* Maximum number of dirty pages per arena. */ -#define DIRTY_MAX_DEFAULT (1U << 10) - -/* Default reserve chunks. */ -#define RESERVE_MIN_2POW_DEFAULT 1 -/* - * Default range (in chunks) between reserve_min and reserve_max, in addition - * to the mandatory one chunk per arena. - */ -#ifdef MALLOC_PAGEFILE -# define RESERVE_RANGE_2POW_DEFAULT 5 -#else -# define RESERVE_RANGE_2POW_DEFAULT 0 -#endif - -/* - * Maximum size of L1 cache line. This is used to avoid cache line aliasing, - * so over-estimates are okay (up to a point), but under-estimates will - * negatively affect performance. - */ -#define CACHELINE_2POW 6 -#define CACHELINE ((size_t)(1U << CACHELINE_2POW)) - -/* Smallest size class to support. */ -#define TINY_MIN_2POW 1 - -/* - * Maximum size class that is a multiple of the quantum, but not (necessarily) - * a power of 2. Above this size, allocations are rounded up to the nearest - * power of 2. - */ -#define SMALL_MAX_2POW_DEFAULT 9 -#define SMALL_MAX_DEFAULT (1U << SMALL_MAX_2POW_DEFAULT) - -/* - * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized - * as small as possible such that this setting is still honored, without - * violating other constraints. The goal is to make runs as small as possible - * without exceeding a per run external fragmentation threshold. - * - * We use binary fixed point math for overhead computations, where the binary - * point is implicitly RUN_BFP bits to the left. - * - * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be - * honored for some/all object sizes, since there is one bit of header overhead - * per object (plus a constant). This constraint is relaxed (ignored) for runs - * that are so small that the per-region overhead is greater than: - * - * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP)) - */ -#define RUN_BFP 12 -/* \/ Implicit binary fixed point. */ -#define RUN_MAX_OVRHD 0x0000003dU -#define RUN_MAX_OVRHD_RELAX 0x00001800U - -/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */ -#define RUN_MAX_SMALL_2POW 15 -#define RUN_MAX_SMALL (1U << RUN_MAX_SMALL_2POW) - -/* - * Hyper-threaded CPUs may need a special instruction inside spin loops in - * order to yield to another virtual CPU. If no such instruction is defined - * above, make CPU_SPINWAIT a no-op. - */ -#ifndef CPU_SPINWAIT -# define CPU_SPINWAIT -#endif - -/* - * Adaptive spinning must eventually switch to blocking, in order to avoid the - * potential for priority inversion deadlock. Backing off past a certain point - * can actually waste time. - */ -#define SPIN_LIMIT_2POW 11 - -/* - * Conversion from spinning to blocking is expensive; we use (1U << - * BLOCK_COST_2POW) to estimate how many more times costly blocking is than - * worst-case spinning. - */ -#define BLOCK_COST_2POW 4 - -#ifdef MALLOC_BALANCE - /* - * We use an exponential moving average to track recent lock contention, - * where the size of the history window is N, and alpha=2/(N+1). - * - * Due to integer math rounding, very small values here can cause - * substantial degradation in accuracy, thus making the moving average decay - * faster than it would with precise calculation. - */ -# define BALANCE_ALPHA_INV_2POW 9 - - /* - * Threshold value for the exponential moving contention average at which to - * re-assign a thread. - */ -# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4)) -#endif - -/******************************************************************************/ - -/* - * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all - * places, because they require malloc()ed memory, which causes bootstrapping - * issues in some cases. - */ -#if defined(MOZ_MEMORY_WINDOWS) -#define malloc_mutex_t CRITICAL_SECTION -#define malloc_spinlock_t CRITICAL_SECTION -#elif defined(MOZ_MEMORY_DARWIN) -typedef struct { - OSSpinLock lock; -} malloc_mutex_t; -typedef struct { - OSSpinLock lock; -} malloc_spinlock_t; -#elif defined(MOZ_MEMORY) -typedef pthread_mutex_t malloc_mutex_t; -typedef pthread_mutex_t malloc_spinlock_t; -#else -/* XXX these should #ifdef these for freebsd (and linux?) only */ -typedef struct { - spinlock_t lock; -} malloc_mutex_t; -typedef malloc_spinlock_t malloc_mutex_t; -#endif - -/* Set to true once the allocator has been initialized. */ -static bool malloc_initialized = false; - -#if defined(MOZ_MEMORY_WINDOWS) -/* No init lock for Windows. */ -#elif defined(MOZ_MEMORY_DARWIN) -static malloc_mutex_t init_lock = {OS_SPINLOCK_INIT}; -#elif defined(MOZ_MEMORY_LINUX) -static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP; -#elif defined(MOZ_MEMORY) -static malloc_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER; -#else -static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER}; -#endif - -/******************************************************************************/ -/* - * Statistics data structures. - */ - -#ifdef MALLOC_STATS - -typedef struct malloc_bin_stats_s malloc_bin_stats_t; -struct malloc_bin_stats_s { - /* - * Number of allocation requests that corresponded to the size of this - * bin. - */ - uint64_t nrequests; - - /* Total number of runs created for this bin's size class. */ - uint64_t nruns; - - /* - * Total number of runs reused by extracting them from the runs tree for - * this bin's size class. - */ - uint64_t reruns; - - /* High-water mark for this bin. */ - unsigned long highruns; - - /* Current number of runs in this bin. */ - unsigned long curruns; -}; - -typedef struct arena_stats_s arena_stats_t; -struct arena_stats_s { - /* Number of bytes currently mapped. */ - size_t mapped; - - /* - * Total number of purge sweeps, total number of madvise calls made, - * and total pages purged in order to keep dirty unused memory under - * control. - */ - uint64_t npurge; - uint64_t nmadvise; - uint64_t purged; -#ifdef MALLOC_DECOMMIT - /* - * Total number of decommit/commit operations, and total number of - * pages decommitted. - */ - uint64_t ndecommit; - uint64_t ncommit; - uint64_t decommitted; -#endif - - /* Per-size-category statistics. */ - size_t allocated_small; - uint64_t nmalloc_small; - uint64_t ndalloc_small; - - size_t allocated_large; - uint64_t nmalloc_large; - uint64_t ndalloc_large; - -#ifdef MALLOC_BALANCE - /* Number of times this arena reassigned a thread due to contention. */ - uint64_t nbalance; -#endif -}; - -typedef struct chunk_stats_s chunk_stats_t; -struct chunk_stats_s { - /* Number of chunks that were allocated. */ - uint64_t nchunks; - - /* High-water mark for number of chunks allocated. */ - unsigned long highchunks; - - /* - * Current number of chunks allocated. This value isn't maintained for - * any other purpose, so keep track of it in order to be able to set - * highchunks. - */ - unsigned long curchunks; -}; - -#endif /* #ifdef MALLOC_STATS */ - -/******************************************************************************/ -/* - * Extent data structures. - */ - -/* Tree of extents. */ -typedef struct extent_node_s extent_node_t; -struct extent_node_s { - /* Linkage for the size/address-ordered tree. */ - rb_node(extent_node_t) link_szad; - - /* Linkage for the address-ordered tree. */ - rb_node(extent_node_t) link_ad; - - /* Pointer to the extent that this tree node is responsible for. */ - void *addr; - - /* Total region size. */ - size_t size; -}; -typedef rb_tree(extent_node_t) extent_tree_t; - -/******************************************************************************/ -/* - * Radix tree data structures. - */ - -#ifdef MALLOC_VALIDATE - /* - * Size of each radix tree node (must be a power of 2). This impacts tree - * depth. - */ -# if (SIZEOF_PTR == 4) -# define MALLOC_RTREE_NODESIZE (1U << 14) -# else -# define MALLOC_RTREE_NODESIZE CACHELINE -# endif - -typedef struct malloc_rtree_s malloc_rtree_t; -struct malloc_rtree_s { - malloc_spinlock_t lock; - void **root; - unsigned height; - unsigned level2bits[1]; /* Dynamically sized. */ -}; -#endif - -/******************************************************************************/ -/* - * Reserve data structures. - */ - -/* Callback registration. */ -typedef struct reserve_reg_s reserve_reg_t; -struct reserve_reg_s { - /* Linkage for list of all registered callbacks. */ - ql_elm(reserve_reg_t) link; - - /* Callback function pointer. */ - reserve_cb_t *cb; - - /* Opaque application data pointer. */ - void *ctx; - - /* - * Sequence number of condition notification most recently sent to this - * callback. - */ - uint64_t seq; -}; - -/******************************************************************************/ -/* - * Arena data structures. - */ - -typedef struct arena_s arena_t; -typedef struct arena_bin_s arena_bin_t; - -/* Each element of the chunk map corresponds to one page within the chunk. */ -typedef struct arena_chunk_map_s arena_chunk_map_t; -struct arena_chunk_map_s { - /* - * Linkage for run trees. There are two disjoint uses: - * - * 1) arena_t's runs_avail tree. - * 2) arena_run_t conceptually uses this linkage for in-use non-full - * runs, rather than directly embedding linkage. - */ - rb_node(arena_chunk_map_t) link; - - /* - * Run address (or size) and various flags are stored together. The bit - * layout looks like (assuming 32-bit system): - * - * ???????? ???????? ????---- --ckdzla - * - * ? : Unallocated: Run address for first/last pages, unset for internal - * pages. - * Small: Run address. - * Large: Run size for first page, unset for trailing pages. - * - : Unused. - * c : decommitted? - * k : key? - * d : dirty? - * z : zeroed? - * l : large? - * a : allocated? - * - * Following are example bit patterns for the three types of runs. - * - * r : run address - * s : run size - * x : don't care - * - : 0 - * [cdzla] : bit set - * - * Unallocated: - * ssssssss ssssssss ssss---- --c----- - * xxxxxxxx xxxxxxxx xxxx---- ----d--- - * ssssssss ssssssss ssss---- -----z-- - * - * Small: - * rrrrrrrr rrrrrrrr rrrr---- -------a - * rrrrrrrr rrrrrrrr rrrr---- -------a - * rrrrrrrr rrrrrrrr rrrr---- -------a - * - * Large: - * ssssssss ssssssss ssss---- ------la - * -------- -------- -------- ------la - * -------- -------- -------- ------la - */ - size_t bits; -#ifdef MALLOC_DECOMMIT -#define CHUNK_MAP_DECOMMITTED ((size_t)0x20U) -#endif -#define CHUNK_MAP_KEY ((size_t)0x10U) -#define CHUNK_MAP_DIRTY ((size_t)0x08U) -#define CHUNK_MAP_ZEROED ((size_t)0x04U) -#define CHUNK_MAP_LARGE ((size_t)0x02U) -#define CHUNK_MAP_ALLOCATED ((size_t)0x01U) -}; -typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t; -typedef rb_tree(arena_chunk_map_t) arena_run_tree_t; - -/* Arena chunk header. */ -typedef struct arena_chunk_s arena_chunk_t; -struct arena_chunk_s { - /* Arena that owns the chunk. */ - arena_t *arena; - - /* Linkage for the arena's chunks_dirty tree. */ - rb_node(arena_chunk_t) link_dirty; - - /* Number of dirty pages. */ - size_t ndirty; - - /* Map of pages within chunk that keeps track of free/large/small. */ - arena_chunk_map_t map[1]; /* Dynamically sized. */ -}; -typedef rb_tree(arena_chunk_t) arena_chunk_tree_t; - -typedef struct arena_run_s arena_run_t; -struct arena_run_s { -#ifdef MALLOC_DEBUG - uint32_t magic; -# define ARENA_RUN_MAGIC 0x384adf93 -#endif - - /* Bin this run is associated with. */ - arena_bin_t *bin; - - /* Index of first element that might have a free region. */ - unsigned regs_minelm; - - /* Number of free regions in run. */ - unsigned nfree; - - /* Bitmask of in-use regions (0: in use, 1: free). */ - unsigned regs_mask[1]; /* Dynamically sized. */ -}; - -struct arena_bin_s { - /* - * Current run being used to service allocations of this bin's size - * class. - */ - arena_run_t *runcur; - - /* - * Tree of non-full runs. This tree is used when looking for an - * existing run when runcur is no longer usable. We choose the - * non-full run that is lowest in memory; this policy tends to keep - * objects packed well, and it can also help reduce the number of - * almost-empty chunks. - */ - arena_run_tree_t runs; - - /* Size of regions in a run for this bin's size class. */ - size_t reg_size; - - /* Total size of a run for this bin's size class. */ - size_t run_size; - - /* Total number of regions in a run for this bin's size class. */ - uint32_t nregs; - - /* Number of elements in a run's regs_mask for this bin's size class. */ - uint32_t regs_mask_nelms; - - /* Offset of first region in a run for this bin's size class. */ - uint32_t reg0_offset; - -#ifdef MALLOC_STATS - /* Bin statistics. */ - malloc_bin_stats_t stats; -#endif -}; - -struct arena_s { -#ifdef MALLOC_DEBUG - uint32_t magic; -# define ARENA_MAGIC 0x947d3d24 -#endif - - /* All operations on this arena require that lock be locked. */ -#ifdef MOZ_MEMORY - malloc_spinlock_t lock; -#else - pthread_mutex_t lock; -#endif - -#ifdef MALLOC_STATS - arena_stats_t stats; -#endif - - /* - * Chunk allocation sequence number, used to detect races with other - * threads during chunk allocation, and then discard unnecessary chunks. - */ - uint64_t chunk_seq; - - /* Tree of dirty-page-containing chunks this arena manages. */ - arena_chunk_tree_t chunks_dirty; - - /* - * In order to avoid rapid chunk allocation/deallocation when an arena - * oscillates right on the cusp of needing a new chunk, cache the most - * recently freed chunk. The spare is left in the arena's chunk trees - * until it is deleted. - * - * There is one spare chunk per arena, rather than one spare total, in - * order to avoid interactions between multiple threads that could make - * a single spare inadequate. - */ - arena_chunk_t *spare; - - /* - * Current count of pages within unused runs that are potentially - * dirty, and for which madvise(... MADV_FREE) has not been called. By - * tracking this, we can institute a limit on how much dirty unused - * memory is mapped for each arena. - */ - size_t ndirty; - - /* - * Size/address-ordered tree of this arena's available runs. This tree - * is used for first-best-fit run allocation. - */ - arena_avail_tree_t runs_avail; - -#ifdef MALLOC_BALANCE - /* - * The arena load balancing machinery needs to keep track of how much - * lock contention there is. This value is exponentially averaged. - */ - uint32_t contention; -#endif - - /* - * bins is used to store rings of free regions of the following sizes, - * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS. - * - * bins[i] | size | - * --------+------+ - * 0 | 2 | - * 1 | 4 | - * 2 | 8 | - * --------+------+ - * 3 | 16 | - * 4 | 32 | - * 5 | 48 | - * 6 | 64 | - * : : - * : : - * 33 | 496 | - * 34 | 512 | - * --------+------+ - * 35 | 1024 | - * 36 | 2048 | - * --------+------+ - */ - arena_bin_t bins[1]; /* Dynamically sized. */ -}; - -/******************************************************************************/ -/* - * Data. - */ - -/* Number of CPUs. */ -static unsigned ncpus; - -/* VM page size. */ -static size_t pagesize; -static size_t pagesize_mask; -static size_t pagesize_2pow; - -/* Various bin-related settings. */ -static size_t bin_maxclass; /* Max size class for bins. */ -static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */ -static unsigned nqbins; /* Number of quantum-spaced bins. */ -static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */ -static size_t small_min; -static size_t small_max; - -/* Various quantum-related settings. */ -static size_t quantum; -static size_t quantum_mask; /* (quantum - 1). */ - -/* Various chunk-related settings. */ -static size_t chunksize; -static size_t chunksize_mask; /* (chunksize - 1). */ -static size_t chunk_npages; -static size_t arena_chunk_header_npages; -static size_t arena_maxclass; /* Max size class for arenas. */ - -/********/ -/* - * Chunks. - */ - -#ifdef MALLOC_VALIDATE -static malloc_rtree_t *chunk_rtree; -#endif - -/* Protects chunk-related data structures. */ -static malloc_mutex_t huge_mtx; - -/* Tree of chunks that are stand-alone huge allocations. */ -static extent_tree_t huge; - -#ifdef MALLOC_STATS -/* Huge allocation statistics. */ -static uint64_t huge_nmalloc; -static uint64_t huge_ndalloc; -static size_t huge_allocated; -#endif - -/****************/ -/* - * Memory reserve. - */ - -#ifdef MALLOC_PAGEFILE -static char pagefile_templ[PATH_MAX]; -#endif - -/* Protects reserve-related data structures. */ -static malloc_mutex_t reserve_mtx; - -/* - * Bounds on acceptable reserve size, and current reserve size. Reserve - * depletion may cause (reserve_cur < reserve_min). - */ -static size_t reserve_min; -static size_t reserve_cur; -static size_t reserve_max; - -/* List of registered callbacks. */ -static ql_head(reserve_reg_t) reserve_regs; - -/* - * Condition notification sequence number, used to determine whether all - * registered callbacks have been notified of the most current condition. - */ -static uint64_t reserve_seq; - -/* - * Trees of chunks currently in the memory reserve. Depending on function, - * different tree orderings are needed, which is why there are two trees with - * the same contents. - */ -static extent_tree_t reserve_chunks_szad; -static extent_tree_t reserve_chunks_ad; - -/****************************/ -/* - * base (internal allocation). - */ - -/* - * Current pages that are being used for internal memory allocations. These - * pages are carved up in cacheline-size quanta, so that there is no chance of - * false cache line sharing. - */ -static void *base_pages; -static void *base_next_addr; -#ifdef MALLOC_DECOMMIT -static void *base_next_decommitted; -#endif -static void *base_past_addr; /* Addr immediately past base_pages. */ -static extent_node_t *base_nodes; -static reserve_reg_t *base_reserve_regs; -static malloc_mutex_t base_mtx; -#ifdef MALLOC_STATS -static size_t base_mapped; -#endif - -/********/ -/* - * Arenas. - */ - -/* - * Arenas that are used to service external requests. Not all elements of the - * arenas array are necessarily used; arenas are created lazily as needed. - */ -static arena_t **arenas; -static unsigned narenas; -static unsigned narenas_2pow; -#ifndef NO_TLS -# ifdef MALLOC_BALANCE -static unsigned narenas_2pow; -# else -static unsigned next_arena; -# endif -#endif -#ifdef MOZ_MEMORY -static malloc_spinlock_t arenas_lock; /* Protects arenas initialization. */ -#else -static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */ -#endif - -#ifndef NO_TLS -/* - * Map of pthread_self() --> arenas[???], used for selecting an arena to use - * for allocations. - */ -#ifndef MOZ_MEMORY_WINDOWS -static __thread arena_t *arenas_map; -#endif -#endif - -#ifdef MALLOC_STATS -/* Chunk statistics. */ -static chunk_stats_t stats_chunks; -#endif - -/*******************************/ -/* - * Runtime configuration options. - */ -const char *_malloc_options; - -#ifndef MALLOC_PRODUCTION -static bool opt_abort = true; -#ifdef MALLOC_FILL -static bool opt_junk = true; -#endif -#else -static bool opt_abort = false; -#ifdef MALLOC_FILL -static bool opt_junk = false; -#endif -#endif -static size_t opt_dirty_max = DIRTY_MAX_DEFAULT; -#ifdef MALLOC_BALANCE -static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT; -#endif -static bool opt_print_stats = false; -static size_t opt_quantum_2pow = QUANTUM_2POW_MIN; -static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT; -static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT; -static int opt_reserve_min_lshift = 0; -static int opt_reserve_range_lshift = 0; -#ifdef MALLOC_PAGEFILE -static bool opt_pagefile = false; -#endif -#ifdef MALLOC_UTRACE -static bool opt_utrace = false; -#endif -#ifdef MALLOC_SYSV -static bool opt_sysv = false; -#endif -#ifdef MALLOC_XMALLOC -static bool opt_xmalloc = false; -#endif -#ifdef MALLOC_FILL -static bool opt_zero = false; -#endif -static int opt_narenas_lshift = 0; - -#ifdef MALLOC_UTRACE -typedef struct { - void *p; - size_t s; - void *r; -} malloc_utrace_t; - -#define UTRACE(a, b, c) \ - if (opt_utrace) { \ - malloc_utrace_t ut; \ - ut.p = (a); \ - ut.s = (b); \ - ut.r = (c); \ - utrace(&ut, sizeof(ut)); \ - } -#else -#define UTRACE(a, b, c) -#endif - -/******************************************************************************/ -/* - * Begin function prototypes for non-inline static functions. - */ - -static char *umax2s(uintmax_t x, char *s); -static bool malloc_mutex_init(malloc_mutex_t *mutex); -static bool malloc_spin_init(malloc_spinlock_t *lock); -static void wrtmessage(const char *p1, const char *p2, const char *p3, - const char *p4); -#ifdef MALLOC_STATS -#ifdef MOZ_MEMORY_DARWIN -/* Avoid namespace collision with OS X's malloc APIs. */ -#define malloc_printf moz_malloc_printf -#endif -static void malloc_printf(const char *format, ...); -#endif -static bool base_pages_alloc_mmap(size_t minsize); -static bool base_pages_alloc(size_t minsize); -static void *base_alloc(size_t size); -static void *base_calloc(size_t number, size_t size); -static extent_node_t *base_node_alloc(void); -static void base_node_dealloc(extent_node_t *node); -static reserve_reg_t *base_reserve_reg_alloc(void); -static void base_reserve_reg_dealloc(reserve_reg_t *reg); -#ifdef MALLOC_STATS -static void stats_print(arena_t *arena); -#endif -static void *pages_map(void *addr, size_t size, int pfd); -static void pages_unmap(void *addr, size_t size); -static void *chunk_alloc_mmap(size_t size, bool pagefile); -#ifdef MALLOC_PAGEFILE -static int pagefile_init(size_t size); -static void pagefile_close(int pfd); -#endif -static void *chunk_recycle_reserve(size_t size, bool zero); -static void *chunk_alloc(size_t size, bool zero, bool pagefile); -static extent_node_t *chunk_dealloc_reserve(void *chunk, size_t size); -static void chunk_dealloc_mmap(void *chunk, size_t size); -static void chunk_dealloc(void *chunk, size_t size); -#ifndef NO_TLS -static arena_t *choose_arena_hard(void); -#endif -static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size, - bool large, bool zero); -static void arena_chunk_init(arena_t *arena, arena_chunk_t *chunk); -static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk); -static arena_run_t *arena_run_alloc(arena_t *arena, arena_bin_t *bin, - size_t size, bool large, bool zero); -static void arena_purge(arena_t *arena); -static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty); -static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, - arena_run_t *run, size_t oldsize, size_t newsize); -static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, - arena_run_t *run, size_t oldsize, size_t newsize, bool dirty); -static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin); -static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin); -static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size); -#ifdef MALLOC_BALANCE -static void arena_lock_balance_hard(arena_t *arena); -#endif -static void *arena_malloc_large(arena_t *arena, size_t size, bool zero); -static void *arena_palloc(arena_t *arena, size_t alignment, size_t size, - size_t alloc_size); -static size_t arena_salloc(const void *ptr); -static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, - void *ptr); -static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, - void *ptr, size_t size, size_t oldsize); -static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, - void *ptr, size_t size, size_t oldsize); -static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize); -static void *arena_ralloc(void *ptr, size_t size, size_t oldsize); -static bool arena_new(arena_t *arena); -static arena_t *arenas_extend(unsigned ind); -static void *huge_malloc(size_t size, bool zero); -static void *huge_palloc(size_t alignment, size_t size); -static void *huge_ralloc(void *ptr, size_t size, size_t oldsize); -static void huge_dalloc(void *ptr); -static void malloc_print_stats(void); -#ifndef MOZ_MEMORY_WINDOWS -static -#endif -bool malloc_init_hard(void); -static void reserve_shrink(void); -static uint64_t reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq); -static uint64_t reserve_crit(size_t size, const char *fname, uint64_t seq); -static void reserve_fail(size_t size, const char *fname); - -void _malloc_prefork(void); -void _malloc_postfork(void); - -/* - * End function prototypes. - */ -/******************************************************************************/ - -/* - * umax2s() provides minimal integer printing functionality, which is - * especially useful for situations where allocation in vsnprintf() calls would - * potentially cause deadlock. - */ -#define UMAX2S_BUFSIZE 21 -static char * -umax2s(uintmax_t x, char *s) -{ - unsigned i; - - i = UMAX2S_BUFSIZE - 1; - s[i] = '\0'; - do { - i--; - s[i] = "0123456789"[x % 10]; - x /= 10; - } while (x > 0); - - return (&s[i]); -} - -static void -wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4) -{ -#ifdef MOZ_MEMORY_WINCE - wchar_t buf[1024]; -#define WRT_PRINT(s) \ - MultiByteToWideChar(CP_ACP, 0, s, -1, buf, 1024); \ - OutputDebugStringW(buf) - - WRT_PRINT(p1); - WRT_PRINT(p2); - WRT_PRINT(p3); - WRT_PRINT(p4); -#else -#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_WINDOWS) -#define _write write -#endif - _write(STDERR_FILENO, p1, (unsigned int) strlen(p1)); - _write(STDERR_FILENO, p2, (unsigned int) strlen(p2)); - _write(STDERR_FILENO, p3, (unsigned int) strlen(p3)); - _write(STDERR_FILENO, p4, (unsigned int) strlen(p4)); -#endif - -} - -#define _malloc_message malloc_message - -void (*_malloc_message)(const char *p1, const char *p2, const char *p3, - const char *p4) = wrtmessage; - -#ifdef MALLOC_DEBUG -# define assert(e) do { \ - if (!(e)) { \ - char line_buf[UMAX2S_BUFSIZE]; \ - _malloc_message(__FILE__, ":", umax2s(__LINE__, \ - line_buf), ": Failed assertion: "); \ - _malloc_message("\"", #e, "\"\n", ""); \ - abort(); \ - } \ -} while (0) -#else -#define assert(e) -#endif - -/******************************************************************************/ -/* - * Begin mutex. We can't use normal pthread mutexes in all places, because - * they require malloc()ed memory, which causes bootstrapping issues in some - * cases. - */ - -static bool -malloc_mutex_init(malloc_mutex_t *mutex) -{ -#if defined(MOZ_MEMORY_WINCE) - InitializeCriticalSection(mutex); -#elif defined(MOZ_MEMORY_WINDOWS) - if (__isthreaded) - if (! __crtInitCritSecAndSpinCount(mutex, _CRT_SPINCOUNT)) - return (true); -#elif defined(MOZ_MEMORY_DARWIN) - mutex->lock = OS_SPINLOCK_INIT; -#elif defined(MOZ_MEMORY_LINUX) - pthread_mutexattr_t attr; - if (pthread_mutexattr_init(&attr) != 0) - return (true); - pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP); - if (pthread_mutex_init(mutex, &attr) != 0) { - pthread_mutexattr_destroy(&attr); - return (true); - } - pthread_mutexattr_destroy(&attr); -#elif defined(MOZ_MEMORY) - if (pthread_mutex_init(mutex, NULL) != 0) - return (true); -#else - static const spinlock_t lock = _SPINLOCK_INITIALIZER; - - mutex->lock = lock; -#endif - return (false); -} - -static inline void -malloc_mutex_lock(malloc_mutex_t *mutex) -{ - -#if defined(MOZ_MEMORY_WINDOWS) - EnterCriticalSection(mutex); -#elif defined(MOZ_MEMORY_DARWIN) - OSSpinLockLock(&mutex->lock); -#elif defined(MOZ_MEMORY) - pthread_mutex_lock(mutex); -#else - if (__isthreaded) - _SPINLOCK(&mutex->lock); -#endif -} - -static inline void -malloc_mutex_unlock(malloc_mutex_t *mutex) -{ - -#if defined(MOZ_MEMORY_WINDOWS) - LeaveCriticalSection(mutex); -#elif defined(MOZ_MEMORY_DARWIN) - OSSpinLockUnlock(&mutex->lock); -#elif defined(MOZ_MEMORY) - pthread_mutex_unlock(mutex); -#else - if (__isthreaded) - _SPINUNLOCK(&mutex->lock); -#endif -} - -static bool -malloc_spin_init(malloc_spinlock_t *lock) -{ -#if defined(MOZ_MEMORY_WINCE) - InitializeCriticalSection(lock); -#elif defined(MOZ_MEMORY_WINDOWS) - if (__isthreaded) - if (! __crtInitCritSecAndSpinCount(lock, _CRT_SPINCOUNT)) - return (true); -#elif defined(MOZ_MEMORY_DARWIN) - lock->lock = OS_SPINLOCK_INIT; -#elif defined(MOZ_MEMORY_LINUX) - pthread_mutexattr_t attr; - if (pthread_mutexattr_init(&attr) != 0) - return (true); - pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP); - if (pthread_mutex_init(lock, &attr) != 0) { - pthread_mutexattr_destroy(&attr); - return (true); - } - pthread_mutexattr_destroy(&attr); -#elif defined(MOZ_MEMORY) - if (pthread_mutex_init(lock, NULL) != 0) - return (true); -#else - lock->lock = _SPINLOCK_INITIALIZER; -#endif - return (false); -} - -static inline void -malloc_spin_lock(malloc_spinlock_t *lock) -{ - -#if defined(MOZ_MEMORY_WINDOWS) - EnterCriticalSection(lock); -#elif defined(MOZ_MEMORY_DARWIN) - OSSpinLockLock(&lock->lock); -#elif defined(MOZ_MEMORY) - pthread_mutex_lock(lock); -#else - if (__isthreaded) - _SPINLOCK(&lock->lock); -#endif -} - -static inline void -malloc_spin_unlock(malloc_spinlock_t *lock) -{ -#if defined(MOZ_MEMORY_WINDOWS) - LeaveCriticalSection(lock); -#elif defined(MOZ_MEMORY_DARWIN) - OSSpinLockUnlock(&lock->lock); -#elif defined(MOZ_MEMORY) - pthread_mutex_unlock(lock); -#else - if (__isthreaded) - _SPINUNLOCK(&lock->lock); -#endif -} - -/* - * End mutex. - */ -/******************************************************************************/ -/* - * Begin spin lock. Spin locks here are actually adaptive mutexes that block - * after a period of spinning, because unbounded spinning would allow for - * priority inversion. - */ - -#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_DARWIN) -# define malloc_spin_init malloc_mutex_init -# define malloc_spin_lock malloc_mutex_lock -# define malloc_spin_unlock malloc_mutex_unlock -#endif - -#ifndef MOZ_MEMORY -/* - * We use an unpublished interface to initialize pthread mutexes with an - * allocation callback, in order to avoid infinite recursion. - */ -int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex, - void *(calloc_cb)(size_t, size_t)); - -__weak_reference(_pthread_mutex_init_calloc_cb_stub, - _pthread_mutex_init_calloc_cb); - -int -_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex, - void *(calloc_cb)(size_t, size_t)) -{ - - return (0); -} - -static bool -malloc_spin_init(pthread_mutex_t *lock) -{ - - if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0) - return (true); - - return (false); -} - -static inline unsigned -malloc_spin_lock(pthread_mutex_t *lock) -{ - unsigned ret = 0; - - if (__isthreaded) { - if (_pthread_mutex_trylock(lock) != 0) { - unsigned i; - volatile unsigned j; - - /* Exponentially back off. */ - for (i = 1; i <= SPIN_LIMIT_2POW; i++) { - for (j = 0; j < (1U << i); j++) - ret++; - - CPU_SPINWAIT; - if (_pthread_mutex_trylock(lock) == 0) - return (ret); - } - - /* - * Spinning failed. Block until the lock becomes - * available, in order to avoid indefinite priority - * inversion. - */ - _pthread_mutex_lock(lock); - assert((ret << BLOCK_COST_2POW) != 0); - return (ret << BLOCK_COST_2POW); - } - } - - return (ret); -} - -static inline void -malloc_spin_unlock(pthread_mutex_t *lock) -{ - - if (__isthreaded) - _pthread_mutex_unlock(lock); -} -#endif - -/* - * End spin lock. - */ -/******************************************************************************/ -/* - * Begin Utility functions/macros. - */ - -/* Return the chunk address for allocation address a. */ -#define CHUNK_ADDR2BASE(a) \ - ((void *)((uintptr_t)(a) & ~chunksize_mask)) - -/* Return the chunk offset of address a. */ -#define CHUNK_ADDR2OFFSET(a) \ - ((size_t)((uintptr_t)(a) & chunksize_mask)) - -/* Return the smallest chunk multiple that is >= s. */ -#define CHUNK_CEILING(s) \ - (((s) + chunksize_mask) & ~chunksize_mask) - -/* Return the smallest cacheline multiple that is >= s. */ -#define CACHELINE_CEILING(s) \ - (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1)) - -/* Return the smallest quantum multiple that is >= a. */ -#define QUANTUM_CEILING(a) \ - (((a) + quantum_mask) & ~quantum_mask) - -/* Return the smallest pagesize multiple that is >= s. */ -#define PAGE_CEILING(s) \ - (((s) + pagesize_mask) & ~pagesize_mask) - -/* Compute the smallest power of 2 that is >= x. */ -static inline size_t -pow2_ceil(size_t x) -{ - - x--; - x |= x >> 1; - x |= x >> 2; - x |= x >> 4; - x |= x >> 8; - x |= x >> 16; -#if (SIZEOF_PTR == 8) - x |= x >> 32; -#endif - x++; - return (x); -} - -#ifdef MALLOC_BALANCE -/* - * Use a simple linear congruential pseudo-random number generator: - * - * prn(y) = (a*x + c) % m - * - * where the following constants ensure maximal period: - * - * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4. - * c == Odd number (relatively prime to 2^n). - * m == 2^32 - * - * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints. - * - * This choice of m has the disadvantage that the quality of the bits is - * proportional to bit position. For example. the lowest bit has a cycle of 2, - * the next has a cycle of 4, etc. For this reason, we prefer to use the upper - * bits. - */ -# define PRN_DEFINE(suffix, var, a, c) \ -static inline void \ -sprn_##suffix(uint32_t seed) \ -{ \ - var = seed; \ -} \ - \ -static inline uint32_t \ -prn_##suffix(uint32_t lg_range) \ -{ \ - uint32_t ret, x; \ - \ - assert(lg_range > 0); \ - assert(lg_range <= 32); \ - \ - x = (var * (a)) + (c); \ - var = x; \ - ret = x >> (32 - lg_range); \ - \ - return (ret); \ -} -# define SPRN(suffix, seed) sprn_##suffix(seed) -# define PRN(suffix, lg_range) prn_##suffix(lg_range) -#endif - -#ifdef MALLOC_BALANCE -/* Define the PRNG used for arena assignment. */ -static __thread uint32_t balance_x; -PRN_DEFINE(balance, balance_x, 1297, 1301) -#endif - -#ifdef MALLOC_UTRACE -static int -utrace(const void *addr, size_t len) -{ - malloc_utrace_t *ut = (malloc_utrace_t *)addr; - - assert(len == sizeof(malloc_utrace_t)); - - if (ut->p == NULL && ut->s == 0 && ut->r == NULL) - malloc_printf("%d x USER malloc_init()\n", getpid()); - else if (ut->p == NULL && ut->r != NULL) { - malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r, - ut->s); - } else if (ut->p != NULL && ut->r != NULL) { - malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(), - ut->r, ut->p, ut->s); - } else - malloc_printf("%d x USER free(%p)\n", getpid(), ut->p); - - return (0); -} -#endif - -static inline const char * -_getprogname(void) -{ - - return ("<jemalloc>"); -} - -#ifdef MALLOC_STATS -/* - * Print to stderr in such a way as to (hopefully) avoid memory allocation. - */ -static void -malloc_printf(const char *format, ...) -{ -#ifndef WINCE - char buf[4096]; - va_list ap; - - va_start(ap, format); - vsnprintf(buf, sizeof(buf), format, ap); - va_end(ap); - _malloc_message(buf, "", "", ""); -#endif -} -#endif - -/******************************************************************************/ - -#ifdef MALLOC_DECOMMIT -static inline void -pages_decommit(void *addr, size_t size) -{ - -#ifdef MOZ_MEMORY_WINDOWS - VirtualFree(addr, size, MEM_DECOMMIT); -#else - if (mmap(addr, size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, - 0) == MAP_FAILED) - abort(); -#endif -} - -static inline void -pages_commit(void *addr, size_t size) -{ - -# ifdef MOZ_MEMORY_WINDOWS - VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE); -# else - if (mmap(addr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE | - MAP_ANON, -1, 0) == MAP_FAILED) - abort(); -# endif -} -#endif - -static bool -base_pages_alloc_mmap(size_t minsize) -{ - bool ret; - size_t csize; -#ifdef MALLOC_DECOMMIT - size_t pminsize; -#endif - int pfd; - - assert(minsize != 0); - csize = CHUNK_CEILING(minsize); -#ifdef MALLOC_PAGEFILE - if (opt_pagefile) { - pfd = pagefile_init(csize); - if (pfd == -1) - return (true); - } else -#endif - pfd = -1; - base_pages = pages_map(NULL, csize, pfd); - if (base_pages == NULL) { - ret = true; - goto RETURN; - } - base_next_addr = base_pages; - base_past_addr = (void *)((uintptr_t)base_pages + csize); -#ifdef MALLOC_DECOMMIT - /* - * Leave enough pages for minsize committed, since otherwise they would - * have to be immediately recommitted. - */ - pminsize = PAGE_CEILING(minsize); - base_next_decommitted = (void *)((uintptr_t)base_pages + pminsize); - if (pminsize < csize) - pages_decommit(base_next_decommitted, csize - pminsize); -#endif -#ifdef MALLOC_STATS - base_mapped += csize; -#endif - - ret = false; -RETURN: -#ifdef MALLOC_PAGEFILE - if (pfd != -1) - pagefile_close(pfd); -#endif - return (false); -} - -static bool -base_pages_alloc(size_t minsize) -{ - - if (base_pages_alloc_mmap(minsize) == false) - return (false); - - return (true); -} - -static void * -base_alloc(size_t size) -{ - void *ret; - size_t csize; - - /* Round size up to nearest multiple of the cacheline size. */ - csize = CACHELINE_CEILING(size); - - malloc_mutex_lock(&base_mtx); - /* Make sure there's enough space for the allocation. */ - if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) { - if (base_pages_alloc(csize)) { - malloc_mutex_unlock(&base_mtx); - return (NULL); - } - } - /* Allocate. */ - ret = base_next_addr; - base_next_addr = (void *)((uintptr_t)base_next_addr + csize); -#ifdef MALLOC_DECOMMIT - /* Make sure enough pages are committed for the new allocation. */ - if ((uintptr_t)base_next_addr > (uintptr_t)base_next_decommitted) { - void *pbase_next_addr = - (void *)(PAGE_CEILING((uintptr_t)base_next_addr)); - - pages_commit(base_next_decommitted, (uintptr_t)pbase_next_addr - - (uintptr_t)base_next_decommitted); - base_next_decommitted = pbase_next_addr; - } -#endif - malloc_mutex_unlock(&base_mtx); - VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false); - - return (ret); -} - -static void * -base_calloc(size_t number, size_t size) -{ - void *ret; - - ret = base_alloc(number * size); -#ifdef MALLOC_VALGRIND - if (ret != NULL) { - VALGRIND_FREELIKE_BLOCK(ret, 0); - VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, true); - } -#endif - memset(ret, 0, number * size); - - return (ret); -} - -static extent_node_t * -base_node_alloc(void) -{ - extent_node_t *ret; - - malloc_mutex_lock(&base_mtx); - if (base_nodes != NULL) { - ret = base_nodes; - base_nodes = *(extent_node_t **)ret; - VALGRIND_FREELIKE_BLOCK(ret, 0); - VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(extent_node_t), 0, false); - malloc_mutex_unlock(&base_mtx); - } else { - malloc_mutex_unlock(&base_mtx); - ret = (extent_node_t *)base_alloc(sizeof(extent_node_t)); - } - - return (ret); -} - -static void -base_node_dealloc(extent_node_t *node) -{ - - malloc_mutex_lock(&base_mtx); - VALGRIND_FREELIKE_BLOCK(node, 0); - VALGRIND_MALLOCLIKE_BLOCK(node, sizeof(extent_node_t *), 0, false); - *(extent_node_t **)node = base_nodes; - base_nodes = node; - malloc_mutex_unlock(&base_mtx); -} - -static reserve_reg_t * -base_reserve_reg_alloc(void) -{ - reserve_reg_t *ret; - - malloc_mutex_lock(&base_mtx); - if (base_reserve_regs != NULL) { - ret = base_reserve_regs; - base_reserve_regs = *(reserve_reg_t **)ret; - VALGRIND_FREELIKE_BLOCK(ret, 0); - VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(reserve_reg_t), 0, false); - malloc_mutex_unlock(&base_mtx); - } else { - malloc_mutex_unlock(&base_mtx); - ret = (reserve_reg_t *)base_alloc(sizeof(reserve_reg_t)); - } - - return (ret); -} - -static void -base_reserve_reg_dealloc(reserve_reg_t *reg) -{ - - malloc_mutex_lock(&base_mtx); - VALGRIND_FREELIKE_BLOCK(reg, 0); - VALGRIND_MALLOCLIKE_BLOCK(reg, sizeof(reserve_reg_t *), 0, false); - *(reserve_reg_t **)reg = base_reserve_regs; - base_reserve_regs = reg; - malloc_mutex_unlock(&base_mtx); -} - -/******************************************************************************/ - -#ifdef MALLOC_STATS -static void -stats_print(arena_t *arena) -{ - unsigned i, gap_start; - -#ifdef MOZ_MEMORY_WINDOWS - malloc_printf("dirty: %Iu page%s dirty, %I64u sweep%s," - " %I64u madvise%s, %I64u page%s purged\n", - arena->ndirty, arena->ndirty == 1 ? "" : "s", - arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s", - arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s", - arena->stats.purged, arena->stats.purged == 1 ? "" : "s"); -# ifdef MALLOC_DECOMMIT - malloc_printf("decommit: %I64u decommit%s, %I64u commit%s," - " %I64u page%s decommitted\n", - arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s", - arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s", - arena->stats.decommitted, - (arena->stats.decommitted == 1) ? "" : "s"); -# endif - - malloc_printf(" allocated nmalloc ndalloc\n"); - malloc_printf("small: %12Iu %12I64u %12I64u\n", - arena->stats.allocated_small, arena->stats.nmalloc_small, - arena->stats.ndalloc_small); - malloc_printf("large: %12Iu %12I64u %12I64u\n", - arena->stats.allocated_large, arena->stats.nmalloc_large, - arena->stats.ndalloc_large); - malloc_printf("total: %12Iu %12I64u %12I64u\n", - arena->stats.allocated_small + arena->stats.allocated_large, - arena->stats.nmalloc_small + arena->stats.nmalloc_large, - arena->stats.ndalloc_small + arena->stats.ndalloc_large); - malloc_printf("mapped: %12Iu\n", arena->stats.mapped); -#else - malloc_printf("dirty: %zu page%s dirty, %llu sweep%s," - " %llu madvise%s, %llu page%s purged\n", - arena->ndirty, arena->ndirty == 1 ? "" : "s", - arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s", - arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s", - arena->stats.purged, arena->stats.purged == 1 ? "" : "s"); -# ifdef MALLOC_DECOMMIT - malloc_printf("decommit: %llu decommit%s, %llu commit%s," - " %llu page%s decommitted\n", - arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s", - arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s", - arena->stats.decommitted, - (arena->stats.decommitted == 1) ? "" : "s"); -# endif - - malloc_printf(" allocated nmalloc ndalloc\n"); - malloc_printf("small: %12zu %12llu %12llu\n", - arena->stats.allocated_small, arena->stats.nmalloc_small, - arena->stats.ndalloc_small); - malloc_printf("large: %12zu %12llu %12llu\n", - arena->stats.allocated_large, arena->stats.nmalloc_large, - arena->stats.ndalloc_large); - malloc_printf("total: %12zu %12llu %12llu\n", - arena->stats.allocated_small + arena->stats.allocated_large, - arena->stats.nmalloc_small + arena->stats.nmalloc_large, - arena->stats.ndalloc_small + arena->stats.ndalloc_large); - malloc_printf("mapped: %12zu\n", arena->stats.mapped); -#endif - malloc_printf("bins: bin size regs pgs requests newruns" - " reruns maxruns curruns\n"); - for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) { - if (arena->bins[i].stats.nrequests == 0) { - if (gap_start == UINT_MAX) - gap_start = i; - } else { - if (gap_start != UINT_MAX) { - if (i > gap_start + 1) { - /* Gap of more than one size class. */ - malloc_printf("[%u..%u]\n", - gap_start, i - 1); - } else { - /* Gap of one size class. */ - malloc_printf("[%u]\n", gap_start); - } - gap_start = UINT_MAX; - } - malloc_printf( -#if defined(MOZ_MEMORY_WINDOWS) - "%13u %1s %4u %4u %3u %9I64u %9I64u" - " %9I64u %7u %7u\n", -#else - "%13u %1s %4u %4u %3u %9llu %9llu" - " %9llu %7lu %7lu\n", -#endif - i, - i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S", - arena->bins[i].reg_size, - arena->bins[i].nregs, - arena->bins[i].run_size >> pagesize_2pow, - arena->bins[i].stats.nrequests, - arena->bins[i].stats.nruns, - arena->bins[i].stats.reruns, - arena->bins[i].stats.highruns, - arena->bins[i].stats.curruns); - } - } - if (gap_start != UINT_MAX) { - if (i > gap_start + 1) { - /* Gap of more than one size class. */ - malloc_printf("[%u..%u]\n", gap_start, i - 1); - } else { - /* Gap of one size class. */ - malloc_printf("[%u]\n", gap_start); - } - } -} -#endif - -/* - * End Utility functions/macros. - */ -/******************************************************************************/ -/* - * Begin extent tree code. - */ - -static inline int -extent_szad_comp(extent_node_t *a, extent_node_t *b) -{ - int ret; - size_t a_size = a->size; - size_t b_size = b->size; - - ret = (a_size > b_size) - (a_size < b_size); - if (ret == 0) { - uintptr_t a_addr = (uintptr_t)a->addr; - uintptr_t b_addr = (uintptr_t)b->addr; - - ret = (a_addr > b_addr) - (a_addr < b_addr); - } - - return (ret); -} - -/* Wrap red-black tree macros in functions. */ -rb_wrap(static, extent_tree_szad_, extent_tree_t, extent_node_t, - link_szad, extent_szad_comp) - -static inline int -extent_ad_comp(extent_node_t *a, extent_node_t *b) -{ - uintptr_t a_addr = (uintptr_t)a->addr; - uintptr_t b_addr = (uintptr_t)b->addr; - - return ((a_addr > b_addr) - (a_addr < b_addr)); -} - -/* Wrap red-black tree macros in functions. */ -rb_wrap(static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad, - extent_ad_comp) - -/* - * End extent tree code. - */ -/******************************************************************************/ -/* - * Begin chunk management functions. - */ - -#ifdef MOZ_MEMORY_WINDOWS -#ifdef MOZ_MEMORY_WINCE -#define ALIGN_ADDR2OFFSET(al, ad) \ - ((uintptr_t)ad & (al - 1)) -static void * -pages_map_align(size_t size, int pfd, size_t alignment) -{ - - void *ret; - int offset; - if (size % alignment) - size += (alignment - (size % alignment)); - assert(size >= alignment); - ret = pages_map(NULL, size, pfd); - offset = ALIGN_ADDR2OFFSET(alignment, ret); - if (offset) { - /* try to over allocate by the ammount we're offset */ - void *tmp; - pages_unmap(ret, size); - tmp = VirtualAlloc(NULL, size + alignment - offset, - MEM_RESERVE, PAGE_NOACCESS); - if (offset == ALIGN_ADDR2OFFSET(alignment, tmp)) - ret = VirtualAlloc((void*)((intptr_t)tmp + alignment - - offset), size, MEM_COMMIT, - PAGE_READWRITE); - else - VirtualFree(tmp, 0, MEM_RELEASE); - offset = ALIGN_ADDR2OFFSET(alignment, ret); - - - if (offset) { - /* over allocate to ensure we have an aligned region */ - ret = VirtualAlloc(NULL, size + alignment, MEM_RESERVE, - PAGE_NOACCESS); - offset = ALIGN_ADDR2OFFSET(alignment, ret); - ret = VirtualAlloc((void*)((intptr_t)ret + - alignment - offset), - size, MEM_COMMIT, PAGE_READWRITE); - } - } - return (ret); -} -#endif - -static void * -pages_map(void *addr, size_t size, int pfd) -{ - void *ret = NULL; -#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6) - void *va_ret; - assert(addr == NULL); - va_ret = VirtualAlloc(addr, size, MEM_RESERVE, PAGE_NOACCESS); - if (va_ret) - ret = VirtualAlloc(va_ret, size, MEM_COMMIT, PAGE_READWRITE); - assert(va_ret == ret); -#else - ret = VirtualAlloc(addr, size, MEM_COMMIT | MEM_RESERVE, - PAGE_READWRITE); -#endif - return (ret); -} - -static void -pages_unmap(void *addr, size_t size) -{ - if (VirtualFree(addr, 0, MEM_RELEASE) == 0) { -#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6) - if (GetLastError() == ERROR_INVALID_PARAMETER) { - MEMORY_BASIC_INFORMATION info; - VirtualQuery(addr, &info, sizeof(info)); - if (VirtualFree(info.AllocationBase, 0, MEM_RELEASE)) - return; - } -#endif - _malloc_message(_getprogname(), - ": (malloc) Error in VirtualFree()\n", "", ""); - if (opt_abort) - abort(); - } -} -#elif (defined(MOZ_MEMORY_DARWIN)) -static void * -pages_map(void *addr, size_t size, int pfd) -{ - void *ret; - kern_return_t err; - int flags; - - if (addr != NULL) { - ret = addr; - flags = 0; - } else - flags = VM_FLAGS_ANYWHERE; - - err = vm_allocate((vm_map_t)mach_task_self(), (vm_address_t *)&ret, - (vm_size_t)size, flags); - if (err != KERN_SUCCESS) - ret = NULL; - - assert(ret == NULL || (addr == NULL && ret != addr) - || (addr != NULL && ret == addr)); - return (ret); -} - -static void -pages_unmap(void *addr, size_t size) -{ - kern_return_t err; - - err = vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)addr, - (vm_size_t)size); - if (err != KERN_SUCCESS) { - malloc_message(_getprogname(), - ": (malloc) Error in vm_deallocate(): ", - mach_error_string(err), "\n"); - if (opt_abort) - abort(); - } -} - -#define VM_COPY_MIN (pagesize << 5) -static inline void -pages_copy(void *dest, const void *src, size_t n) -{ - - assert((void *)((uintptr_t)dest & ~pagesize_mask) == dest); - assert(n >= VM_COPY_MIN); - assert((void *)((uintptr_t)src & ~pagesize_mask) == src); - - vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n, - (vm_address_t)dest); -} -#else /* MOZ_MEMORY_DARWIN */ -#ifdef JEMALLOC_USES_MAP_ALIGN -static void * -pages_map_align(size_t size, int pfd, size_t alignment) -{ - void *ret; - - /* - * We don't use MAP_FIXED here, because it can cause the *replacement* - * of existing mappings, and we only want to create new mappings. - */ -#ifdef MALLOC_PAGEFILE - if (pfd != -1) { - ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | - MAP_NOSYNC | MAP_ALIGN, pfd, 0); - } else -#endif - { - ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | - MAP_NOSYNC | MAP_ALIGN | MAP_ANON, -1, 0); - } - assert(ret != NULL); - - if (ret == MAP_FAILED) - ret = NULL; - return (ret); -} -#endif - -static void * -pages_map(void *addr, size_t size, int pfd) -{ - void *ret; - - /* - * We don't use MAP_FIXED here, because it can cause the *replacement* - * of existing mappings, and we only want to create new mappings. - */ -#ifdef MALLOC_PAGEFILE - if (pfd != -1) { - ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | - MAP_NOSYNC, pfd, 0); - } else -#endif - { - ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE | - MAP_ANON, -1, 0); - } - assert(ret != NULL); - - if (ret == MAP_FAILED) - ret = NULL; - else if (addr != NULL && ret != addr) { - /* - * We succeeded in mapping memory, but not in the right place. - */ - if (munmap(ret, size) == -1) { - char buf[STRERROR_BUF]; - - strerror_r(errno, buf, sizeof(buf)); - _malloc_message(_getprogname(), - ": (malloc) Error in munmap(): ", buf, "\n"); - if (opt_abort) - abort(); - } - ret = NULL; - } - - assert(ret == NULL || (addr == NULL && ret != addr) - || (addr != NULL && ret == addr)); - return (ret); -} - -static void -pages_unmap(void *addr, size_t size) -{ - - if (munmap(addr, size) == -1) { - char buf[STRERROR_BUF]; - - strerror_r(errno, buf, sizeof(buf)); - _malloc_message(_getprogname(), - ": (malloc) Error in munmap(): ", buf, "\n"); - if (opt_abort) - abort(); - } -} -#endif - -#ifdef MALLOC_VALIDATE -static inline malloc_rtree_t * -malloc_rtree_new(unsigned bits) -{ - malloc_rtree_t *ret; - unsigned bits_per_level, height, i; - - bits_per_level = ffs(pow2_ceil((MALLOC_RTREE_NODESIZE / - sizeof(void *)))) - 1; - height = bits / bits_per_level; - if (height * bits_per_level != bits) - height++; - assert(height * bits_per_level >= bits); - - ret = (malloc_rtree_t*)base_calloc(1, sizeof(malloc_rtree_t) + (sizeof(unsigned) * - (height - 1))); - if (ret == NULL) - return (NULL); - - malloc_spin_init(&ret->lock); - ret->height = height; - if (bits_per_level * height > bits) - ret->level2bits[0] = bits % bits_per_level; - else - ret->level2bits[0] = bits_per_level; - for (i = 1; i < height; i++) - ret->level2bits[i] = bits_per_level; - - ret->root = (void**)base_calloc(1, sizeof(void *) << ret->level2bits[0]); - if (ret->root == NULL) { - /* - * We leak the rtree here, since there's no generic base - * deallocation. - */ - return (NULL); - } - - return (ret); -} - -/* The least significant bits of the key are ignored. */ -static inline void * -malloc_rtree_get(malloc_rtree_t *rtree, uintptr_t key) -{ - void *ret; - uintptr_t subkey; - unsigned i, lshift, height, bits; - void **node, **child; - - malloc_spin_lock(&rtree->lock); - for (i = lshift = 0, height = rtree->height, node = rtree->root; - i < height - 1; - i++, lshift += bits, node = child) { - bits = rtree->level2bits[i]; - subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); - child = (void**)node[subkey]; - if (child == NULL) { - malloc_spin_unlock(&rtree->lock); - return (NULL); - } - } - - /* node is a leaf, so it contains values rather than node pointers. */ - bits = rtree->level2bits[i]; - subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); - ret = node[subkey]; - malloc_spin_unlock(&rtree->lock); - - return (ret); -} - -static inline bool -malloc_rtree_set(malloc_rtree_t *rtree, uintptr_t key, void *val) -{ - uintptr_t subkey; - unsigned i, lshift, height, bits; - void **node, **child; - - malloc_spin_lock(&rtree->lock); - for (i = lshift = 0, height = rtree->height, node = rtree->root; - i < height - 1; - i++, lshift += bits, node = child) { - bits = rtree->level2bits[i]; - subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); - child = (void**)node[subkey]; - if (child == NULL) { - child = (void**)base_calloc(1, sizeof(void *) << - rtree->level2bits[i+1]); - if (child == NULL) { - malloc_spin_unlock(&rtree->lock); - return (true); - } - node[subkey] = child; - } - } - - /* node is a leaf, so it contains values rather than node pointers. */ - bits = rtree->level2bits[i]; - subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits); - node[subkey] = val; - malloc_spin_unlock(&rtree->lock); - - return (false); -} -#endif - -static void * -chunk_alloc_mmap(size_t size, bool pagefile) -{ - void *ret; -#ifndef JEMALLOC_USES_MAP_ALIGN - size_t offset; -#endif - int pfd; - -#ifdef MALLOC_PAGEFILE - if (opt_pagefile && pagefile) { - pfd = pagefile_init(size); - if (pfd == -1) - return (NULL); - } else -#endif - pfd = -1; - - /* - * Windows requires that there be a 1:1 mapping between VM - * allocation/deallocation operations. Therefore, take care here to - * acquire the final result via one mapping operation. This means - * unmapping any preliminary result that is not correctly aligned. - * - * The MALLOC_PAGEFILE code also benefits from this mapping algorithm, - * since it reduces the number of page files. - */ - -#ifdef JEMALLOC_USES_MAP_ALIGN - ret = pages_map_align(size, pfd, chunksize); -#else - ret = pages_map(NULL, size, pfd); - if (ret == NULL) - goto RETURN; - - offset = CHUNK_ADDR2OFFSET(ret); - if (offset != 0) { - /* Deallocate, then try to allocate at (ret + size - offset). */ - pages_unmap(ret, size); - ret = pages_map((void *)((uintptr_t)ret + size - offset), size, - pfd); - while (ret == NULL) { - /* - * Over-allocate in order to map a memory region that - * is definitely large enough. - */ - ret = pages_map(NULL, size + chunksize, -1); - if (ret == NULL) - goto RETURN; - /* - * Deallocate, then allocate the correct size, within - * the over-sized mapping. - */ - offset = CHUNK_ADDR2OFFSET(ret); - pages_unmap(ret, size + chunksize); - if (offset == 0) - ret = pages_map(ret, size, pfd); - else { - ret = pages_map((void *)((uintptr_t)ret + - chunksize - offset), size, pfd); - } - /* - * Failure here indicates a race with another thread, so - * try again. - */ - } - } -RETURN: -#endif -#ifdef MALLOC_PAGEFILE - if (pfd != -1) - pagefile_close(pfd); -#endif -#ifdef MALLOC_STATS - if (ret != NULL) - stats_chunks.nchunks += (size / chunksize); -#endif - return (ret); -} - -#ifdef MALLOC_PAGEFILE -static int -pagefile_init(size_t size) -{ - int ret; - size_t i; - char pagefile_path[PATH_MAX]; - char zbuf[MALLOC_PAGEFILE_WRITE_SIZE]; - - /* - * Create a temporary file, then immediately unlink it so that it will - * not persist. - */ - strcpy(pagefile_path, pagefile_templ); - ret = mkstemp(pagefile_path); - if (ret == -1) - return (ret); - if (unlink(pagefile_path)) { - char buf[STRERROR_BUF]; - - strerror_r(errno, buf, sizeof(buf)); - _malloc_message(_getprogname(), ": (malloc) Error in unlink(\"", - pagefile_path, "\"):"); - _malloc_message(buf, "\n", "", ""); - if (opt_abort) - abort(); - } - - /* - * Write sequential zeroes to the file in order to assure that disk - * space is committed, with minimal fragmentation. It would be - * sufficient to write one zero per disk block, but that potentially - * results in more system calls, for no real gain. - */ - memset(zbuf, 0, sizeof(zbuf)); - for (i = 0; i < size; i += sizeof(zbuf)) { - if (write(ret, zbuf, sizeof(zbuf)) != sizeof(zbuf)) { - if (errno != ENOSPC) { - char buf[STRERROR_BUF]; - - strerror_r(errno, buf, sizeof(buf)); - _malloc_message(_getprogname(), - ": (malloc) Error in write(): ", buf, "\n"); - if (opt_abort) - abort(); - } - pagefile_close(ret); - return (-1); - } - } - - return (ret); -} - -static void -pagefile_close(int pfd) -{ - - if (close(pfd)) { - char buf[STRERROR_BUF]; - - strerror_r(errno, buf, sizeof(buf)); - _malloc_message(_getprogname(), - ": (malloc) Error in close(): ", buf, "\n"); - if (opt_abort) - abort(); - } -} -#endif - -static void * -chunk_recycle_reserve(size_t size, bool zero) -{ - extent_node_t *node, key; - -#ifdef MALLOC_DECOMMIT - if (size != chunksize) - return (NULL); -#endif - - key.addr = NULL; - key.size = size; - malloc_mutex_lock(&reserve_mtx); - node = extent_tree_szad_nsearch(&reserve_chunks_szad, &key); - if (node != NULL) { - void *ret = node->addr; - - /* Remove node from the tree. */ - extent_tree_szad_remove(&reserve_chunks_szad, node); -#ifndef MALLOC_DECOMMIT - if (node->size == size) { -#else - assert(node->size == size); -#endif - extent_tree_ad_remove(&reserve_chunks_ad, node); - base_node_dealloc(node); -#ifndef MALLOC_DECOMMIT - } else { - /* - * Insert the remainder of node's address range as a - * smaller chunk. Its position within reserve_chunks_ad - * does not change. - */ - assert(node->size > size); - node->addr = (void *)((uintptr_t)node->addr + size); - node->size -= size; - extent_tree_szad_insert(&reserve_chunks_szad, node); - } -#endif - reserve_cur -= size; - /* - * Try to replenish the reserve if this allocation depleted it. - */ -#ifndef MALLOC_DECOMMIT - if (reserve_cur < reserve_min) { - size_t diff = reserve_min - reserve_cur; -#else - while (reserve_cur < reserve_min) { -# define diff chunksize -#endif - void *chunk; - - malloc_mutex_unlock(&reserve_mtx); - chunk = chunk_alloc_mmap(diff, true); - malloc_mutex_lock(&reserve_mtx); - if (chunk == NULL) { - uint64_t seq = 0; - - do { - seq = reserve_notify(RESERVE_CND_LOW, - size, seq); - if (seq == 0) - goto MALLOC_OUT; - } while (reserve_cur < reserve_min); - } else { - extent_node_t *node; - - node = chunk_dealloc_reserve(chunk, diff); - if (node == NULL) { - uint64_t seq = 0; - - pages_unmap(chunk, diff); - do { - seq = reserve_notify( - RESERVE_CND_LOW, size, seq); - if (seq == 0) - goto MALLOC_OUT; - } while (reserve_cur < reserve_min); - } - } - } -MALLOC_OUT: - malloc_mutex_unlock(&reserve_mtx); - -#ifdef MALLOC_DECOMMIT - pages_commit(ret, size); -# undef diff -#else - if (zero) - memset(ret, 0, size); -#endif - return (ret); - } - malloc_mutex_unlock(&reserve_mtx); - - return (NULL); -} - -static void * -chunk_alloc(size_t size, bool zero, bool pagefile) -{ - void *ret; - - assert(size != 0); - assert((size & chunksize_mask) == 0); - - ret = chunk_recycle_reserve(size, zero); - if (ret != NULL) - goto RETURN; - - ret = chunk_alloc_mmap(size, pagefile); - if (ret != NULL) { - goto RETURN; - } - - /* All strategies for allocation failed. */ - ret = NULL; -RETURN: -#ifdef MALLOC_STATS - if (ret != NULL) - stats_chunks.curchunks += (size / chunksize); - if (stats_chunks.curchunks > stats_chunks.highchunks) - stats_chunks.highchunks = stats_chunks.curchunks; -#endif - -#ifdef MALLOC_VALIDATE - if (ret != NULL) { - if (malloc_rtree_set(chunk_rtree, (uintptr_t)ret, ret)) { - chunk_dealloc(ret, size); - return (NULL); - } - } -#endif - - assert(CHUNK_ADDR2BASE(ret) == ret); - return (ret); -} - -static extent_node_t * -chunk_dealloc_reserve(void *chunk, size_t size) -{ - extent_node_t *node; - -#ifdef MALLOC_DECOMMIT - if (size != chunksize) - return (NULL); -#else - extent_node_t *prev, key; - - key.addr = (void *)((uintptr_t)chunk + size); - node = extent_tree_ad_nsearch(&reserve_chunks_ad, &key); - /* Try to coalesce forward. */ - if (node != NULL && node->addr == key.addr) { - /* - * Coalesce chunk with the following address range. This does - * not change the position within reserve_chunks_ad, so only - * remove/insert from/into reserve_chunks_szad. - */ - extent_tree_szad_remove(&reserve_chunks_szad, node); - node->addr = chunk; - node->size += size; - extent_tree_szad_insert(&reserve_chunks_szad, node); - } else { -#endif - /* Coalescing forward failed, so insert a new node. */ - node = base_node_alloc(); - if (node == NULL) - return (NULL); - node->addr = chunk; - node->size = size; - extent_tree_ad_insert(&reserve_chunks_ad, node); - extent_tree_szad_insert(&reserve_chunks_szad, node); -#ifndef MALLOC_DECOMMIT - } - - /* Try to coalesce backward. */ - prev = extent_tree_ad_prev(&reserve_chunks_ad, node); - if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) == - chunk) { - /* - * Coalesce chunk with the previous address range. This does - * not change the position within reserve_chunks_ad, so only - * remove/insert node from/into reserve_chunks_szad. - */ - extent_tree_szad_remove(&reserve_chunks_szad, prev); - extent_tree_ad_remove(&reserve_chunks_ad, prev); - - extent_tree_szad_remove(&reserve_chunks_szad, node); - node->addr = prev->addr; - node->size += prev->size; - extent_tree_szad_insert(&reserve_chunks_szad, node); - - base_node_dealloc(prev); - } -#endif - -#ifdef MALLOC_DECOMMIT - pages_decommit(chunk, size); -#else - madvise(chunk, size, MADV_FREE); -#endif - - reserve_cur += size; - if (reserve_cur > reserve_max) - reserve_shrink(); - - return (node); -} - -static void -chunk_dealloc_mmap(void *chunk, size_t size) -{ - - pages_unmap(chunk, size); -} - -static void -chunk_dealloc(void *chunk, size_t size) -{ - extent_node_t *node; - - assert(chunk != NULL); - assert(CHUNK_ADDR2BASE(chunk) == chunk); - assert(size != 0); - assert((size & chunksize_mask) == 0); - -#ifdef MALLOC_STATS - stats_chunks.curchunks -= (size / chunksize); -#endif -#ifdef MALLOC_VALIDATE - malloc_rtree_set(chunk_rtree, (uintptr_t)chunk, NULL); -#endif - - /* Try to merge chunk into the reserve. */ - malloc_mutex_lock(&reserve_mtx); - node = chunk_dealloc_reserve(chunk, size); - malloc_mutex_unlock(&reserve_mtx); - if (node == NULL) - chunk_dealloc_mmap(chunk, size); -} - -/* - * End chunk management functions. - */ -/******************************************************************************/ -/* - * Begin arena. - */ - -/* - * Choose an arena based on a per-thread value (fast-path code, calls slow-path - * code if necessary). - */ -static inline arena_t * -choose_arena(void) -{ - arena_t *ret; - - /* - * We can only use TLS if this is a PIC library, since for the static - * library version, libc's malloc is used by TLS allocation, which - * introduces a bootstrapping issue. - */ -#ifndef NO_TLS - if (__isthreaded == false) { - /* Avoid the overhead of TLS for single-threaded operation. */ - return (arenas[0]); - } - -# ifdef MOZ_MEMORY_WINDOWS - ret = (arena_t*)TlsGetValue(tlsIndex); -# else - ret = arenas_map; -# endif - - if (ret == NULL) { - ret = choose_arena_hard(); - assert(ret != NULL); - } -#else - if (__isthreaded && narenas > 1) { - unsigned long ind; - - /* - * Hash _pthread_self() to one of the arenas. There is a prime - * number of arenas, so this has a reasonable chance of - * working. Even so, the hashing can be easily thwarted by - * inconvenient _pthread_self() values. Without specific - * knowledge of how _pthread_self() calculates values, we can't - * easily do much better than this. - */ - ind = (unsigned long) _pthread_self() % narenas; - - /* - * Optimistially assume that arenas[ind] has been initialized. - * At worst, we find out that some other thread has already - * done so, after acquiring the lock in preparation. Note that - * this lazy locking also has the effect of lazily forcing - * cache coherency; without the lock acquisition, there's no - * guarantee that modification of arenas[ind] by another thread - * would be seen on this CPU for an arbitrary amount of time. - * - * In general, this approach to modifying a synchronized value - * isn't a good idea, but in this case we only ever modify the - * value once, so things work out well. - */ - ret = arenas[ind]; - if (ret == NULL) { - /* - * Avoid races with another thread that may have already - * initialized arenas[ind]. - */ - malloc_spin_lock(&arenas_lock); - if (arenas[ind] == NULL) - ret = arenas_extend((unsigned)ind); - else - ret = arenas[ind]; - malloc_spin_unlock(&arenas_lock); - } - } else - ret = arenas[0]; -#endif - - assert(ret != NULL); - return (ret); -} - -#ifndef NO_TLS -/* - * Choose an arena based on a per-thread value (slow-path code only, called - * only by choose_arena()). - */ -static arena_t * -choose_arena_hard(void) -{ - arena_t *ret; - - assert(__isthreaded); - -#ifdef MALLOC_BALANCE - /* Seed the PRNG used for arena load balancing. */ - SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self())); -#endif - - if (narenas > 1) { -#ifdef MALLOC_BALANCE - unsigned ind; - - ind = PRN(balance, narenas_2pow); - if ((ret = arenas[ind]) == NULL) { - malloc_spin_lock(&arenas_lock); - if ((ret = arenas[ind]) == NULL) - ret = arenas_extend(ind); - malloc_spin_unlock(&arenas_lock); - } -#else - malloc_spin_lock(&arenas_lock); - if ((ret = arenas[next_arena]) == NULL) - ret = arenas_extend(next_arena); - next_arena = (next_arena + 1) % narenas; - malloc_spin_unlock(&arenas_lock); -#endif - } else - ret = arenas[0]; - -#ifdef MOZ_MEMORY_WINDOWS - TlsSetValue(tlsIndex, ret); -#else - arenas_map = ret; -#endif - - return (ret); -} -#endif - -static inline int -arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b) -{ - uintptr_t a_chunk = (uintptr_t)a; - uintptr_t b_chunk = (uintptr_t)b; - - assert(a != NULL); - assert(b != NULL); - - return ((a_chunk > b_chunk) - (a_chunk < b_chunk)); -} - -/* Wrap red-black tree macros in functions. */ -rb_wrap(static, arena_chunk_tree_dirty_, arena_chunk_tree_t, - arena_chunk_t, link_dirty, arena_chunk_comp) - -static inline int -arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b) -{ - uintptr_t a_mapelm = (uintptr_t)a; - uintptr_t b_mapelm = (uintptr_t)b; - - assert(a != NULL); - assert(b != NULL); - - return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm)); -} - -/* Wrap red-black tree macros in functions. */ -rb_wrap(static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, link, - arena_run_comp) - -static inline int -arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b) -{ - int ret; - size_t a_size = a->bits & ~pagesize_mask; - size_t b_size = b->bits & ~pagesize_mask; - - ret = (a_size > b_size) - (a_size < b_size); - if (ret == 0) { - uintptr_t a_mapelm, b_mapelm; - - if ((a->bits & CHUNK_MAP_KEY) == 0) - a_mapelm = (uintptr_t)a; - else { - /* - * Treat keys as though they are lower than anything - * else. - */ - a_mapelm = 0; - } - b_mapelm = (uintptr_t)b; - - ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm); - } - - return (ret); -} - -/* Wrap red-black tree macros in functions. */ -rb_wrap(static, arena_avail_tree_, arena_avail_tree_t, arena_chunk_map_t, link, - arena_avail_comp) - -static inline void * -arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin) -{ - void *ret; - unsigned i, mask, bit, regind; - - assert(run->magic == ARENA_RUN_MAGIC); - assert(run->regs_minelm < bin->regs_mask_nelms); - - /* - * Move the first check outside the loop, so that run->regs_minelm can - * be updated unconditionally, without the possibility of updating it - * multiple times. - */ - i = run->regs_minelm; - mask = run->regs_mask[i]; - if (mask != 0) { - /* Usable allocation found. */ - bit = ffs((int)mask) - 1; - - regind = ((i << (SIZEOF_INT_2POW + 3)) + bit); - assert(regind < bin->nregs); - ret = (void *)(((uintptr_t)run) + bin->reg0_offset - + (bin->reg_size * regind)); - - /* Clear bit. */ - mask ^= (1U << bit); - run->regs_mask[i] = mask; - - return (ret); - } - - for (i++; i < bin->regs_mask_nelms; i++) { - mask = run->regs_mask[i]; - if (mask != 0) { - /* Usable allocation found. */ - bit = ffs((int)mask) - 1; - - regind = ((i << (SIZEOF_INT_2POW + 3)) + bit); - assert(regind < bin->nregs); - ret = (void *)(((uintptr_t)run) + bin->reg0_offset - + (bin->reg_size * regind)); - - /* Clear bit. */ - mask ^= (1U << bit); - run->regs_mask[i] = mask; - - /* - * Make a note that nothing before this element - * contains a free region. - */ - run->regs_minelm = i; /* Low payoff: + (mask == 0); */ - - return (ret); - } - } - /* Not reached. */ - assert(0); - return (NULL); -} - -static inline void -arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size) -{ - /* - * To divide by a number D that is not a power of two we multiply - * by (2^21 / D) and then right shift by 21 positions. - * - * X / D - * - * becomes - * - * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT - */ -#define SIZE_INV_SHIFT 21 -#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1) - static const unsigned size_invs[] = { - SIZE_INV(3), - SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7), - SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11), - SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15), - SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19), - SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23), - SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27), - SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31) -#if (QUANTUM_2POW_MIN < 4) - , - SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35), - SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39), - SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43), - SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47), - SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51), - SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55), - SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59), - SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63) -#endif - }; - unsigned diff, regind, elm, bit; - - assert(run->magic == ARENA_RUN_MAGIC); - assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3 - >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN)); - - /* - * Avoid doing division with a variable divisor if possible. Using - * actual division here can reduce allocator throughput by over 20%! - */ - diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset); - if ((size & (size - 1)) == 0) { - /* - * log2_table allows fast division of a power of two in the - * [1..128] range. - * - * (x / divisor) becomes (x >> log2_table[divisor - 1]). - */ - static const unsigned char log2_table[] = { - 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, - 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7 - }; - - if (size <= 128) - regind = (diff >> log2_table[size - 1]); - else if (size <= 32768) - regind = diff >> (8 + log2_table[(size >> 8) - 1]); - else { - /* - * The run size is too large for us to use the lookup - * table. Use real division. - */ - regind = diff / size; - } - } else if (size <= ((sizeof(size_invs) / sizeof(unsigned)) - << QUANTUM_2POW_MIN) + 2) { - regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff; - regind >>= SIZE_INV_SHIFT; - } else { - /* - * size_invs isn't large enough to handle this size class, so - * calculate regind using actual division. This only happens - * if the user increases small_max via the 'S' runtime - * configuration option. - */ - regind = diff / size; - }; - assert(diff == regind * size); - assert(regind < bin->nregs); - - elm = regind >> (SIZEOF_INT_2POW + 3); - if (elm < run->regs_minelm) - run->regs_minelm = elm; - bit = regind - (elm << (SIZEOF_INT_2POW + 3)); - assert((run->regs_mask[elm] & (1U << bit)) == 0); - run->regs_mask[elm] |= (1U << bit); -#undef SIZE_INV -#undef SIZE_INV_SHIFT -} - -static void -arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large, - bool zero) -{ - arena_chunk_t *chunk; - size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i; - - chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); - old_ndirty = chunk->ndirty; - run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk) - >> pagesize_2pow); - total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >> - pagesize_2pow; - need_pages = (size >> pagesize_2pow); - assert(need_pages > 0); - assert(need_pages <= total_pages); - rem_pages = total_pages - need_pages; - - arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]); - - /* Keep track of trailing unused pages for later use. */ - if (rem_pages > 0) { - chunk->map[run_ind+need_pages].bits = (rem_pages << - pagesize_2pow) | (chunk->map[run_ind+need_pages].bits & - pagesize_mask); - chunk->map[run_ind+total_pages-1].bits = (rem_pages << - pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits & - pagesize_mask); - arena_avail_tree_insert(&arena->runs_avail, - &chunk->map[run_ind+need_pages]); - } - - for (i = 0; i < need_pages; i++) { -#ifdef MALLOC_DECOMMIT - /* - * Commit decommitted pages if necessary. If a decommitted - * page is encountered, commit all needed adjacent decommitted - * pages in one operation, in order to reduce system call - * overhead. - */ - if (chunk->map[run_ind + i].bits & CHUNK_MAP_DECOMMITTED) { - size_t j; - - /* - * Advance i+j to just past the index of the last page - * to commit. Clear CHUNK_MAP_DECOMMITTED along the - * way. - */ - for (j = 0; i + j < need_pages && (chunk->map[run_ind + - i + j].bits & CHUNK_MAP_DECOMMITTED); j++) { - chunk->map[run_ind + i + j].bits ^= - CHUNK_MAP_DECOMMITTED; - } - - pages_commit((void *)((uintptr_t)chunk + ((run_ind + i) - << pagesize_2pow)), (j << pagesize_2pow)); -# ifdef MALLOC_STATS - arena->stats.ncommit++; -# endif - } else /* No need to zero since commit zeros. */ -#endif - - /* Zero if necessary. */ - if (zero) { - if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED) - == 0) { - VALGRIND_MALLOCLIKE_BLOCK((void *)((uintptr_t) - chunk + ((run_ind + i) << pagesize_2pow)), - pagesize, 0, false); - memset((void *)((uintptr_t)chunk + ((run_ind - + i) << pagesize_2pow)), 0, pagesize); - VALGRIND_FREELIKE_BLOCK((void *)((uintptr_t) - chunk + ((run_ind + i) << pagesize_2pow)), - 0); - /* CHUNK_MAP_ZEROED is cleared below. */ - } - } - - /* Update dirty page accounting. */ - if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) { - chunk->ndirty--; - arena->ndirty--; - /* CHUNK_MAP_DIRTY is cleared below. */ - } - - /* Initialize the chunk map. */ - if (large) { - chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE - | CHUNK_MAP_ALLOCATED; - } else { - chunk->map[run_ind + i].bits = (size_t)run - | CHUNK_MAP_ALLOCATED; - } - } - - /* - * Set the run size only in the first element for large runs. This is - * primarily a debugging aid, since the lack of size info for trailing - * pages only matters if the application tries to operate on an - * interior pointer. - */ - if (large) - chunk->map[run_ind].bits |= size; - - if (chunk->ndirty == 0 && old_ndirty > 0) - arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk); -} - -static void -arena_chunk_init(arena_t *arena, arena_chunk_t *chunk) -{ - arena_run_t *run; - size_t i; - - VALGRIND_MALLOCLIKE_BLOCK(chunk, (arena_chunk_header_npages << - pagesize_2pow), 0, false); -#ifdef MALLOC_STATS - arena->stats.mapped += chunksize; -#endif - - chunk->arena = arena; - - /* - * Claim that no pages are in use, since the header is merely overhead. - */ - chunk->ndirty = 0; - - /* Initialize the map to contain one maximal free untouched run. */ - run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages << - pagesize_2pow)); - for (i = 0; i < arena_chunk_header_npages; i++) - chunk->map[i].bits = 0; - chunk->map[i].bits = arena_maxclass -#ifdef MALLOC_DECOMMIT - | CHUNK_MAP_DECOMMITTED -#endif - | CHUNK_MAP_ZEROED; - for (i++; i < chunk_npages-1; i++) { - chunk->map[i].bits = -#ifdef MALLOC_DECOMMIT - CHUNK_MAP_DECOMMITTED | -#endif - CHUNK_MAP_ZEROED; - } - chunk->map[chunk_npages-1].bits = arena_maxclass -#ifdef MALLOC_DECOMMIT - | CHUNK_MAP_DECOMMITTED -#endif - | CHUNK_MAP_ZEROED; - -#ifdef MALLOC_DECOMMIT - /* - * Start out decommitted, in order to force a closer correspondence - * between dirty pages and committed untouched pages. - */ - pages_decommit(run, arena_maxclass); -# ifdef MALLOC_STATS - arena->stats.ndecommit++; - arena->stats.decommitted += (chunk_npages - arena_chunk_header_npages); -# endif -#endif - - /* Insert the run into the runs_avail tree. */ - arena_avail_tree_insert(&arena->runs_avail, - &chunk->map[arena_chunk_header_npages]); -} - -static void -arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk) -{ - - if (arena->spare != NULL) { - if (arena->spare->ndirty > 0) { - arena_chunk_tree_dirty_remove( - &chunk->arena->chunks_dirty, arena->spare); - arena->ndirty -= arena->spare->ndirty; - } - VALGRIND_FREELIKE_BLOCK(arena->spare, 0); - chunk_dealloc((void *)arena->spare, chunksize); -#ifdef MALLOC_STATS - arena->stats.mapped -= chunksize; -#endif - } - - /* - * Remove run from runs_avail, regardless of whether this chunk - * will be cached, so that the arena does not use it. Dirty page - * flushing only uses the chunks_dirty tree, so leaving this chunk in - * the chunks_* trees is sufficient for that purpose. - */ - arena_avail_tree_remove(&arena->runs_avail, - &chunk->map[arena_chunk_header_npages]); - - arena->spare = chunk; -} - -static arena_run_t * -arena_run_alloc(arena_t *arena, arena_bin_t *bin, size_t size, bool large, - bool zero) -{ - arena_chunk_t *chunk; - arena_run_t *run; - arena_chunk_map_t *mapelm, key; - - assert(size <= arena_maxclass); - assert((size & pagesize_mask) == 0); - - chunk = NULL; - while (true) { - /* Search the arena's chunks for the lowest best fit. */ - key.bits = size | CHUNK_MAP_KEY; - mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key); - if (mapelm != NULL) { - arena_chunk_t *run_chunk = (arena_chunk_t*)CHUNK_ADDR2BASE(mapelm); - size_t pageind = ((uintptr_t)mapelm - - (uintptr_t)run_chunk->map) / - sizeof(arena_chunk_map_t); - - if (chunk != NULL) - chunk_dealloc(chunk, chunksize); - run = (arena_run_t *)((uintptr_t)run_chunk + (pageind - << pagesize_2pow)); - arena_run_split(arena, run, size, large, zero); - return (run); - } - - if (arena->spare != NULL) { - /* Use the spare. */ - chunk = arena->spare; - arena->spare = NULL; - run = (arena_run_t *)((uintptr_t)chunk + - (arena_chunk_header_npages << pagesize_2pow)); - /* Insert the run into the runs_avail tree. */ - arena_avail_tree_insert(&arena->runs_avail, - &chunk->map[arena_chunk_header_npages]); - arena_run_split(arena, run, size, large, zero); - return (run); - } - - /* - * No usable runs. Create a new chunk from which to allocate - * the run. - */ - if (chunk == NULL) { - uint64_t chunk_seq; - - /* - * Record the chunk allocation sequence number in order - * to detect races. - */ - arena->chunk_seq++; - chunk_seq = arena->chunk_seq; - - /* - * Drop the arena lock while allocating a chunk, since - * reserve notifications may cause recursive - * allocation. Dropping the lock here opens an - * allocataion race, but we recover. - */ - malloc_mutex_unlock(&arena->lock); - chunk = (arena_chunk_t *)chunk_alloc(chunksize, true, - true); - malloc_mutex_lock(&arena->lock); - - /* - * Check whether a race allowed a usable run to appear. - */ - if (bin != NULL && (run = bin->runcur) != NULL && - run->nfree > 0) { - if (chunk != NULL) - chunk_dealloc(chunk, chunksize); - return (run); - } - - /* - * If this thread raced with another such that multiple - * chunks were allocated, make sure that there is still - * inadequate space before using this chunk. - */ - if (chunk_seq != arena->chunk_seq) - continue; - - /* - * Check for an error *after* checking for a race, - * since a race could also cause a transient OOM - * condition. - */ - if (chunk == NULL) - return (NULL); - } - - arena_chunk_init(arena, chunk); - run = (arena_run_t *)((uintptr_t)chunk + - (arena_chunk_header_npages << pagesize_2pow)); - /* Update page map. */ - arena_run_split(arena, run, size, large, zero); - return (run); - } -} - -static void -arena_purge(arena_t *arena) -{ - arena_chunk_t *chunk; - size_t i, npages; -#ifdef MALLOC_DEBUG - size_t ndirty = 0; - rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty, - chunk) { - ndirty += chunk->ndirty; - } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk) - assert(ndirty == arena->ndirty); -#endif - assert(arena->ndirty > opt_dirty_max); - -#ifdef MALLOC_STATS - arena->stats.npurge++; -#endif - - /* - * Iterate downward through chunks until enough dirty memory has been - * purged. Terminate as soon as possible in order to minimize the - * number of system calls, even if a chunk has only been partially - * purged. - */ - while (arena->ndirty > (opt_dirty_max >> 1)) { - chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty); - assert(chunk != NULL); - - for (i = chunk_npages - 1; chunk->ndirty > 0; i--) { - assert(i >= arena_chunk_header_npages); - - if (chunk->map[i].bits & CHUNK_MAP_DIRTY) { -#ifdef MALLOC_DECOMMIT - assert((chunk->map[i].bits & - CHUNK_MAP_DECOMMITTED) == 0); -#endif - chunk->map[i].bits ^= -#ifdef MALLOC_DECOMMIT - CHUNK_MAP_DECOMMITTED | -#endif - CHUNK_MAP_DIRTY; - /* Find adjacent dirty run(s). */ - for (npages = 1; i > arena_chunk_header_npages - && (chunk->map[i - 1].bits & - CHUNK_MAP_DIRTY); npages++) { - i--; -#ifdef MALLOC_DECOMMIT - assert((chunk->map[i].bits & - CHUNK_MAP_DECOMMITTED) == 0); -#endif - chunk->map[i].bits ^= -#ifdef MALLOC_DECOMMIT - CHUNK_MAP_DECOMMITTED | -#endif - CHUNK_MAP_DIRTY; - } - chunk->ndirty -= npages; - arena->ndirty -= npages; - -#ifdef MALLOC_DECOMMIT - pages_decommit((void *)((uintptr_t) - chunk + (i << pagesize_2pow)), - (npages << pagesize_2pow)); -# ifdef MALLOC_STATS - arena->stats.ndecommit++; - arena->stats.decommitted += npages; -# endif -#else - madvise((void *)((uintptr_t)chunk + (i << - pagesize_2pow)), (npages << pagesize_2pow), - MADV_FREE); -#endif -#ifdef MALLOC_STATS - arena->stats.nmadvise++; - arena->stats.purged += npages; -#endif - if (arena->ndirty <= (opt_dirty_max >> 1)) - break; - } - } - - if (chunk->ndirty == 0) { - arena_chunk_tree_dirty_remove(&arena->chunks_dirty, - chunk); - } - } -} - -static void -arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty) -{ - arena_chunk_t *chunk; - size_t size, run_ind, run_pages; - - chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run); - run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk) - >> pagesize_2pow); - assert(run_ind >= arena_chunk_header_npages); - assert(run_ind < chunk_npages); - if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0) - size = chunk->map[run_ind].bits & ~pagesize_mask; - else - size = run->bin->run_size; - run_pages = (size >> pagesize_2pow); - - /* Mark pages as unallocated in the chunk map. */ - if (dirty) { - size_t i; - - for (i = 0; i < run_pages; i++) { - assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) - == 0); - chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY; - } - - if (chunk->ndirty == 0) { - arena_chunk_tree_dirty_insert(&arena->chunks_dirty, - chunk); - } - chunk->ndirty += run_pages; - arena->ndirty += run_pages; - } else { - size_t i; - - for (i = 0; i < run_pages; i++) { - chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE | - CHUNK_MAP_ALLOCATED); - } - } - chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & - pagesize_mask); - chunk->map[run_ind+run_pages-1].bits = size | - (chunk->map[run_ind+run_pages-1].bits & pagesize_mask); - - /* Try to coalesce forward. */ - if (run_ind + run_pages < chunk_npages && - (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) { - size_t nrun_size = chunk->map[run_ind+run_pages].bits & - ~pagesize_mask; - - /* - * Remove successor from runs_avail; the coalesced run is - * inserted later. - */ - arena_avail_tree_remove(&arena->runs_avail, - &chunk->map[run_ind+run_pages]); - - size += nrun_size; - run_pages = size >> pagesize_2pow; - - assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask) - == nrun_size); - chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & - pagesize_mask); - chunk->map[run_ind+run_pages-1].bits = size | - (chunk->map[run_ind+run_pages-1].bits & pagesize_mask); - } - - /* Try to coalesce backward. */ - if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits & - CHUNK_MAP_ALLOCATED) == 0) { - size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask; - - run_ind -= prun_size >> pagesize_2pow; - - /* - * Remove predecessor from runs_avail; the coalesced run is - * inserted later. - */ - arena_avail_tree_remove(&arena->runs_avail, - &chunk->map[run_ind]); - - size += prun_size; - run_pages = size >> pagesize_2pow; - - assert((chunk->map[run_ind].bits & ~pagesize_mask) == - prun_size); - chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits & - pagesize_mask); - chunk->map[run_ind+run_pages-1].bits = size | - (chunk->map[run_ind+run_pages-1].bits & pagesize_mask); - } - - /* Insert into runs_avail, now that coalescing is complete. */ - arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]); - - /* Deallocate chunk if it is now completely unused. */ - if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask | - CHUNK_MAP_ALLOCATED)) == arena_maxclass) - arena_chunk_dealloc(arena, chunk); - - /* Enforce opt_dirty_max. */ - if (arena->ndirty > opt_dirty_max) - arena_purge(arena); -} - -static void -arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, - size_t oldsize, size_t newsize) -{ - size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow; - size_t head_npages = (oldsize - newsize) >> pagesize_2pow; - - assert(oldsize > newsize); - - /* - * Update the chunk map so that arena_run_dalloc() can treat the - * leading run as separately allocated. - */ - chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE | - CHUNK_MAP_ALLOCATED; - chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE | - CHUNK_MAP_ALLOCATED; - - arena_run_dalloc(arena, run, false); -} - -static void -arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run, - size_t oldsize, size_t newsize, bool dirty) -{ - size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow; - size_t npages = newsize >> pagesize_2pow; - - assert(oldsize > newsize); - - /* - * Update the chunk map so that arena_run_dalloc() can treat the - * trailing run as separately allocated. - */ - chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE | - CHUNK_MAP_ALLOCATED; - chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE - | CHUNK_MAP_ALLOCATED; - - arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize), - dirty); -} - -static arena_run_t * -arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin) -{ - arena_chunk_map_t *mapelm; - arena_run_t *run; - unsigned i, remainder; - - /* Look for a usable run. */ - mapelm = arena_run_tree_first(&bin->runs); - if (mapelm != NULL) { - /* run is guaranteed to have available space. */ - arena_run_tree_remove(&bin->runs, mapelm); - run = (arena_run_t *)(mapelm->bits & ~pagesize_mask); -#ifdef MALLOC_STATS - bin->stats.reruns++; -#endif - return (run); - } - /* No existing runs have any space available. */ - - /* Allocate a new run. */ - run = arena_run_alloc(arena, bin, bin->run_size, false, false); - if (run == NULL) - return (NULL); - /* - * Don't initialize if a race in arena_run_alloc() allowed an existing - * run to become usable. - */ - if (run == bin->runcur) - return (run); - - VALGRIND_MALLOCLIKE_BLOCK(run, sizeof(arena_run_t) + (sizeof(unsigned) * - (bin->regs_mask_nelms - 1)), 0, false); - - /* Initialize run internals. */ - run->bin = bin; - - for (i = 0; i < bin->regs_mask_nelms - 1; i++) - run->regs_mask[i] = UINT_MAX; - remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1); - if (remainder == 0) - run->regs_mask[i] = UINT_MAX; - else { - /* The last element has spare bits that need to be unset. */ - run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3)) - - remainder)); - } - - run->regs_minelm = 0; - - run->nfree = bin->nregs; -#ifdef MALLOC_DEBUG - run->magic = ARENA_RUN_MAGIC; -#endif - -#ifdef MALLOC_STATS - bin->stats.nruns++; - bin->stats.curruns++; - if (bin->stats.curruns > bin->stats.highruns) - bin->stats.highruns = bin->stats.curruns; -#endif - return (run); -} - -/* bin->runcur must have space available before this function is called. */ -static inline void * -arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run) -{ - void *ret; - - assert(run->magic == ARENA_RUN_MAGIC); - assert(run->nfree > 0); - - ret = arena_run_reg_alloc(run, bin); - assert(ret != NULL); - run->nfree--; - - return (ret); -} - -/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */ -static void * -arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin) -{ - - bin->runcur = arena_bin_nonfull_run_get(arena, bin); - if (bin->runcur == NULL) - return (NULL); - assert(bin->runcur->magic == ARENA_RUN_MAGIC); - assert(bin->runcur->nfree > 0); - - return (arena_bin_malloc_easy(arena, bin, bin->runcur)); -} - -/* - * Calculate bin->run_size such that it meets the following constraints: - * - * *) bin->run_size >= min_run_size - * *) bin->run_size <= arena_maxclass - * *) bin->run_size <= RUN_MAX_SMALL - * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed). - * - * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are - * also calculated here, since these settings are all interdependent. - */ -static size_t -arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size) -{ - size_t try_run_size, good_run_size; - unsigned good_nregs, good_mask_nelms, good_reg0_offset; - unsigned try_nregs, try_mask_nelms, try_reg0_offset; - - assert(min_run_size >= pagesize); - assert(min_run_size <= arena_maxclass); - assert(min_run_size <= RUN_MAX_SMALL); - - /* - * Calculate known-valid settings before entering the run_size - * expansion loop, so that the first part of the loop always copies - * valid settings. - * - * The do..while loop iteratively reduces the number of regions until - * the run header and the regions no longer overlap. A closed formula - * would be quite messy, since there is an interdependency between the - * header's mask length and the number of regions. - */ - try_run_size = min_run_size; - try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size) - + 1; /* Counter-act try_nregs-- in loop. */ - do { - try_nregs--; - try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) + - ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0); - try_reg0_offset = try_run_size - (try_nregs * bin->reg_size); - } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1)) - > try_reg0_offset); - - /* run_size expansion loop. */ - do { - /* - * Copy valid settings before trying more aggressive settings. - */ - good_run_size = try_run_size; - good_nregs = try_nregs; - good_mask_nelms = try_mask_nelms; - good_reg0_offset = try_reg0_offset; - - /* Try more aggressive settings. */ - try_run_size += pagesize; - try_nregs = ((try_run_size - sizeof(arena_run_t)) / - bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */ - do { - try_nregs--; - try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) + - ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? - 1 : 0); - try_reg0_offset = try_run_size - (try_nregs * - bin->reg_size); - } while (sizeof(arena_run_t) + (sizeof(unsigned) * - (try_mask_nelms - 1)) > try_reg0_offset); - } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL - && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX - && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size); - - assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1)) - <= good_reg0_offset); - assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs); - - /* Copy final settings. */ - bin->run_size = good_run_size; - bin->nregs = good_nregs; - bin->regs_mask_nelms = good_mask_nelms; - bin->reg0_offset = good_reg0_offset; - - return (good_run_size); -} - -#ifdef MALLOC_BALANCE -static inline void -arena_lock_balance(arena_t *arena) -{ - unsigned contention; - - contention = malloc_spin_lock(&arena->lock); - if (narenas > 1) { - /* - * Calculate the exponentially averaged contention for this - * arena. Due to integer math always rounding down, this value - * decays somewhat faster then normal. - */ - arena->contention = (((uint64_t)arena->contention - * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1)) - + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW; - if (arena->contention >= opt_balance_threshold) - arena_lock_balance_hard(arena); - } -} - -static void -arena_lock_balance_hard(arena_t *arena) -{ - uint32_t ind; - - arena->contention = 0; -#ifdef MALLOC_STATS - arena->stats.nbalance++; -#endif - ind = PRN(balance, narenas_2pow); - if (arenas[ind] != NULL) { -#ifdef MOZ_MEMORY_WINDOWS - TlsSetValue(tlsIndex, arenas[ind]); -#else - arenas_map = arenas[ind]; -#endif - } else { - malloc_spin_lock(&arenas_lock); - if (arenas[ind] != NULL) { -#ifdef MOZ_MEMORY_WINDOWS - TlsSetValue(tlsIndex, arenas[ind]); -#else - arenas_map = arenas[ind]; -#endif - } else { -#ifdef MOZ_MEMORY_WINDOWS - TlsSetValue(tlsIndex, arenas_extend(ind)); -#else - arenas_map = arenas_extend(ind); -#endif - } - malloc_spin_unlock(&arenas_lock); - } -} -#endif - -static inline void * -arena_malloc_small(arena_t *arena, size_t size, bool zero) -{ - void *ret; - arena_bin_t *bin; - arena_run_t *run; - - if (size < small_min) { - /* Tiny. */ - size = pow2_ceil(size); - bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW + - 1)))]; -#if (!defined(NDEBUG) || defined(MALLOC_STATS)) - /* - * Bin calculation is always correct, but we may need - * to fix size for the purposes of assertions and/or - * stats accuracy. - */ - if (size < (1U << TINY_MIN_2POW)) - size = (1U << TINY_MIN_2POW); -#endif - } else if (size <= small_max) { - /* Quantum-spaced. */ - size = QUANTUM_CEILING(size); - bin = &arena->bins[ntbins + (size >> opt_quantum_2pow) - - 1]; - } else { - /* Sub-page. */ - size = pow2_ceil(size); - bin = &arena->bins[ntbins + nqbins - + (ffs((int)(size >> opt_small_max_2pow)) - 2)]; - } - assert(size == bin->reg_size); - -#ifdef MALLOC_BALANCE - arena_lock_balance(arena); -#else - malloc_spin_lock(&arena->lock); -#endif - if ((run = bin->runcur) != NULL && run->nfree > 0) - ret = arena_bin_malloc_easy(arena, bin, run); - else - ret = arena_bin_malloc_hard(arena, bin); - - if (ret == NULL) { - malloc_spin_unlock(&arena->lock); - return (NULL); - } - -#ifdef MALLOC_STATS - bin->stats.nrequests++; - arena->stats.nmalloc_small++; - arena->stats.allocated_small += size; -#endif - malloc_spin_unlock(&arena->lock); - - VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero); - if (zero == false) { -#ifdef MALLOC_FILL - if (opt_junk) - memset(ret, 0xa5, size); - else if (opt_zero) - memset(ret, 0, size); -#endif - } else - memset(ret, 0, size); - - return (ret); -} - -static void * -arena_malloc_large(arena_t *arena, size_t size, bool zero) -{ - void *ret; - - /* Large allocation. */ - size = PAGE_CEILING(size); -#ifdef MALLOC_BALANCE - arena_lock_balance(arena); -#else - malloc_spin_lock(&arena->lock); -#endif - ret = (void *)arena_run_alloc(arena, NULL, size, true, zero); - if (ret == NULL) { - malloc_spin_unlock(&arena->lock); - return (NULL); - } -#ifdef MALLOC_STATS - arena->stats.nmalloc_large++; - arena->stats.allocated_large += size; -#endif - malloc_spin_unlock(&arena->lock); - - VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero); - if (zero == false) { -#ifdef MALLOC_FILL - if (opt_junk) - memset(ret, 0xa5, size); - else if (opt_zero) - memset(ret, 0, size); -#endif - } - - return (ret); -} - -static inline void * -arena_malloc(arena_t *arena, size_t size, bool zero) -{ - - assert(arena != NULL); - assert(arena->magic == ARENA_MAGIC); - assert(size != 0); - assert(QUANTUM_CEILING(size) <= arena_maxclass); - - if (size <= bin_maxclass) { - return (arena_malloc_small(arena, size, zero)); - } else - return (arena_malloc_large(arena, size, zero)); -} - -static inline void * -imalloc(size_t size) -{ - - assert(size != 0); - - if (size <= arena_maxclass) - return (arena_malloc(choose_arena(), size, false)); - else - return (huge_malloc(size, false)); -} - -static inline void * -icalloc(size_t size) -{ - - if (size <= arena_maxclass) - return (arena_malloc(choose_arena(), size, true)); - else - return (huge_malloc(size, true)); -} - -/* Only handles large allocations that require more than page alignment. */ -static void * -arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size) -{ - void *ret; - size_t offset; - arena_chunk_t *chunk; - - assert((size & pagesize_mask) == 0); - assert((alignment & pagesize_mask) == 0); - -#ifdef MALLOC_BALANCE - arena_lock_balance(arena); -#else - malloc_spin_lock(&arena->lock); -#endif - ret = (void *)arena_run_alloc(arena, NULL, alloc_size, true, false); - if (ret == NULL) { - malloc_spin_unlock(&arena->lock); - return (NULL); - } - - chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret); - - offset = (uintptr_t)ret & (alignment - 1); - assert((offset & pagesize_mask) == 0); - assert(offset < alloc_size); - if (offset == 0) - arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, alloc_size, size, false); - else { - size_t leadsize, trailsize; - - leadsize = alignment - offset; - if (leadsize > 0) { - arena_run_trim_head(arena, chunk, (arena_run_t*)ret, alloc_size, - alloc_size - leadsize); - ret = (void *)((uintptr_t)ret + leadsize); - } - - trailsize = alloc_size - leadsize - size; - if (trailsize != 0) { - /* Trim trailing space. */ - assert(trailsize < alloc_size); - arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, size + trailsize, - size, false); - } - } - -#ifdef MALLOC_STATS - arena->stats.nmalloc_large++; - arena->stats.allocated_large += size; -#endif - malloc_spin_unlock(&arena->lock); - - VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false); -#ifdef MALLOC_FILL - if (opt_junk) - memset(ret, 0xa5, size); - else if (opt_zero) - memset(ret, 0, size); -#endif - return (ret); -} - -static inline void * -ipalloc(size_t alignment, size_t size) -{ - void *ret; - size_t ceil_size; - - /* - * Round size up to the nearest multiple of alignment. - * - * This done, we can take advantage of the fact that for each small - * size class, every object is aligned at the smallest power of two - * that is non-zero in the base two representation of the size. For - * example: - * - * Size | Base 2 | Minimum alignment - * -----+----------+------------------ - * 96 | 1100000 | 32 - * 144 | 10100000 | 32 - * 192 | 11000000 | 64 - * - * Depending on runtime settings, it is possible that arena_malloc() - * will further round up to a power of two, but that never causes - * correctness issues. - */ - ceil_size = (size + (alignment - 1)) & (-alignment); - /* - * (ceil_size < size) protects against the combination of maximal - * alignment and size greater than maximal alignment. - */ - if (ceil_size < size) { - /* size_t overflow. */ - return (NULL); - } - - if (ceil_size <= pagesize || (alignment <= pagesize - && ceil_size <= arena_maxclass)) - ret = arena_malloc(choose_arena(), ceil_size, false); - else { - size_t run_size; - - /* - * We can't achieve sub-page alignment, so round up alignment - * permanently; it makes later calculations simpler. - */ - alignment = PAGE_CEILING(alignment); - ceil_size = PAGE_CEILING(size); - /* - * (ceil_size < size) protects against very large sizes within - * pagesize of SIZE_T_MAX. - * - * (ceil_size + alignment < ceil_size) protects against the - * combination of maximal alignment and ceil_size large enough - * to cause overflow. This is similar to the first overflow - * check above, but it needs to be repeated due to the new - * ceil_size value, which may now be *equal* to maximal - * alignment, whereas before we only detected overflow if the - * original size was *greater* than maximal alignment. - */ - if (ceil_size < size || ceil_size + alignment < ceil_size) { - /* size_t overflow. */ - return (NULL); - } - - /* - * Calculate the size of the over-size run that arena_palloc() - * would need to allocate in order to guarantee the alignment. - */ - if (ceil_size >= alignment) - run_size = ceil_size + alignment - pagesize; - else { - /* - * It is possible that (alignment << 1) will cause - * overflow, but it doesn't matter because we also - * subtract pagesize, which in the case of overflow - * leaves us with a very large run_size. That causes - * the first conditional below to fail, which means - * that the bogus run_size value never gets used for - * anything important. - */ - run_size = (alignment << 1) - pagesize; - } - - if (run_size <= arena_maxclass) { - ret = arena_palloc(choose_arena(), alignment, ceil_size, - run_size); - } else if (alignment <= chunksize) - ret = huge_malloc(ceil_size, false); - else - ret = huge_palloc(alignment, ceil_size); - } - - assert(((uintptr_t)ret & (alignment - 1)) == 0); - return (ret); -} - -/* Return the size of the allocation pointed to by ptr. */ -static size_t -arena_salloc(const void *ptr) -{ - size_t ret; - arena_chunk_t *chunk; - size_t pageind, mapbits; - - assert(ptr != NULL); - assert(CHUNK_ADDR2BASE(ptr) != ptr); - - chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); - pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow); - mapbits = chunk->map[pageind].bits; - assert((mapbits & CHUNK_MAP_ALLOCATED) != 0); - if ((mapbits & CHUNK_MAP_LARGE) == 0) { - arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask); - assert(run->magic == ARENA_RUN_MAGIC); - ret = run->bin->reg_size; - } else { - ret = mapbits & ~pagesize_mask; - assert(ret != 0); - } - - return (ret); -} - -#if (defined(MALLOC_VALIDATE) || defined(MOZ_MEMORY_DARWIN)) -/* - * Validate ptr before assuming that it points to an allocation. Currently, - * the following validation is performed: - * - * + Check that ptr is not NULL. - * - * + Check that ptr lies within a mapped chunk. - */ -static inline size_t -isalloc_validate(const void *ptr) -{ - arena_chunk_t *chunk; - - chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); - if (chunk == NULL) - return (0); - - if (malloc_rtree_get(chunk_rtree, (uintptr_t)chunk) == NULL) - return (0); - - if (chunk != ptr) { - assert(chunk->arena->magic == ARENA_MAGIC); - return (arena_salloc(ptr)); - } else { - size_t ret; - extent_node_t *node; - extent_node_t key; - - /* Chunk. */ - key.addr = (void *)chunk; - malloc_mutex_lock(&huge_mtx); - node = extent_tree_ad_search(&huge, &key); - if (node != NULL) - ret = node->size; - else - ret = 0; - malloc_mutex_unlock(&huge_mtx); - return (ret); - } -} -#endif - -static inline size_t -isalloc(const void *ptr) -{ - size_t ret; - arena_chunk_t *chunk; - - assert(ptr != NULL); - - chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); - if (chunk != ptr) { - /* Region. */ - assert(chunk->arena->magic == ARENA_MAGIC); - - ret = arena_salloc(ptr); - } else { - extent_node_t *node, key; - - /* Chunk (huge allocation). */ - - malloc_mutex_lock(&huge_mtx); - - /* Extract from tree of huge allocations. */ - key.addr = __DECONST(void *, ptr); - node = extent_tree_ad_search(&huge, &key); - assert(node != NULL); - - ret = node->size; - - malloc_mutex_unlock(&huge_mtx); - } - - return (ret); -} - -static inline void -arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr, - arena_chunk_map_t *mapelm) -{ - arena_run_t *run; - arena_bin_t *bin; - size_t size; - - run = (arena_run_t *)(mapelm->bits & ~pagesize_mask); - assert(run->magic == ARENA_RUN_MAGIC); - bin = run->bin; - size = bin->reg_size; - -#ifdef MALLOC_FILL - if (opt_junk) - memset(ptr, 0x5a, size); -#endif - - arena_run_reg_dalloc(run, bin, ptr, size); - run->nfree++; - - if (run->nfree == bin->nregs) { - /* Deallocate run. */ - if (run == bin->runcur) - bin->runcur = NULL; - else if (bin->nregs != 1) { - size_t run_pageind = (((uintptr_t)run - - (uintptr_t)chunk)) >> pagesize_2pow; - arena_chunk_map_t *run_mapelm = - &chunk->map[run_pageind]; - /* - * This block's conditional is necessary because if the - * run only contains one region, then it never gets - * inserted into the non-full runs tree. - */ - assert(arena_run_tree_search(&bin->runs, run_mapelm) == - run_mapelm); - arena_run_tree_remove(&bin->runs, run_mapelm); - } -#ifdef MALLOC_DEBUG - run->magic = 0; -#endif - VALGRIND_FREELIKE_BLOCK(run, 0); - arena_run_dalloc(arena, run, true); -#ifdef MALLOC_STATS - bin->stats.curruns--; -#endif - } else if (run->nfree == 1 && run != bin->runcur) { - /* - * Make sure that bin->runcur always refers to the lowest - * non-full run, if one exists. - */ - if (bin->runcur == NULL) - bin->runcur = run; - else if ((uintptr_t)run < (uintptr_t)bin->runcur) { - /* Switch runcur. */ - if (bin->runcur->nfree > 0) { - arena_chunk_t *runcur_chunk = - (arena_chunk_t*)CHUNK_ADDR2BASE(bin->runcur); - size_t runcur_pageind = - (((uintptr_t)bin->runcur - - (uintptr_t)runcur_chunk)) >> pagesize_2pow; - arena_chunk_map_t *runcur_mapelm = - &runcur_chunk->map[runcur_pageind]; - - /* Insert runcur. */ - assert(arena_run_tree_search(&bin->runs, - runcur_mapelm) == NULL); - arena_run_tree_insert(&bin->runs, - runcur_mapelm); - } - bin->runcur = run; - } else { - size_t run_pageind = (((uintptr_t)run - - (uintptr_t)chunk)) >> pagesize_2pow; - arena_chunk_map_t *run_mapelm = - &chunk->map[run_pageind]; - - assert(arena_run_tree_search(&bin->runs, run_mapelm) == - NULL); - arena_run_tree_insert(&bin->runs, run_mapelm); - } - } -#ifdef MALLOC_STATS - arena->stats.allocated_small -= size; - arena->stats.ndalloc_small++; -#endif -} - -static void -arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr) -{ - /* Large allocation. */ - malloc_spin_lock(&arena->lock); - -#ifdef MALLOC_FILL -#ifndef MALLOC_STATS - if (opt_junk) -#endif -#endif - { - size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> - pagesize_2pow; - size_t size = chunk->map[pageind].bits & ~pagesize_mask; - -#ifdef MALLOC_FILL -#ifdef MALLOC_STATS - if (opt_junk) -#endif - memset(ptr, 0x5a, size); -#endif -#ifdef MALLOC_STATS - arena->stats.allocated_large -= size; -#endif - } -#ifdef MALLOC_STATS - arena->stats.ndalloc_large++; -#endif - - arena_run_dalloc(arena, (arena_run_t *)ptr, true); - malloc_spin_unlock(&arena->lock); -} - -static inline void -arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr) -{ - size_t pageind; - arena_chunk_map_t *mapelm; - - assert(arena != NULL); - assert(arena->magic == ARENA_MAGIC); - assert(chunk->arena == arena); - assert(ptr != NULL); - assert(CHUNK_ADDR2BASE(ptr) != ptr); - - pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow); - mapelm = &chunk->map[pageind]; - assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0); - if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) { - /* Small allocation. */ - malloc_spin_lock(&arena->lock); - arena_dalloc_small(arena, chunk, ptr, mapelm); - malloc_spin_unlock(&arena->lock); - } else - arena_dalloc_large(arena, chunk, ptr); - VALGRIND_FREELIKE_BLOCK(ptr, 0); -} - -static inline void -idalloc(void *ptr) -{ - arena_chunk_t *chunk; - - assert(ptr != NULL); - - chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); - if (chunk != ptr) - arena_dalloc(chunk->arena, chunk, ptr); - else - huge_dalloc(ptr); -} - -static void -arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr, - size_t size, size_t oldsize) -{ - - assert(size < oldsize); - - /* - * Shrink the run, and make trailing pages available for other - * allocations. - */ -#ifdef MALLOC_BALANCE - arena_lock_balance(arena); -#else - malloc_spin_lock(&arena->lock); -#endif - arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size, - true); -#ifdef MALLOC_STATS - arena->stats.allocated_large -= oldsize - size; -#endif - malloc_spin_unlock(&arena->lock); -} - -static bool -arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr, - size_t size, size_t oldsize) -{ - size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow; - size_t npages = oldsize >> pagesize_2pow; - - assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask)); - - /* Try to extend the run. */ - assert(size > oldsize); -#ifdef MALLOC_BALANCE - arena_lock_balance(arena); -#else - malloc_spin_lock(&arena->lock); -#endif - if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits - & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits & - ~pagesize_mask) >= size - oldsize) { - /* - * The next run is available and sufficiently large. Split the - * following run, then merge the first part with the existing - * allocation. - */ - arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk + - ((pageind+npages) << pagesize_2pow)), size - oldsize, true, - false); - - chunk->map[pageind].bits = size | CHUNK_MAP_LARGE | - CHUNK_MAP_ALLOCATED; - chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE | - CHUNK_MAP_ALLOCATED; - -#ifdef MALLOC_STATS - arena->stats.allocated_large += size - oldsize; -#endif - malloc_spin_unlock(&arena->lock); - return (false); - } - malloc_spin_unlock(&arena->lock); - - return (true); -} - -/* - * Try to resize a large allocation, in order to avoid copying. This will - * always fail if growing an object, and the following run is already in use. - */ -static bool -arena_ralloc_large(void *ptr, size_t size, size_t oldsize) -{ - size_t psize; - - psize = PAGE_CEILING(size); - if (psize == oldsize) { - /* Same size class. */ -#ifdef MALLOC_FILL - if (opt_junk && size < oldsize) { - memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - - size); - } -#endif - return (false); - } else { - arena_chunk_t *chunk; - arena_t *arena; - - chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr); - arena = chunk->arena; - assert(arena->magic == ARENA_MAGIC); - - if (psize < oldsize) { -#ifdef MALLOC_FILL - /* Fill before shrinking in order avoid a race. */ - if (opt_junk) { - memset((void *)((uintptr_t)ptr + size), 0x5a, - oldsize - size); - } -#endif - arena_ralloc_large_shrink(arena, chunk, ptr, psize, - oldsize); - return (false); - } else { - bool ret = arena_ralloc_large_grow(arena, chunk, ptr, - psize, oldsize); -#ifdef MALLOC_FILL - if (ret == false && opt_zero) { - memset((void *)((uintptr_t)ptr + oldsize), 0, - size - oldsize); - } -#endif - return (ret); - } - } -} - -static void * -arena_ralloc(void *ptr, size_t size, size_t oldsize) -{ - void *ret; - size_t copysize; - - /* Try to avoid moving the allocation. */ - if (size < small_min) { - if (oldsize < small_min && - ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1))) - == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1)))) - goto IN_PLACE; /* Same size class. */ - } else if (size <= small_max) { - if (oldsize >= small_min && oldsize <= small_max && - (QUANTUM_CEILING(size) >> opt_quantum_2pow) - == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow)) - goto IN_PLACE; /* Same size class. */ - } else if (size <= bin_maxclass) { - if (oldsize > small_max && oldsize <= bin_maxclass && - pow2_ceil(size) == pow2_ceil(oldsize)) - goto IN_PLACE; /* Same size class. */ - } else if (oldsize > bin_maxclass && oldsize <= arena_maxclass) { - assert(size > bin_maxclass); - if (arena_ralloc_large(ptr, size, oldsize) == false) - return (ptr); - } - - /* - * If we get here, then size and oldsize are different enough that we - * need to move the object. In that case, fall back to allocating new - * space and copying. - */ - ret = arena_malloc(choose_arena(), size, false); - if (ret == NULL) - return (NULL); - - /* Junk/zero-filling were already done by arena_malloc(). */ - copysize = (size < oldsize) ? size : oldsize; -#ifdef VM_COPY_MIN - if (copysize >= VM_COPY_MIN) - pages_copy(ret, ptr, copysize); - else -#endif - memcpy(ret, ptr, copysize); - idalloc(ptr); - return (ret); -IN_PLACE: -#ifdef MALLOC_FILL - if (opt_junk && size < oldsize) - memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size); - else if (opt_zero && size > oldsize) - memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize); -#endif - return (ptr); -} - -static inline void * -iralloc(void *ptr, size_t size) -{ - size_t oldsize; - - assert(ptr != NULL); - assert(size != 0); - - oldsize = isalloc(ptr); - -#ifndef MALLOC_VALGRIND - if (size <= arena_maxclass) - return (arena_ralloc(ptr, size, oldsize)); - else - return (huge_ralloc(ptr, size, oldsize)); -#else - /* - * Valgrind does not provide a public interface for modifying an - * existing allocation, so use malloc/memcpy/free instead. - */ - { - void *ret = imalloc(size); - if (ret != NULL) { - if (oldsize < size) - memcpy(ret, ptr, oldsize); - else - memcpy(ret, ptr, size); - idalloc(ptr); - } - return (ret); - } -#endif -} - -static bool -arena_new(arena_t *arena) -{ - unsigned i; - arena_bin_t *bin; - size_t pow2_size, prev_run_size; - - if (malloc_spin_init(&arena->lock)) - return (true); - -#ifdef MALLOC_STATS - memset(&arena->stats, 0, sizeof(arena_stats_t)); -#endif - - arena->chunk_seq = 0; - - /* Initialize chunks. */ - arena_chunk_tree_dirty_new(&arena->chunks_dirty); - arena->spare = NULL; - - arena->ndirty = 0; - - arena_avail_tree_new(&arena->runs_avail); - -#ifdef MALLOC_BALANCE - arena->contention = 0; -#endif - - /* Initialize bins. */ - prev_run_size = pagesize; - - /* (2^n)-spaced tiny bins. */ - for (i = 0; i < ntbins; i++) { - bin = &arena->bins[i]; - bin->runcur = NULL; - arena_run_tree_new(&bin->runs); - - bin->reg_size = (1U << (TINY_MIN_2POW + i)); - - prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); - -#ifdef MALLOC_STATS - memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); -#endif - } - - /* Quantum-spaced bins. */ - for (; i < ntbins + nqbins; i++) { - bin = &arena->bins[i]; - bin->runcur = NULL; - arena_run_tree_new(&bin->runs); - - bin->reg_size = quantum * (i - ntbins + 1); - - pow2_size = pow2_ceil(quantum * (i - ntbins + 1)); - prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); - -#ifdef MALLOC_STATS - memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); -#endif - } - - /* (2^n)-spaced sub-page bins. */ - for (; i < ntbins + nqbins + nsbins; i++) { - bin = &arena->bins[i]; - bin->runcur = NULL; - arena_run_tree_new(&bin->runs); - - bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1)); - - prev_run_size = arena_bin_run_size_calc(bin, prev_run_size); - -#ifdef MALLOC_STATS - memset(&bin->stats, 0, sizeof(malloc_bin_stats_t)); -#endif - } - -#ifdef MALLOC_DEBUG - arena->magic = ARENA_MAGIC; -#endif - - return (false); -} - -/* Create a new arena and insert it into the arenas array at index ind. */ -static arena_t * -arenas_extend(unsigned ind) -{ - arena_t *ret; - - /* Allocate enough space for trailing bins. */ - ret = (arena_t *)base_alloc(sizeof(arena_t) - + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1))); - if (ret != NULL && arena_new(ret) == false) { - arenas[ind] = ret; - return (ret); - } - /* Only reached if there is an OOM error. */ - - /* - * OOM here is quite inconvenient to propagate, since dealing with it - * would require a check for failure in the fast path. Instead, punt - * by using arenas[0]. In practice, this is an extremely unlikely - * failure. - */ - _malloc_message(_getprogname(), - ": (malloc) Error initializing arena\n", "", ""); - if (opt_abort) - abort(); - - return (arenas[0]); -} - -/* - * End arena. - */ -/******************************************************************************/ -/* - * Begin general internal functions. - */ - -static void * -huge_malloc(size_t size, bool zero) -{ - void *ret; - size_t csize; -#ifdef MALLOC_DECOMMIT - size_t psize; -#endif - extent_node_t *node; - - /* Allocate one or more contiguous chunks for this request. */ - - csize = CHUNK_CEILING(size); - if (csize == 0) { - /* size is large enough to cause size_t wrap-around. */ - return (NULL); - } - - /* Allocate an extent node with which to track the chunk. */ - node = base_node_alloc(); - if (node == NULL) - return (NULL); - - ret = chunk_alloc(csize, zero, true); - if (ret == NULL) { - base_node_dealloc(node); - return (NULL); - } - - /* Insert node into huge. */ - node->addr = ret; -#ifdef MALLOC_DECOMMIT - psize = PAGE_CEILING(size); - node->size = psize; -#else - node->size = csize; -#endif - - malloc_mutex_lock(&huge_mtx); - extent_tree_ad_insert(&huge, node); -#ifdef MALLOC_STATS - huge_nmalloc++; -# ifdef MALLOC_DECOMMIT - huge_allocated += psize; -# else - huge_allocated += csize; -# endif -#endif - malloc_mutex_unlock(&huge_mtx); - -#ifdef MALLOC_DECOMMIT - if (csize - psize > 0) - pages_decommit((void *)((uintptr_t)ret + psize), csize - psize); -#endif - -#ifdef MALLOC_DECOMMIT - VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, zero); -#else - VALGRIND_MALLOCLIKE_BLOCK(ret, csize, 0, zero); -#endif - -#ifdef MALLOC_FILL - if (zero == false) { - if (opt_junk) -# ifdef MALLOC_DECOMMIT - memset(ret, 0xa5, psize); -# else - memset(ret, 0xa5, csize); -# endif - else if (opt_zero) -# ifdef MALLOC_DECOMMIT - memset(ret, 0, psize); -# else - memset(ret, 0, csize); -# endif - } -#endif - - return (ret); -} - -/* Only handles large allocations that require more than chunk alignment. */ -static void * -huge_palloc(size_t alignment, size_t size) -{ - void *ret; - size_t alloc_size, chunk_size, offset; -#ifdef MALLOC_DECOMMIT - size_t psize; -#endif - extent_node_t *node; - int pfd; - - /* - * This allocation requires alignment that is even larger than chunk - * alignment. This means that huge_malloc() isn't good enough. - * - * Allocate almost twice as many chunks as are demanded by the size or - * alignment, in order to assure the alignment can be achieved, then - * unmap leading and trailing chunks. - */ - assert(alignment >= chunksize); - - chunk_size = CHUNK_CEILING(size); - - if (size >= alignment) - alloc_size = chunk_size + alignment - chunksize; - else - alloc_size = (alignment << 1) - chunksize; - - /* Allocate an extent node with which to track the chunk. */ - node = base_node_alloc(); - if (node == NULL) - return (NULL); - - /* - * Windows requires that there be a 1:1 mapping between VM - * allocation/deallocation operations. Therefore, take care here to - * acquire the final result via one mapping operation. - * - * The MALLOC_PAGEFILE code also benefits from this mapping algorithm, - * since it reduces the number of page files. - */ -#ifdef MALLOC_PAGEFILE - if (opt_pagefile) { - pfd = pagefile_init(size); - if (pfd == -1) - return (NULL); - } else -#endif - pfd = -1; -#ifdef JEMALLOC_USES_MAP_ALIGN - ret = pages_map_align(chunk_size, pfd, alignment); -#else - do { - void *over; - - over = chunk_alloc(alloc_size, false, false); - if (over == NULL) { - base_node_dealloc(node); - ret = NULL; - goto RETURN; - } - - offset = (uintptr_t)over & (alignment - 1); - assert((offset & chunksize_mask) == 0); - assert(offset < alloc_size); - ret = (void *)((uintptr_t)over + offset); - chunk_dealloc(over, alloc_size); - ret = pages_map(ret, chunk_size, pfd); - /* - * Failure here indicates a race with another thread, so try - * again. - */ - } while (ret == NULL); -#endif - /* Insert node into huge. */ - node->addr = ret; -#ifdef MALLOC_DECOMMIT - psize = PAGE_CEILING(size); - node->size = psize; -#else - node->size = chunk_size; -#endif - - malloc_mutex_lock(&huge_mtx); - extent_tree_ad_insert(&huge, node); -#ifdef MALLOC_STATS - huge_nmalloc++; -# ifdef MALLOC_DECOMMIT - huge_allocated += psize; -# else - huge_allocated += chunk_size; -# endif -#endif - malloc_mutex_unlock(&huge_mtx); - -#ifdef MALLOC_DECOMMIT - if (chunk_size - psize > 0) { - pages_decommit((void *)((uintptr_t)ret + psize), - chunk_size - psize); - } -#endif - -#ifdef MALLOC_DECOMMIT - VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, false); -#else - VALGRIND_MALLOCLIKE_BLOCK(ret, chunk_size, 0, false); -#endif - -#ifdef MALLOC_FILL - if (opt_junk) -# ifdef MALLOC_DECOMMIT - memset(ret, 0xa5, psize); -# else - memset(ret, 0xa5, chunk_size); -# endif - else if (opt_zero) -# ifdef MALLOC_DECOMMIT - memset(ret, 0, psize); -# else - memset(ret, 0, chunk_size); -# endif -#endif - -RETURN: -#ifdef MALLOC_PAGEFILE - if (pfd != -1) - pagefile_close(pfd); -#endif - return (ret); -} - -static void * -huge_ralloc(void *ptr, size_t size, size_t oldsize) -{ - void *ret; - size_t copysize; - - /* Avoid moving the allocation if the size class would not change. */ - - if (oldsize > arena_maxclass && - CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) { -#ifdef MALLOC_DECOMMIT - size_t psize = PAGE_CEILING(size); -#endif -#ifdef MALLOC_FILL - if (opt_junk && size < oldsize) { - memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - - size); - } -#endif -#ifdef MALLOC_DECOMMIT - if (psize < oldsize) { - extent_node_t *node, key; - - pages_decommit((void *)((uintptr_t)ptr + psize), - oldsize - psize); - - /* Update recorded size. */ - malloc_mutex_lock(&huge_mtx); - key.addr = __DECONST(void *, ptr); - node = extent_tree_ad_search(&huge, &key); - assert(node != NULL); - assert(node->size == oldsize); -# ifdef MALLOC_STATS - huge_allocated -= oldsize - psize; -# endif - node->size = psize; - malloc_mutex_unlock(&huge_mtx); - } else if (psize > oldsize) { - extent_node_t *node, key; - - pages_commit((void *)((uintptr_t)ptr + oldsize), - psize - oldsize); - - /* Update recorded size. */ - malloc_mutex_lock(&huge_mtx); - key.addr = __DECONST(void *, ptr); - node = extent_tree_ad_search(&huge, &key); - assert(node != NULL); - assert(node->size == oldsize); -# ifdef MALLOC_STATS - huge_allocated += psize - oldsize; -# endif - node->size = psize; - malloc_mutex_unlock(&huge_mtx); - } -#endif -#ifdef MALLOC_FILL - if (opt_zero && size > oldsize) { - memset((void *)((uintptr_t)ptr + oldsize), 0, size - - oldsize); - } -#endif - return (ptr); - } - - /* - * If we get here, then size and oldsize are different enough that we - * need to use a different size class. In that case, fall back to - * allocating new space and copying. - */ - ret = huge_malloc(size, false); - if (ret == NULL) - return (NULL); - - copysize = (size < oldsize) ? size : oldsize; -#ifdef VM_COPY_MIN - if (copysize >= VM_COPY_MIN) - pages_copy(ret, ptr, copysize); - else -#endif - memcpy(ret, ptr, copysize); - idalloc(ptr); - return (ret); -} - -static void -huge_dalloc(void *ptr) -{ - extent_node_t *node, key; - - malloc_mutex_lock(&huge_mtx); - - /* Extract from tree of huge allocations. */ - key.addr = ptr; - node = extent_tree_ad_search(&huge, &key); - assert(node != NULL); - assert(node->addr == ptr); - extent_tree_ad_remove(&huge, node); - -#ifdef MALLOC_STATS - huge_ndalloc++; - huge_allocated -= node->size; -#endif - - malloc_mutex_unlock(&huge_mtx); - - /* Unmap chunk. */ -#ifdef MALLOC_FILL - if (opt_junk) - memset(node->addr, 0x5a, node->size); -#endif -#ifdef MALLOC_DECOMMIT - chunk_dealloc(node->addr, CHUNK_CEILING(node->size)); -#else - chunk_dealloc(node->addr, node->size); -#endif - VALGRIND_FREELIKE_BLOCK(node->addr, 0); - - base_node_dealloc(node); -} - -#ifdef MOZ_MEMORY_BSD -static inline unsigned -malloc_ncpus(void) -{ - unsigned ret; - int mib[2]; - size_t len; - - mib[0] = CTL_HW; - mib[1] = HW_NCPU; - len = sizeof(ret); - if (sysctl(mib, 2, &ret, &len, (void *) 0, 0) == -1) { - /* Error. */ - return (1); - } - - return (ret); -} -#elif (defined(MOZ_MEMORY_LINUX)) -#include <fcntl.h> - -static inline unsigned -malloc_ncpus(void) -{ - unsigned ret; - int fd, nread, column; - char buf[1024]; - static const char matchstr[] = "processor\t:"; - int i; - - /* - * sysconf(3) would be the preferred method for determining the number - * of CPUs, but it uses malloc internally, which causes untennable - * recursion during malloc initialization. - */ - fd = open("/proc/cpuinfo", O_RDONLY); - if (fd == -1) - return (1); /* Error. */ - /* - * Count the number of occurrences of matchstr at the beginnings of - * lines. This treats hyperthreaded CPUs as multiple processors. - */ - column = 0; - ret = 0; - while (true) { - nread = read(fd, &buf, sizeof(buf)); - if (nread <= 0) - break; /* EOF or error. */ - for (i = 0;i < nread;i++) { - char c = buf[i]; - if (c == '\n') - column = 0; - else if (column != -1) { - if (c == matchstr[column]) { - column++; - if (column == sizeof(matchstr) - 1) { - column = -1; - ret++; - } - } else - column = -1; - } - } - } - - if (ret == 0) - ret = 1; /* Something went wrong in the parser. */ - close(fd); - - return (ret); -} -#elif (defined(MOZ_MEMORY_DARWIN)) -#include <mach/mach_init.h> -#include <mach/mach_host.h> - -static inline unsigned -malloc_ncpus(void) -{ - kern_return_t error; - natural_t n; - processor_info_array_t pinfo; - mach_msg_type_number_t pinfocnt; - - error = host_processor_info(mach_host_self(), PROCESSOR_BASIC_INFO, - &n, &pinfo, &pinfocnt); - if (error != KERN_SUCCESS) - return (1); /* Error. */ - else - return (n); -} -#elif (defined(MOZ_MEMORY_SOLARIS)) - -static inline unsigned -malloc_ncpus(void) -{ - return sysconf(_SC_NPROCESSORS_ONLN); -} -#else -static inline unsigned -malloc_ncpus(void) -{ - - /* - * We lack a way to determine the number of CPUs on this platform, so - * assume 1 CPU. - */ - return (1); -} -#endif - -static void -malloc_print_stats(void) -{ - - if (opt_print_stats) { - char s[UMAX2S_BUFSIZE]; - _malloc_message("___ Begin malloc statistics ___\n", "", "", - ""); - _malloc_message("Assertions ", -#ifdef NDEBUG - "disabled", -#else - "enabled", -#endif - "\n", ""); - _malloc_message("Boolean MALLOC_OPTIONS: ", - opt_abort ? "A" : "a", "", ""); -#ifdef MALLOC_FILL - _malloc_message(opt_junk ? "J" : "j", "", "", ""); -#endif -#ifdef MALLOC_PAGEFILE - _malloc_message(opt_pagefile ? "o" : "O", "", "", ""); -#endif - _malloc_message("P", "", "", ""); -#ifdef MALLOC_UTRACE - _malloc_message(opt_utrace ? "U" : "u", "", "", ""); -#endif -#ifdef MALLOC_SYSV - _malloc_message(opt_sysv ? "V" : "v", "", "", ""); -#endif -#ifdef MALLOC_XMALLOC - _malloc_message(opt_xmalloc ? "X" : "x", "", "", ""); -#endif -#ifdef MALLOC_FILL - _malloc_message(opt_zero ? "Z" : "z", "", "", ""); -#endif - _malloc_message("\n", "", "", ""); - - _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", ""); - _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", ""); -#ifdef MALLOC_BALANCE - _malloc_message("Arena balance threshold: ", - umax2s(opt_balance_threshold, s), "\n", ""); -#endif - _malloc_message("Pointer size: ", umax2s(sizeof(void *), s), - "\n", ""); - _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", ""); - _malloc_message("Max small size: ", umax2s(small_max, s), "\n", - ""); - _malloc_message("Max dirty pages per arena: ", - umax2s(opt_dirty_max, s), "\n", ""); - - _malloc_message("Chunk size: ", umax2s(chunksize, s), "", ""); - _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", ""); - -#ifdef MALLOC_STATS - { - size_t allocated, mapped; -#ifdef MALLOC_BALANCE - uint64_t nbalance = 0; -#endif - unsigned i; - arena_t *arena; - - /* Calculate and print allocated/mapped stats. */ - - /* arenas. */ - for (i = 0, allocated = 0; i < narenas; i++) { - if (arenas[i] != NULL) { - malloc_spin_lock(&arenas[i]->lock); - allocated += - arenas[i]->stats.allocated_small; - allocated += - arenas[i]->stats.allocated_large; -#ifdef MALLOC_BALANCE - nbalance += arenas[i]->stats.nbalance; -#endif - malloc_spin_unlock(&arenas[i]->lock); - } - } - - /* huge/base. */ - malloc_mutex_lock(&huge_mtx); - allocated += huge_allocated; - mapped = stats_chunks.curchunks * chunksize; - malloc_mutex_unlock(&huge_mtx); - - malloc_mutex_lock(&base_mtx); - mapped += base_mapped; - malloc_mutex_unlock(&base_mtx); - -#ifdef MOZ_MEMORY_WINDOWS - malloc_printf("Allocated: %lu, mapped: %lu\n", - allocated, mapped); -#else - malloc_printf("Allocated: %zu, mapped: %zu\n", - allocated, mapped); -#endif - - malloc_mutex_lock(&reserve_mtx); - malloc_printf("Reserve: min " - "cur max\n"); -#ifdef MOZ_MEMORY_WINDOWS - malloc_printf(" %12lu %12lu %12lu\n", - CHUNK_CEILING(reserve_min) >> opt_chunk_2pow, - reserve_cur >> opt_chunk_2pow, - reserve_max >> opt_chunk_2pow); -#else - malloc_printf(" %12zu %12zu %12zu\n", - CHUNK_CEILING(reserve_min) >> opt_chunk_2pow, - reserve_cur >> opt_chunk_2pow, - reserve_max >> opt_chunk_2pow); -#endif - malloc_mutex_unlock(&reserve_mtx); - -#ifdef MALLOC_BALANCE - malloc_printf("Arena balance reassignments: %llu\n", - nbalance); -#endif - - /* Print chunk stats. */ - { - chunk_stats_t chunks_stats; - - malloc_mutex_lock(&huge_mtx); - chunks_stats = stats_chunks; - malloc_mutex_unlock(&huge_mtx); - - malloc_printf("chunks: nchunks " - "highchunks curchunks\n"); - malloc_printf(" %13llu%13lu%13lu\n", - chunks_stats.nchunks, - chunks_stats.highchunks, - chunks_stats.curchunks); - } - - /* Print chunk stats. */ - malloc_printf( - "huge: nmalloc ndalloc allocated\n"); -#ifdef MOZ_MEMORY_WINDOWS - malloc_printf(" %12llu %12llu %12lu\n", - huge_nmalloc, huge_ndalloc, huge_allocated); -#else - malloc_printf(" %12llu %12llu %12zu\n", - huge_nmalloc, huge_ndalloc, huge_allocated); -#endif - /* Print stats for each arena. */ - for (i = 0; i < narenas; i++) { - arena = arenas[i]; - if (arena != NULL) { - malloc_printf( - "\narenas[%u]:\n", i); - malloc_spin_lock(&arena->lock); - stats_print(arena); - malloc_spin_unlock(&arena->lock); - } - } - } -#endif /* #ifdef MALLOC_STATS */ - _malloc_message("--- End malloc statistics ---\n", "", "", ""); - } -} - -/* - * FreeBSD's pthreads implementation calls malloc(3), so the malloc - * implementation has to take pains to avoid infinite recursion during - * initialization. - */ -#if (defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_DARWIN)) && !defined(MOZ_MEMORY_WINCE) -#define malloc_init() false -#else -static inline bool -malloc_init(void) -{ - - if (malloc_initialized == false) - return (malloc_init_hard()); - - return (false); -} -#endif - -#if !defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_WINCE) -static -#endif -bool -malloc_init_hard(void) -{ - unsigned i; - char buf[PATH_MAX + 1]; - const char *opts; - long result; -#ifndef MOZ_MEMORY_WINDOWS - int linklen; -#endif - -#ifndef MOZ_MEMORY_WINDOWS - malloc_mutex_lock(&init_lock); -#endif - - if (malloc_initialized) { - /* - * Another thread initialized the allocator before this one - * acquired init_lock. - */ -#ifndef MOZ_MEMORY_WINDOWS - malloc_mutex_unlock(&init_lock); -#endif - return (false); - } - -#ifdef MOZ_MEMORY_WINDOWS - /* get a thread local storage index */ - tlsIndex = TlsAlloc(); -#endif - - /* Get page size and number of CPUs */ -#ifdef MOZ_MEMORY_WINDOWS - { - SYSTEM_INFO info; - - GetSystemInfo(&info); - result = info.dwPageSize; - - pagesize = (unsigned) result; - - ncpus = info.dwNumberOfProcessors; - } -#else - ncpus = malloc_ncpus(); - - result = sysconf(_SC_PAGESIZE); - assert(result != -1); - - pagesize = (unsigned) result; -#endif - - /* - * We assume that pagesize is a power of 2 when calculating - * pagesize_mask and pagesize_2pow. - */ - assert(((result - 1) & result) == 0); - pagesize_mask = result - 1; - pagesize_2pow = ffs((int)result) - 1; - -#ifdef MALLOC_PAGEFILE - /* - * Determine where to create page files. It is insufficient to - * unconditionally use P_tmpdir (typically "/tmp"), since for some - * operating systems /tmp is a separate filesystem that is rather small. - * Therefore prefer, in order, the following locations: - * - * 1) MALLOC_TMPDIR - * 2) TMPDIR - * 3) P_tmpdir - */ - { - char *s; - size_t slen; - static const char suffix[] = "/jemalloc.XXXXXX"; - - if ((s = getenv("MALLOC_TMPDIR")) == NULL && (s = - getenv("TMPDIR")) == NULL) - s = P_tmpdir; - slen = strlen(s); - if (slen + sizeof(suffix) > sizeof(pagefile_templ)) { - _malloc_message(_getprogname(), - ": (malloc) Page file path too long\n", - "", ""); - abort(); - } - memcpy(pagefile_templ, s, slen); - memcpy(&pagefile_templ[slen], suffix, sizeof(suffix)); - } -#endif - - for (i = 0; i < 3; i++) { - unsigned j; - - /* Get runtime configuration. */ - switch (i) { - case 0: -#ifndef MOZ_MEMORY_WINDOWS - if ((linklen = readlink("/etc/malloc.conf", buf, - sizeof(buf) - 1)) != -1) { - /* - * Use the contents of the "/etc/malloc.conf" - * symbolic link's name. - */ - buf[linklen] = '\0'; - opts = buf; - } else -#endif - { - /* No configuration specified. */ - buf[0] = '\0'; - opts = buf; - } - break; - case 1: - if (issetugid() == 0 && (opts = - getenv("MALLOC_OPTIONS")) != NULL) { - /* - * Do nothing; opts is already initialized to - * the value of the MALLOC_OPTIONS environment - * variable. - */ - } else { - /* No configuration specified. */ - buf[0] = '\0'; - opts = buf; - } - break; - case 2: - if (_malloc_options != NULL) { - /* - * Use options that were compiled into the - * program. - */ - opts = _malloc_options; - } else { - /* No configuration specified. */ - buf[0] = '\0'; - opts = buf; - } - break; - default: - /* NOTREACHED */ - buf[0] = '\0'; - opts = buf; - assert(false); - } - - for (j = 0; opts[j] != '\0'; j++) { - unsigned k, nreps; - bool nseen; - - /* Parse repetition count, if any. */ - for (nreps = 0, nseen = false;; j++, nseen = true) { - switch (opts[j]) { - case '0': case '1': case '2': case '3': - case '4': case '5': case '6': case '7': - case '8': case '9': - nreps *= 10; - nreps += opts[j] - '0'; - break; - default: - goto MALLOC_OUT; - } - } -MALLOC_OUT: - if (nseen == false) - nreps = 1; - - for (k = 0; k < nreps; k++) { - switch (opts[j]) { - case 'a': - opt_abort = false; - break; - case 'A': - opt_abort = true; - break; - case 'b': -#ifdef MALLOC_BALANCE - opt_balance_threshold >>= 1; -#endif - break; - case 'B': -#ifdef MALLOC_BALANCE - if (opt_balance_threshold == 0) - opt_balance_threshold = 1; - else if ((opt_balance_threshold << 1) - > opt_balance_threshold) - opt_balance_threshold <<= 1; -#endif - break; - case 'f': - opt_dirty_max >>= 1; - break; - case 'F': - if (opt_dirty_max == 0) - opt_dirty_max = 1; - else if ((opt_dirty_max << 1) != 0) - opt_dirty_max <<= 1; - break; - case 'g': - opt_reserve_range_lshift--; - break; - case 'G': - opt_reserve_range_lshift++; - break; -#ifdef MALLOC_FILL - case 'j': - opt_junk = false; - break; - case 'J': - opt_junk = true; - break; -#endif - case 'k': - /* - * Chunks always require at least one - * header page, so chunks can never be - * smaller than two pages. - */ - if (opt_chunk_2pow > pagesize_2pow + 1) - opt_chunk_2pow--; - break; - case 'K': - if (opt_chunk_2pow + 1 < - (sizeof(size_t) << 3)) - opt_chunk_2pow++; - break; - case 'n': - opt_narenas_lshift--; - break; - case 'N': - opt_narenas_lshift++; - break; -#ifdef MALLOC_PAGEFILE - case 'o': - /* Do not over-commit. */ - opt_pagefile = true; - break; - case 'O': - /* Allow over-commit. */ - opt_pagefile = false; - break; -#endif - case 'p': - opt_print_stats = false; - break; - case 'P': - opt_print_stats = true; - break; - case 'q': - if (opt_quantum_2pow > QUANTUM_2POW_MIN) - opt_quantum_2pow--; - break; - case 'Q': - if (opt_quantum_2pow < pagesize_2pow - - 1) - opt_quantum_2pow++; - break; - case 'r': - opt_reserve_min_lshift--; - break; - case 'R': - opt_reserve_min_lshift++; - break; - case 's': - if (opt_small_max_2pow > - QUANTUM_2POW_MIN) - opt_small_max_2pow--; - break; - case 'S': - if (opt_small_max_2pow < pagesize_2pow - - 1) - opt_small_max_2pow++; - break; -#ifdef MALLOC_UTRACE - case 'u': - opt_utrace = false; - break; - case 'U': - opt_utrace = true; - break; -#endif -#ifdef MALLOC_SYSV - case 'v': - opt_sysv = false; - break; - case 'V': - opt_sysv = true; - break; -#endif -#ifdef MALLOC_XMALLOC - case 'x': - opt_xmalloc = false; - break; - case 'X': - opt_xmalloc = true; - break; -#endif -#ifdef MALLOC_FILL - case 'z': - opt_zero = false; - break; - case 'Z': - opt_zero = true; - break; -#endif - default: { - char cbuf[2]; - - cbuf[0] = opts[j]; - cbuf[1] = '\0'; - _malloc_message(_getprogname(), - ": (malloc) Unsupported character " - "in malloc options: '", cbuf, - "'\n"); - } - } - } - } - } - - /* Take care to call atexit() only once. */ - if (opt_print_stats) { -#ifndef MOZ_MEMORY_WINDOWS - /* Print statistics at exit. */ - atexit(malloc_print_stats); -#endif - } - -#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN)) - /* Prevent potential deadlock on malloc locks after fork. */ - pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork); -#endif - - /* Set variables according to the value of opt_small_max_2pow. */ - if (opt_small_max_2pow < opt_quantum_2pow) - opt_small_max_2pow = opt_quantum_2pow; - small_max = (1U << opt_small_max_2pow); - - /* Set bin-related variables. */ - bin_maxclass = (pagesize >> 1); - assert(opt_quantum_2pow >= TINY_MIN_2POW); - ntbins = opt_quantum_2pow - TINY_MIN_2POW; - assert(ntbins <= opt_quantum_2pow); - nqbins = (small_max >> opt_quantum_2pow); - nsbins = pagesize_2pow - opt_small_max_2pow - 1; - - /* Set variables according to the value of opt_quantum_2pow. */ - quantum = (1U << opt_quantum_2pow); - quantum_mask = quantum - 1; - if (ntbins > 0) - small_min = (quantum >> 1) + 1; - else - small_min = 1; - assert(small_min <= quantum); - - /* Set variables according to the value of opt_chunk_2pow. */ - chunksize = (1LU << opt_chunk_2pow); - chunksize_mask = chunksize - 1; - chunk_npages = (chunksize >> pagesize_2pow); - { - size_t header_size; - - /* - * Compute the header size such that it is large - * enough to contain the page map and enough nodes for the - * worst case: one node per non-header page plus one extra for - * situations where we briefly have one more node allocated - * than we will need. - */ - header_size = sizeof(arena_chunk_t) + - (sizeof(arena_chunk_map_t) * (chunk_npages - 1)); - arena_chunk_header_npages = (header_size >> pagesize_2pow) + - ((header_size & pagesize_mask) != 0); - } - arena_maxclass = chunksize - (arena_chunk_header_npages << - pagesize_2pow); - -#ifdef JEMALLOC_USES_MAP_ALIGN - /* - * When using MAP_ALIGN, the alignment parameter must be a power of two - * multiple of the system pagesize, or mmap will fail. - */ - assert((chunksize % pagesize) == 0); - assert((1 << (ffs(chunksize / pagesize) - 1)) == (chunksize/pagesize)); -#endif - - UTRACE(0, 0, 0); - -#ifdef MALLOC_STATS - memset(&stats_chunks, 0, sizeof(chunk_stats_t)); -#endif - - /* Various sanity checks that regard configuration. */ - assert(quantum >= sizeof(void *)); - assert(quantum <= pagesize); - assert(chunksize >= pagesize); - assert(quantum * 4 <= chunksize); - - /* Initialize chunks data. */ - malloc_mutex_init(&huge_mtx); - extent_tree_ad_new(&huge); -#ifdef MALLOC_STATS - huge_nmalloc = 0; - huge_ndalloc = 0; - huge_allocated = 0; -#endif - - /* Initialize base allocation data structures. */ -#ifdef MALLOC_STATS - base_mapped = 0; -#endif - base_nodes = NULL; - base_reserve_regs = NULL; - malloc_mutex_init(&base_mtx); - -#ifdef MOZ_MEMORY_NARENAS_DEFAULT_ONE - narenas = 1; -#else - if (ncpus > 1) { - /* - * For SMP systems, create four times as many arenas as there - * are CPUs by default. - */ - opt_narenas_lshift += 2; - } - - /* Determine how many arenas to use. */ - narenas = ncpus; -#endif - if (opt_narenas_lshift > 0) { - if ((narenas << opt_narenas_lshift) > narenas) - narenas <<= opt_narenas_lshift; - /* - * Make sure not to exceed the limits of what base_alloc() can - * handle. - */ - if (narenas * sizeof(arena_t *) > chunksize) - narenas = chunksize / sizeof(arena_t *); - } else if (opt_narenas_lshift < 0) { - if ((narenas >> -opt_narenas_lshift) < narenas) - narenas >>= -opt_narenas_lshift; - /* Make sure there is at least one arena. */ - if (narenas == 0) - narenas = 1; - } -#ifdef MALLOC_BALANCE - assert(narenas != 0); - for (narenas_2pow = 0; - (narenas >> (narenas_2pow + 1)) != 0; - narenas_2pow++); -#endif - -#ifdef NO_TLS - if (narenas > 1) { - static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19, - 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, - 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, - 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, - 223, 227, 229, 233, 239, 241, 251, 257, 263}; - unsigned nprimes, parenas; - - /* - * Pick a prime number of hash arenas that is more than narenas - * so that direct hashing of pthread_self() pointers tends to - * spread allocations evenly among the arenas. - */ - assert((narenas & 1) == 0); /* narenas must be even. */ - nprimes = (sizeof(primes) >> SIZEOF_INT_2POW); - parenas = primes[nprimes - 1]; /* In case not enough primes. */ - for (i = 1; i < nprimes; i++) { - if (primes[i] > narenas) { - parenas = primes[i]; - break; - } - } - narenas = parenas; - } -#endif - -#ifndef NO_TLS -# ifndef MALLOC_BALANCE - next_arena = 0; -# endif -#endif - - /* Allocate and initialize arenas. */ - arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas); - if (arenas == NULL) { -#ifndef MOZ_MEMORY_WINDOWS - malloc_mutex_unlock(&init_lock); -#endif - return (true); - } - /* - * Zero the array. In practice, this should always be pre-zeroed, - * since it was just mmap()ed, but let's be sure. - */ - memset(arenas, 0, sizeof(arena_t *) * narenas); - - /* - * Initialize one arena here. The rest are lazily created in - * choose_arena_hard(). - */ - arenas_extend(0); - if (arenas[0] == NULL) { -#ifndef MOZ_MEMORY_WINDOWS - malloc_mutex_unlock(&init_lock); -#endif - return (true); - } -#ifndef NO_TLS - /* - * Assign the initial arena to the initial thread, in order to avoid - * spurious creation of an extra arena if the application switches to - * threaded mode. - */ -#ifdef MOZ_MEMORY_WINDOWS - TlsSetValue(tlsIndex, arenas[0]); -#else - arenas_map = arenas[0]; -#endif -#endif - - /* - * Seed here for the initial thread, since choose_arena_hard() is only - * called for other threads. The seed value doesn't really matter. - */ -#ifdef MALLOC_BALANCE - SPRN(balance, 42); -#endif - - malloc_spin_init(&arenas_lock); - -#ifdef MALLOC_VALIDATE - chunk_rtree = malloc_rtree_new((SIZEOF_PTR << 3) - opt_chunk_2pow); - if (chunk_rtree == NULL) - return (true); -#endif - - /* - * Configure and initialize the memory reserve. This needs to happen - * late during initialization, since chunks are allocated. - */ - malloc_mutex_init(&reserve_mtx); - reserve_min = 0; - reserve_cur = 0; - reserve_max = 0; - if (RESERVE_RANGE_2POW_DEFAULT + opt_reserve_range_lshift >= 0) { - reserve_max += chunksize << (RESERVE_RANGE_2POW_DEFAULT + - opt_reserve_range_lshift); - } - ql_new(&reserve_regs); - reserve_seq = 0; - extent_tree_szad_new(&reserve_chunks_szad); - extent_tree_ad_new(&reserve_chunks_ad); - if (RESERVE_MIN_2POW_DEFAULT + opt_reserve_min_lshift >= 0) { - reserve_min_set(chunksize << (RESERVE_MIN_2POW_DEFAULT + - opt_reserve_min_lshift)); - } - - malloc_initialized = true; -#ifndef MOZ_MEMORY_WINDOWS - malloc_mutex_unlock(&init_lock); -#endif - return (false); -} - -/* XXX Why not just expose malloc_print_stats()? */ -#ifdef MOZ_MEMORY_WINDOWS -void -malloc_shutdown() -{ - - malloc_print_stats(); -} -#endif - -/* - * End general internal functions. - */ -/******************************************************************************/ -/* - * Begin malloc(3)-compatible functions. - */ - -/* - * Inline the standard malloc functions if they are being subsumed by Darwin's - * zone infrastructure. - */ -#ifdef MOZ_MEMORY_DARWIN -# define ZONE_INLINE inline -#else -# define ZONE_INLINE -#endif - -/* Mangle standard interfaces on Darwin and Windows CE, - in order to avoid linking problems. */ -#if defined(MOZ_MEMORY_DARWIN) -#define malloc(a) moz_malloc(a) -#define valloc(a) moz_valloc(a) -#define calloc(a, b) moz_calloc(a, b) -#define realloc(a, b) moz_realloc(a, b) -#define free(a) moz_free(a) -#endif - -ZONE_INLINE -void * -malloc(size_t size) -{ - void *ret; - - if (malloc_init()) { - ret = NULL; - goto RETURN; - } - - if (size == 0) { -#ifdef MALLOC_SYSV - if (opt_sysv == false) -#endif - size = 1; -#ifdef MALLOC_SYSV - else { - ret = NULL; - goto RETURN; - } -#endif - } - - ret = imalloc(size); - -RETURN: - if (ret == NULL) { -#ifdef MALLOC_XMALLOC - if (opt_xmalloc) { - _malloc_message(_getprogname(), - ": (malloc) Error in malloc(): out of memory\n", "", - ""); - abort(); - } -#endif - errno = ENOMEM; - } - - UTRACE(0, size, ret); - return (ret); -} - -#ifdef MOZ_MEMORY_SOLARIS -# ifdef __SUNPRO_C -void * -memalign(size_t alignment, size_t size); -#pragma no_inline(memalign) -# elif (defined(__GNU_C__)) -__attribute__((noinline)) -# endif -#else -inline -#endif -void * -memalign(size_t alignment, size_t size) -{ - void *ret; - - assert(((alignment - 1) & alignment) == 0 && alignment >= - sizeof(void *)); - - if (malloc_init()) { - ret = NULL; - goto RETURN; - } - - ret = ipalloc(alignment, size); - -RETURN: -#ifdef MALLOC_XMALLOC - if (opt_xmalloc && ret == NULL) { - _malloc_message(_getprogname(), - ": (malloc) Error in memalign(): out of memory\n", "", ""); - abort(); - } -#endif - UTRACE(0, size, ret); - return (ret); -} - -ZONE_INLINE -int -posix_memalign(void **memptr, size_t alignment, size_t size) -{ - void *result; - - /* Make sure that alignment is a large enough power of 2. */ - if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) { -#ifdef MALLOC_XMALLOC - if (opt_xmalloc) { - _malloc_message(_getprogname(), - ": (malloc) Error in posix_memalign(): " - "invalid alignment\n", "", ""); - abort(); - } -#endif - return (EINVAL); - } - -#ifdef MOZ_MEMORY_DARWIN - result = moz_memalign(alignment, size); -#else - result = memalign(alignment, size); -#endif - if (result == NULL) - return (ENOMEM); - - *memptr = result; - return (0); -} - -ZONE_INLINE -void * -valloc(size_t size) -{ -#ifdef MOZ_MEMORY_DARWIN - return (moz_memalign(pagesize, size)); -#else - return (memalign(pagesize, size)); -#endif -} - -ZONE_INLINE -void * -calloc(size_t num, size_t size) -{ - void *ret; - size_t num_size; - - if (malloc_init()) { - num_size = 0; - ret = NULL; - goto RETURN; - } - - num_size = num * size; - if (num_size == 0) { -#ifdef MALLOC_SYSV - if ((opt_sysv == false) && ((num == 0) || (size == 0))) -#endif - num_size = 1; -#ifdef MALLOC_SYSV - else { - ret = NULL; - goto RETURN; - } -#endif - /* - * Try to avoid division here. We know that it isn't possible to - * overflow during multiplication if neither operand uses any of the - * most significant half of the bits in a size_t. - */ - } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) - && (num_size / size != num)) { - /* size_t overflow. */ - ret = NULL; - goto RETURN; - } - - ret = icalloc(num_size); - -RETURN: - if (ret == NULL) { -#ifdef MALLOC_XMALLOC - if (opt_xmalloc) { - _malloc_message(_getprogname(), - ": (malloc) Error in calloc(): out of memory\n", "", - ""); - abort(); - } -#endif - errno = ENOMEM; - } - - UTRACE(0, num_size, ret); - return (ret); -} - -ZONE_INLINE -void * -realloc(void *ptr, size_t size) -{ - void *ret; - - if (size == 0) { -#ifdef MALLOC_SYSV - if (opt_sysv == false) -#endif - size = 1; -#ifdef MALLOC_SYSV - else { - if (ptr != NULL) - idalloc(ptr); - ret = NULL; - goto RETURN; - } -#endif - } - - if (ptr != NULL) { - assert(malloc_initialized); - - ret = iralloc(ptr, size); - - if (ret == NULL) { -#ifdef MALLOC_XMALLOC - if (opt_xmalloc) { - _malloc_message(_getprogname(), - ": (malloc) Error in realloc(): out of " - "memory\n", "", ""); - abort(); - } -#endif - errno = ENOMEM; - } - } else { - if (malloc_init()) - ret = NULL; - else - ret = imalloc(size); - - if (ret == NULL) { -#ifdef MALLOC_XMALLOC - if (opt_xmalloc) { - _malloc_message(_getprogname(), - ": (malloc) Error in realloc(): out of " - "memory\n", "", ""); - abort(); - } -#endif - errno = ENOMEM; - } - } - -#ifdef MALLOC_SYSV -RETURN: -#endif - UTRACE(ptr, size, ret); - return (ret); -} - -ZONE_INLINE -void -free(void *ptr) -{ - - UTRACE(ptr, 0, 0); - if (ptr != NULL) { - assert(malloc_initialized); - - idalloc(ptr); - } -} - -/* - * End malloc(3)-compatible functions. - */ -/******************************************************************************/ -/* - * Begin non-standard functions. - */ - -size_t -malloc_usable_size(const void *ptr) -{ - -#ifdef MALLOC_VALIDATE - return (isalloc_validate(ptr)); -#else - assert(ptr != NULL); - - return (isalloc(ptr)); -#endif -} - -void -jemalloc_stats(jemalloc_stats_t *stats) -{ - size_t i; - - assert(stats != NULL); - - /* - * Gather runtime settings. - */ - stats->opt_abort = opt_abort; - stats->opt_junk = -#ifdef MALLOC_FILL - opt_junk ? true : -#endif - false; - stats->opt_utrace = -#ifdef MALLOC_UTRACE - opt_utrace ? true : -#endif - false; - stats->opt_sysv = -#ifdef MALLOC_SYSV - opt_sysv ? true : -#endif - false; - stats->opt_xmalloc = -#ifdef MALLOC_XMALLOC - opt_xmalloc ? true : -#endif - false; - stats->opt_zero = -#ifdef MALLOC_FILL - opt_zero ? true : -#endif - false; - stats->narenas = narenas; - stats->balance_threshold = -#ifdef MALLOC_BALANCE - opt_balance_threshold -#else - SIZE_T_MAX -#endif - ; - stats->quantum = quantum; - stats->small_max = small_max; - stats->large_max = arena_maxclass; - stats->chunksize = chunksize; - stats->dirty_max = opt_dirty_max; - - malloc_mutex_lock(&reserve_mtx); - stats->reserve_min = reserve_min; - stats->reserve_max = reserve_max; - stats->reserve_cur = reserve_cur; - malloc_mutex_unlock(&reserve_mtx); - - /* - * Gather current memory usage statistics. - */ - stats->mapped = 0; - stats->committed = 0; - stats->allocated = 0; - stats->dirty = 0; - - /* Get huge mapped/allocated. */ - malloc_mutex_lock(&huge_mtx); - stats->mapped += stats_chunks.curchunks * chunksize; -#ifdef MALLOC_DECOMMIT - stats->committed += huge_allocated; -#endif - stats->allocated += huge_allocated; - malloc_mutex_unlock(&huge_mtx); - - /* Get base mapped. */ - malloc_mutex_lock(&base_mtx); - stats->mapped += base_mapped; -#ifdef MALLOC_DECOMMIT - stats->committed += base_mapped; -#endif - malloc_mutex_unlock(&base_mtx); - - /* Iterate over arenas and their chunks. */ - for (i = 0; i < narenas; i++) { - arena_t *arena = arenas[i]; - if (arena != NULL) { - arena_chunk_t *chunk; - - malloc_spin_lock(&arena->lock); - stats->allocated += arena->stats.allocated_small; - stats->allocated += arena->stats.allocated_large; -#ifdef MALLOC_DECOMMIT - rb_foreach_begin(arena_chunk_t, link_dirty, - &arena->chunks_dirty, chunk) { - size_t j; - - for (j = 0; j < chunk_npages; j++) { - if ((chunk->map[j].bits & - CHUNK_MAP_DECOMMITTED) == 0) - stats->committed += pagesize; - } - } rb_foreach_end(arena_chunk_t, link_dirty, - &arena->chunks_dirty, chunk) -#endif - stats->dirty += (arena->ndirty << pagesize_2pow); - malloc_spin_unlock(&arena->lock); - } - } - -#ifndef MALLOC_DECOMMIT - stats->committed = stats->mapped; -#endif -} - -void * -xmalloc(size_t size) -{ - void *ret; - - if (malloc_init()) - reserve_fail(size, "xmalloc"); - - if (size == 0) { -#ifdef MALLOC_SYSV - if (opt_sysv == false) -#endif - size = 1; -#ifdef MALLOC_SYSV - else { - _malloc_message(_getprogname(), - ": (malloc) Error in xmalloc(): ", - "invalid size 0", "\n"); - abort(); - } -#endif - } - - ret = imalloc(size); - if (ret == NULL) { - uint64_t seq = 0; - - do { - seq = reserve_crit(size, "xmalloc", seq); - ret = imalloc(size); - } while (ret == NULL); - } - - UTRACE(0, size, ret); - return (ret); -} - -void * -xcalloc(size_t num, size_t size) -{ - void *ret; - size_t num_size; - - num_size = num * size; - if (malloc_init()) - reserve_fail(num_size, "xcalloc"); - - if (num_size == 0) { -#ifdef MALLOC_SYSV - if ((opt_sysv == false) && ((num == 0) || (size == 0))) -#endif - num_size = 1; -#ifdef MALLOC_SYSV - else { - _malloc_message(_getprogname(), - ": (malloc) Error in xcalloc(): ", - "invalid size 0", "\n"); - abort(); - } -#endif - /* - * Try to avoid division here. We know that it isn't possible to - * overflow during multiplication if neither operand uses any of the - * most significant half of the bits in a size_t. - */ - } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2))) - && (num_size / size != num)) { - /* size_t overflow. */ - _malloc_message(_getprogname(), - ": (malloc) Error in xcalloc(): ", - "size overflow", "\n"); - abort(); - } - - ret = icalloc(num_size); - if (ret == NULL) { - uint64_t seq = 0; - - do { - seq = reserve_crit(num_size, "xcalloc", seq); - ret = icalloc(num_size); - } while (ret == NULL); - } - - UTRACE(0, num_size, ret); - return (ret); -} - -void * -xrealloc(void *ptr, size_t size) -{ - void *ret; - - if (size == 0) { -#ifdef MALLOC_SYSV - if (opt_sysv == false) -#endif - size = 1; -#ifdef MALLOC_SYSV - else { - if (ptr != NULL) - idalloc(ptr); - _malloc_message(_getprogname(), - ": (malloc) Error in xrealloc(): ", - "invalid size 0", "\n"); - abort(); - } -#endif - } - - if (ptr != NULL) { - assert(malloc_initialized); - - ret = iralloc(ptr, size); - if (ret == NULL) { - uint64_t seq = 0; - - do { - seq = reserve_crit(size, "xrealloc", seq); - ret = iralloc(ptr, size); - } while (ret == NULL); - } - } else { - if (malloc_init()) - reserve_fail(size, "xrealloc"); - - ret = imalloc(size); - if (ret == NULL) { - uint64_t seq = 0; - - do { - seq = reserve_crit(size, "xrealloc", seq); - ret = imalloc(size); - } while (ret == NULL); - } - } - - UTRACE(ptr, size, ret); - return (ret); -} - -void * -xmemalign(size_t alignment, size_t size) -{ - void *ret; - - assert(((alignment - 1) & alignment) == 0 && alignment >= - sizeof(void *)); - - if (malloc_init()) - reserve_fail(size, "xmemalign"); - - ret = ipalloc(alignment, size); - if (ret == NULL) { - uint64_t seq = 0; - - do { - seq = reserve_crit(size, "xmemalign", seq); - ret = ipalloc(alignment, size); - } while (ret == NULL); - } - - UTRACE(0, size, ret); - return (ret); -} - -static void -reserve_shrink(void) -{ - extent_node_t *node; - - assert(reserve_cur > reserve_max); -#ifdef MALLOC_DEBUG - { - extent_node_t *node; - size_t reserve_size; - - reserve_size = 0; - rb_foreach_begin(extent_node_t, link_szad, &reserve_chunks_szad, - node) { - reserve_size += node->size; - } rb_foreach_end(extent_node_t, link_szad, &reserve_chunks_szad, - node) - assert(reserve_size == reserve_cur); - - reserve_size = 0; - rb_foreach_begin(extent_node_t, link_ad, &reserve_chunks_ad, - node) { - reserve_size += node->size; - } rb_foreach_end(extent_node_t, link_ad, &reserve_chunks_ad, - node) - assert(reserve_size == reserve_cur); - } -#endif - - /* Discard chunks until the the reserve is below the size limit. */ - rb_foreach_reverse_begin(extent_node_t, link_ad, &reserve_chunks_ad, - node) { -#ifndef MALLOC_DECOMMIT - if (node->size <= reserve_cur - reserve_max) { -#endif - extent_node_t *tnode = extent_tree_ad_prev( - &reserve_chunks_ad, node); - -#ifdef MALLOC_DECOMMIT - assert(node->size <= reserve_cur - reserve_max); -#endif - - /* Discard the entire [multi-]chunk. */ - extent_tree_szad_remove(&reserve_chunks_szad, node); - extent_tree_ad_remove(&reserve_chunks_ad, node); - reserve_cur -= node->size; - pages_unmap(node->addr, node->size); -#ifdef MALLOC_STATS - stats_chunks.curchunks -= (node->size / chunksize); -#endif - base_node_dealloc(node); - if (reserve_cur == reserve_max) - break; - - rb_foreach_reverse_prev(extent_node_t, link_ad, - extent_ad_comp, &reserve_chunks_ad, tnode); -#ifndef MALLOC_DECOMMIT - } else { - /* Discard the end of the multi-chunk. */ - extent_tree_szad_remove(&reserve_chunks_szad, node); - node->size -= reserve_cur - reserve_max; - extent_tree_szad_insert(&reserve_chunks_szad, node); - pages_unmap((void *)((uintptr_t)node->addr + - node->size), reserve_cur - reserve_max); -#ifdef MALLOC_STATS - stats_chunks.curchunks -= ((reserve_cur - reserve_max) / - chunksize); -#endif - reserve_cur = reserve_max; - break; - } -#endif - assert(reserve_cur > reserve_max); - } rb_foreach_reverse_end(extent_node_t, link_ad, &reserve_chunks_ad, - node) -} - -/* Send a condition notification. */ -static uint64_t -reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq) -{ - reserve_reg_t *reg; - - /* seq is used to keep track of distinct condition-causing events. */ - if (seq == 0) { - /* Allocate new sequence number. */ - reserve_seq++; - seq = reserve_seq; - } - - /* - * Advance to the next callback registration and send a notification, - * unless one has already been sent for this condition-causing event. - */ - reg = ql_first(&reserve_regs); - if (reg == NULL) - return (0); - ql_first(&reserve_regs) = ql_next(&reserve_regs, reg, link); - if (reg->seq == seq) - return (0); - reg->seq = seq; - malloc_mutex_unlock(&reserve_mtx); - reg->cb(reg->ctx, cnd, size); - malloc_mutex_lock(&reserve_mtx); - - return (seq); -} - -/* Allocation failure due to OOM. Try to free some memory via callbacks. */ -static uint64_t -reserve_crit(size_t size, const char *fname, uint64_t seq) -{ - - /* - * Send one condition notification. Iteration is handled by the - * caller of this function. - */ - malloc_mutex_lock(&reserve_mtx); - seq = reserve_notify(RESERVE_CND_CRIT, size, seq); - malloc_mutex_unlock(&reserve_mtx); - - /* If no notification could be sent, then no further recourse exists. */ - if (seq == 0) - reserve_fail(size, fname); - - return (seq); -} - -/* Permanent allocation failure due to OOM. */ -static void -reserve_fail(size_t size, const char *fname) -{ - uint64_t seq = 0; - - /* Send fail notifications. */ - malloc_mutex_lock(&reserve_mtx); - do { - seq = reserve_notify(RESERVE_CND_FAIL, size, seq); - } while (seq != 0); - malloc_mutex_unlock(&reserve_mtx); - - /* Terminate the application. */ - _malloc_message(_getprogname(), - ": (malloc) Error in ", fname, "(): out of memory\n"); - abort(); -} - -bool -reserve_cb_register(reserve_cb_t *cb, void *ctx) -{ - reserve_reg_t *reg = base_reserve_reg_alloc(); - if (reg == NULL) - return (true); - - ql_elm_new(reg, link); - reg->cb = cb; - reg->ctx = ctx; - reg->seq = 0; - - malloc_mutex_lock(&reserve_mtx); - ql_head_insert(&reserve_regs, reg, link); - malloc_mutex_unlock(&reserve_mtx); - - return (false); -} - -bool -reserve_cb_unregister(reserve_cb_t *cb, void *ctx) -{ - reserve_reg_t *reg = NULL; - - malloc_mutex_lock(&reserve_mtx); - ql_foreach(reg, &reserve_regs, link) { - if (reg->cb == cb && reg->ctx == ctx) { - ql_remove(&reserve_regs, reg, link); - break; - } - } - malloc_mutex_unlock(&reserve_mtx); - - if (reg != NULL) - base_reserve_reg_dealloc(reg); - return (false); - return (true); -} - -size_t -reserve_cur_get(void) -{ - size_t ret; - - malloc_mutex_lock(&reserve_mtx); - ret = reserve_cur; - malloc_mutex_unlock(&reserve_mtx); - - return (ret); -} - -size_t -reserve_min_get(void) -{ - size_t ret; - - malloc_mutex_lock(&reserve_mtx); - ret = reserve_min; - malloc_mutex_unlock(&reserve_mtx); - - return (ret); -} - -bool -reserve_min_set(size_t min) -{ - - min = CHUNK_CEILING(min); - - malloc_mutex_lock(&reserve_mtx); - /* Keep |reserve_max - reserve_min| the same. */ - if (min < reserve_min) { - reserve_max -= reserve_min - min; - reserve_min = min; - } else { - /* Protect against wrap-around. */ - if (reserve_max + min - reserve_min < reserve_max) { - reserve_min = SIZE_T_MAX - (reserve_max - reserve_min) - - chunksize + 1; - reserve_max = SIZE_T_MAX - chunksize + 1; - } else { - reserve_max += min - reserve_min; - reserve_min = min; - } - } - - /* Resize the reserve if necessary. */ - if (reserve_cur < reserve_min) { - size_t size = reserve_min - reserve_cur; - - /* Force the reserve to grow by allocating/deallocating. */ - malloc_mutex_unlock(&reserve_mtx); -#ifdef MALLOC_DECOMMIT - { - void **chunks; - size_t i, n; - - n = size >> opt_chunk_2pow; - chunks = (void**)imalloc(n * sizeof(void *)); - if (chunks == NULL) - return (true); - for (i = 0; i < n; i++) { - chunks[i] = huge_malloc(chunksize, false); - if (chunks[i] == NULL) { - size_t j; - - for (j = 0; j < i; j++) { - huge_dalloc(chunks[j]); - } - idalloc(chunks); - return (true); - } - } - for (i = 0; i < n; i++) - huge_dalloc(chunks[i]); - idalloc(chunks); - } -#else - { - void *x = huge_malloc(size, false); - if (x == NULL) { - return (true); - } - huge_dalloc(x); - } -#endif - } else if (reserve_cur > reserve_max) { - reserve_shrink(); - malloc_mutex_unlock(&reserve_mtx); - } else - malloc_mutex_unlock(&reserve_mtx); - - return (false); -} - -#ifdef MOZ_MEMORY_WINDOWS -void* -_recalloc(void *ptr, size_t count, size_t size) -{ - size_t oldsize = (ptr != NULL) ? isalloc(ptr) : 0; - size_t newsize = count * size; - - /* - * In order for all trailing bytes to be zeroed, the caller needs to - * use calloc(), followed by recalloc(). However, the current calloc() - * implementation only zeros the bytes requested, so if recalloc() is - * to work 100% correctly, calloc() will need to change to zero - * trailing bytes. - */ - - ptr = realloc(ptr, newsize); - if (ptr != NULL && oldsize < newsize) { - memset((void *)((uintptr_t)ptr + oldsize), 0, newsize - - oldsize); - } - - return ptr; -} - -/* - * This impl of _expand doesn't ever actually expand or shrink blocks: it - * simply replies that you may continue using a shrunk block. - */ -void* -_expand(void *ptr, size_t newsize) -{ - if (isalloc(ptr) >= newsize) - return ptr; - - return NULL; -} - -size_t -_msize(const void *ptr) -{ - - return malloc_usable_size(ptr); -} -#endif - -/* - * End non-standard functions. - */ -/******************************************************************************/ -/* - * Begin library-private functions, used by threading libraries for protection - * of malloc during fork(). These functions are only called if the program is - * running in threaded mode, so there is no need to check whether the program - * is threaded here. - */ - -void -_malloc_prefork(void) -{ - unsigned i; - - /* Acquire all mutexes in a safe order. */ - - malloc_spin_lock(&arenas_lock); - for (i = 0; i < narenas; i++) { - if (arenas[i] != NULL) - malloc_spin_lock(&arenas[i]->lock); - } - malloc_spin_unlock(&arenas_lock); - - malloc_mutex_lock(&base_mtx); - - malloc_mutex_lock(&huge_mtx); -} - -void -_malloc_postfork(void) -{ - unsigned i; - - /* Release all mutexes, now that fork() has completed. */ - - malloc_mutex_unlock(&huge_mtx); - - malloc_mutex_unlock(&base_mtx); - - malloc_spin_lock(&arenas_lock); - for (i = 0; i < narenas; i++) { - if (arenas[i] != NULL) - malloc_spin_unlock(&arenas[i]->lock); - } - malloc_spin_unlock(&arenas_lock); -} - -/* - * End library-private functions. - */ -/******************************************************************************/ - -#ifdef HAVE_LIBDL -# include <dlfcn.h> -#endif - -#ifdef MOZ_MEMORY_DARWIN -static malloc_zone_t zone; -static struct malloc_introspection_t zone_introspect; - -static size_t -zone_size(malloc_zone_t *zone, void *ptr) -{ - - /* - * There appear to be places within Darwin (such as setenv(3)) that - * cause calls to this function with pointers that *no* zone owns. If - * we knew that all pointers were owned by *some* zone, we could split - * our zone into two parts, and use one as the default allocator and - * the other as the default deallocator/reallocator. Since that will - * not work in practice, we must check all pointers to assure that they - * reside within a mapped chunk before determining size. - */ - return (isalloc_validate(ptr)); -} - -static void * -zone_malloc(malloc_zone_t *zone, size_t size) -{ - - return (malloc(size)); -} - -static void * -zone_calloc(malloc_zone_t *zone, size_t num, size_t size) -{ - - return (calloc(num, size)); -} - -static void * -zone_valloc(malloc_zone_t *zone, size_t size) -{ - void *ret = NULL; /* Assignment avoids useless compiler warning. */ - - posix_memalign(&ret, pagesize, size); - - return (ret); -} - -static void -zone_free(malloc_zone_t *zone, void *ptr) -{ - - free(ptr); -} - -static void * -zone_realloc(malloc_zone_t *zone, void *ptr, size_t size) -{ - - return (realloc(ptr, size)); -} - -static void * -zone_destroy(malloc_zone_t *zone) -{ - - /* This function should never be called. */ - assert(false); - return (NULL); -} - -static size_t -zone_good_size(malloc_zone_t *zone, size_t size) -{ - size_t ret; - void *p; - - /* - * Actually create an object of the appropriate size, then find out - * how large it could have been without moving up to the next size - * class. - */ - p = malloc(size); - if (p != NULL) { - ret = isalloc(p); - free(p); - } else - ret = size; - - return (ret); -} - -static void -zone_force_lock(malloc_zone_t *zone) -{ - - _malloc_prefork(); -} - -static void -zone_force_unlock(malloc_zone_t *zone) -{ - - _malloc_postfork(); -} - -static malloc_zone_t * -create_zone(void) -{ - - assert(malloc_initialized); - - zone.size = (void *)zone_size; - zone.malloc = (void *)zone_malloc; - zone.calloc = (void *)zone_calloc; - zone.valloc = (void *)zone_valloc; - zone.free = (void *)zone_free; - zone.realloc = (void *)zone_realloc; - zone.destroy = (void *)zone_destroy; - zone.zone_name = "jemalloc_zone"; - zone.batch_malloc = NULL; - zone.batch_free = NULL; - zone.introspect = &zone_introspect; - - zone_introspect.enumerator = NULL; - zone_introspect.good_size = (void *)zone_good_size; - zone_introspect.check = NULL; - zone_introspect.print = NULL; - zone_introspect.log = NULL; - zone_introspect.force_lock = (void *)zone_force_lock; - zone_introspect.force_unlock = (void *)zone_force_unlock; - zone_introspect.statistics = NULL; - - return (&zone); -} - -__attribute__((constructor)) -void -jemalloc_darwin_init(void) -{ - extern unsigned malloc_num_zones; - extern malloc_zone_t **malloc_zones; - - if (malloc_init_hard()) - abort(); - - /* - * The following code is *not* thread-safe, so it's critical that - * initialization be manually triggered. - */ - - /* Register the custom zones. */ - malloc_zone_register(create_zone()); - assert(malloc_zones[malloc_num_zones - 1] == &zone); - - /* - * Shift malloc_zones around so that zone is first, which makes it the - * default zone. - */ - assert(malloc_num_zones > 1); - memmove(&malloc_zones[1], &malloc_zones[0], - sizeof(malloc_zone_t *) * (malloc_num_zones - 1)); - malloc_zones[0] = &zone; -} - -#elif defined(__GLIBC__) && !defined(__UCLIBC__) -/* - * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible - * to inconsistently reference libc's malloc(3)-compatible functions - * (bug 493541). - * - * These definitions interpose hooks in glibc. The functions are actually - * passed an extra argument for the caller return address, which will be - * ignored. - */ -void (*__free_hook)(void *ptr) = free; -void *(*__malloc_hook)(size_t size) = malloc; -void *(*__realloc_hook)(void *ptr, size_t size) = realloc; -void *(*__memalign_hook)(size_t alignment, size_t size) = memalign; - -#elif defined(RTLD_DEEPBIND) -/* - * XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their - * implementations permit similar inconsistencies? Should STV_SINGLETON - * visibility be used for interposition where available? - */ -# error "Interposing malloc is unsafe on this system without libc malloc hooks." -#endif +/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */
+/* vim:set softtabstop=8 shiftwidth=8: */
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ *******************************************************************************
+ *
+ * This allocator implementation is designed to provide scalable performance
+ * for multi-threaded programs on multi-processor systems. The following
+ * features are included for this purpose:
+ *
+ * + Multiple arenas are used if there are multiple CPUs, which reduces lock
+ * contention and cache sloshing.
+ *
+ * + Cache line sharing between arenas is avoided for internal data
+ * structures.
+ *
+ * + Memory is managed in chunks and runs (chunks can be split into runs),
+ * rather than as individual pages. This provides a constant-time
+ * mechanism for associating allocations with particular arenas.
+ *
+ * Allocation requests are rounded up to the nearest size class, and no record
+ * of the original request size is maintained. Allocations are broken into
+ * categories according to size class. Assuming runtime defaults, 4 kB pages
+ * and a 16 byte quantum on a 32-bit system, the size classes in each category
+ * are as follows:
+ *
+ * |=====================================|
+ * | Category | Subcategory | Size |
+ * |=====================================|
+ * | Small | Tiny | 2 |
+ * | | | 4 |
+ * | | | 8 |
+ * | |----------------+---------|
+ * | | Quantum-spaced | 16 |
+ * | | | 32 |
+ * | | | 48 |
+ * | | | ... |
+ * | | | 480 |
+ * | | | 496 |
+ * | | | 512 |
+ * | |----------------+---------|
+ * | | Sub-page | 1 kB |
+ * | | | 2 kB |
+ * |=====================================|
+ * | Large | 4 kB |
+ * | | 8 kB |
+ * | | 12 kB |
+ * | | ... |
+ * | | 1012 kB |
+ * | | 1016 kB |
+ * | | 1020 kB |
+ * |=====================================|
+ * | Huge | 1 MB |
+ * | | 2 MB |
+ * | | 3 MB |
+ * | | ... |
+ * |=====================================|
+ *
+ * A different mechanism is used for each category:
+ *
+ * Small : Each size class is segregated into its own set of runs. Each run
+ * maintains a bitmap of which regions are free/allocated.
+ *
+ * Large : Each allocation is backed by a dedicated run. Metadata are stored
+ * in the associated arena chunk header maps.
+ *
+ * Huge : Each allocation is backed by a dedicated contiguous set of chunks.
+ * Metadata are stored in a separate red-black tree.
+ *
+ *******************************************************************************
+ */
+
+/*
+ * NOTE(mbelshe): Added these defines to fit within chromium build system.
+ */
+#define MOZ_MEMORY_WINDOWS
+#define MOZ_MEMORY
+#define DONT_OVERRIDE_LIBC
+
+/*
+ * MALLOC_PRODUCTION disables assertions and statistics gathering. It also
+ * defaults the A and J runtime options to off. These settings are appropriate
+ * for production systems.
+ */
+#ifndef MOZ_MEMORY_DEBUG
+# define MALLOC_PRODUCTION
+#endif
+
+/*
+ * Use only one arena by default. Mozilla does not currently make extensive
+ * use of concurrent allocation, so the increased fragmentation associated with
+ * multiple arenas is not warranted.
+ */
+#define MOZ_MEMORY_NARENAS_DEFAULT_ONE
+
+/*
+ * MALLOC_STATS enables statistics calculation, and is required for
+ * jemalloc_stats().
+ */
+#define MALLOC_STATS
+
+#ifndef MALLOC_PRODUCTION
+ /*
+ * MALLOC_DEBUG enables assertions and other sanity checks, and disables
+ * inline functions.
+ */
+# define MALLOC_DEBUG
+
+ /* Memory filling (junk/zero). */
+# define MALLOC_FILL
+
+ /* Allocation tracing. */
+# ifndef MOZ_MEMORY_WINDOWS
+# define MALLOC_UTRACE
+# endif
+
+ /* Support optional abort() on OOM. */
+# define MALLOC_XMALLOC
+
+ /* Support SYSV semantics. */
+# define MALLOC_SYSV
+#endif
+
+/*
+ * MALLOC_VALIDATE causes malloc_usable_size() to perform some pointer
+ * validation. There are many possible errors that validation does not even
+ * attempt to detect.
+ */
+#define MALLOC_VALIDATE
+
+/* Embed no-op macros that support memory allocation tracking via valgrind. */
+#ifdef MOZ_VALGRIND
+# define MALLOC_VALGRIND
+#endif
+#ifdef MALLOC_VALGRIND
+# include <valgrind/valgrind.h>
+#else
+# define VALGRIND_MALLOCLIKE_BLOCK(addr, sizeB, rzB, is_zeroed)
+# define VALGRIND_FREELIKE_BLOCK(addr, rzB)
+#endif
+
+/*
+ * MALLOC_BALANCE enables monitoring of arena lock contention and dynamically
+ * re-balances arena load if exponentially averaged contention exceeds a
+ * certain threshold.
+ */
+/* #define MALLOC_BALANCE */
+
+#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN))
+ /*
+ * MALLOC_PAGEFILE causes all mmap()ed memory to be backed by temporary
+ * files, so that if a chunk is mapped, it is guaranteed to be swappable.
+ * This avoids asynchronous OOM failures that are due to VM over-commit.
+ *
+ * XXX OS X over-commits, so we should probably use mmap() instead of
+ * vm_allocate(), so that MALLOC_PAGEFILE works.
+ */
+#define MALLOC_PAGEFILE
+#endif
+
+#ifdef MALLOC_PAGEFILE
+/* Write size when initializing a page file. */
+# define MALLOC_PAGEFILE_WRITE_SIZE 512
+#endif
+
+#ifdef MOZ_MEMORY_LINUX
+#define _GNU_SOURCE /* For mremap(2). */
+#define issetugid() 0
+#if 0 /* Enable in order to test decommit code on Linux. */
+# define MALLOC_DECOMMIT
+#endif
+#endif
+
+#ifndef MOZ_MEMORY_WINCE
+#include <sys/types.h>
+
+#include <errno.h>
+#include <stdlib.h>
+#endif
+#include <limits.h>
+#include <stdarg.h>
+#include <stdio.h>
+#include <string.h>
+
+#ifdef MOZ_MEMORY_WINDOWS
+#ifndef MOZ_MEMORY_WINCE
+//#include <cruntime.h>
+//#include <internal.h>
+#include <io.h>
+#else
+#include <cmnintrin.h>
+#include <crtdefs.h>
+#define SIZE_MAX UINT_MAX
+#endif
+#include <windows.h>
+
+#pragma warning( disable: 4267 4996 4146 )
+
+#define false FALSE
+#define true TRUE
+#define inline __inline
+#define SIZE_T_MAX SIZE_MAX
+#define STDERR_FILENO 2
+#define PATH_MAX MAX_PATH
+#define vsnprintf _vsnprintf
+
+#ifndef NO_TLS
+static unsigned long tlsIndex = 0xffffffff;
+#endif
+
+#define __thread
+#ifdef MOZ_MEMORY_WINCE
+#define _pthread_self() GetCurrentThreadId()
+#else
+#define _pthread_self() __threadid()
+#endif
+#define issetugid() 0
+
+#ifndef MOZ_MEMORY_WINCE
+/* use MSVC intrinsics */
+#pragma intrinsic(_BitScanForward)
+static __forceinline int
+ffs(int x)
+{
+ unsigned long i;
+
+ if (_BitScanForward(&i, x) != 0)
+ return (i + 1);
+
+ return (0);
+}
+
+/* Implement getenv without using malloc */
+static char mozillaMallocOptionsBuf[64];
+
+#define getenv xgetenv
+static char *
+getenv(const char *name)
+{
+
+ if (GetEnvironmentVariableA(name, (LPSTR)&mozillaMallocOptionsBuf,
+ sizeof(mozillaMallocOptionsBuf)) > 0)
+ return (mozillaMallocOptionsBuf);
+
+ return (NULL);
+}
+
+#else /* WIN CE */
+
+#define ENOMEM 12
+#define EINVAL 22
+
+static __forceinline int
+ffs(int x)
+{
+
+ return 32 - _CountLeadingZeros((-x) & x);
+}
+#endif
+
+typedef unsigned char uint8_t;
+typedef unsigned uint32_t;
+typedef unsigned long long uint64_t;
+typedef unsigned long long uintmax_t;
+typedef long ssize_t;
+
+#define MALLOC_DECOMMIT
+#endif
+
+#ifndef MOZ_MEMORY_WINDOWS
+#ifndef MOZ_MEMORY_SOLARIS
+#include <sys/cdefs.h>
+#endif
+#ifndef __DECONST
+# define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+#endif
+#ifndef MOZ_MEMORY
+__FBSDID("$FreeBSD: head/lib/libc/stdlib/malloc.c 180599 2008-07-18 19:35:44Z jasone $");
+#include "libc_private.h"
+#ifdef MALLOC_DEBUG
+# define _LOCK_DEBUG
+#endif
+#include "spinlock.h"
+#include "namespace.h"
+#endif
+#include <sys/mman.h>
+#ifndef MADV_FREE
+# define MADV_FREE MADV_DONTNEED
+#endif
+#ifndef MAP_NOSYNC
+# define MAP_NOSYNC 0
+#endif
+#include <sys/param.h>
+#ifndef MOZ_MEMORY
+#include <sys/stddef.h>
+#endif
+#include <sys/time.h>
+#include <sys/types.h>
+#ifndef MOZ_MEMORY_SOLARIS
+#include <sys/sysctl.h>
+#endif
+#include <sys/uio.h>
+#ifndef MOZ_MEMORY
+#include <sys/ktrace.h> /* Must come after several other sys/ includes. */
+
+#include <machine/atomic.h>
+#include <machine/cpufunc.h>
+#include <machine/vmparam.h>
+#endif
+
+#include <errno.h>
+#include <limits.h>
+#ifndef SIZE_T_MAX
+# define SIZE_T_MAX SIZE_MAX
+#endif
+#include <pthread.h>
+#ifdef MOZ_MEMORY_DARWIN
+#define _pthread_self pthread_self
+#define _pthread_mutex_init pthread_mutex_init
+#define _pthread_mutex_trylock pthread_mutex_trylock
+#define _pthread_mutex_lock pthread_mutex_lock
+#define _pthread_mutex_unlock pthread_mutex_unlock
+#endif
+#include <sched.h>
+#include <stdarg.h>
+#include <stdbool.h>
+#include <stdio.h>
+#include <stdint.h>
+#include <stdlib.h>
+#include <string.h>
+#ifndef MOZ_MEMORY_DARWIN
+#include <strings.h>
+#endif
+#include <unistd.h>
+
+#ifdef MOZ_MEMORY_DARWIN
+#include <libkern/OSAtomic.h>
+#include <mach/mach_error.h>
+#include <mach/mach_init.h>
+#include <mach/vm_map.h>
+#include <malloc/malloc.h>
+#endif
+
+#ifndef MOZ_MEMORY
+#include "un-namespace.h"
+#endif
+
+#endif
+
+#include "jemalloc.h"
+
+#undef bool
+#define bool jemalloc_bool
+
+#ifdef MOZ_MEMORY_DARWIN
+static const bool __isthreaded = true;
+#endif
+
+#if defined(MOZ_MEMORY_SOLARIS) && defined(MAP_ALIGN) && !defined(JEMALLOC_NEVER_USES_MAP_ALIGN)
+#define JEMALLOC_USES_MAP_ALIGN /* Required on Solaris 10. Might improve performance elsewhere. */
+#endif
+
+#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
+#define JEMALLOC_USES_MAP_ALIGN /* Required for Windows CE < 6 */
+#endif
+
+#define __DECONST(type, var) ((type)(uintptr_t)(const void *)(var))
+
+#include "qr.h"
+#include "ql.h"
+#ifdef MOZ_MEMORY_WINDOWS
+ /* MSVC++ does not support C99 variable-length arrays. */
+# define RB_NO_C99_VARARRAYS
+#endif
+#include "rb.h"
+
+#ifdef MALLOC_DEBUG
+ /* Disable inlining to make debugging easier. */
+#ifdef inline
+#undef inline
+#endif
+
+# define inline
+#endif
+
+/* Size of stack-allocated buffer passed to strerror_r(). */
+#define STRERROR_BUF 64
+
+/* Minimum alignment of allocations is 2^QUANTUM_2POW_MIN bytes. */
+# define QUANTUM_2POW_MIN 4
+#ifdef MOZ_MEMORY_SIZEOF_PTR_2POW
+# define SIZEOF_PTR_2POW MOZ_MEMORY_SIZEOF_PTR_2POW
+#else
+# define SIZEOF_PTR_2POW 2
+#endif
+#define PIC
+#ifndef MOZ_MEMORY_DARWIN
+static const bool __isthreaded = true;
+#else
+# define NO_TLS
+#endif
+#if 0
+#ifdef __i386__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 2
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __ia64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+#endif
+#ifdef __alpha__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __sparc64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define NO_TLS
+#endif
+#ifdef __amd64__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 3
+# define CPU_SPINWAIT __asm__ volatile("pause")
+#endif
+#ifdef __arm__
+# define QUANTUM_2POW_MIN 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __mips__
+# define QUANTUM_2POW_MIN 3
+# define SIZEOF_PTR_2POW 2
+# define NO_TLS
+#endif
+#ifdef __powerpc__
+# define QUANTUM_2POW_MIN 4
+# define SIZEOF_PTR_2POW 2
+#endif
+#endif
+
+#define SIZEOF_PTR (1U << SIZEOF_PTR_2POW)
+
+/* sizeof(int) == (1U << SIZEOF_INT_2POW). */
+#ifndef SIZEOF_INT_2POW
+# define SIZEOF_INT_2POW 2
+#endif
+
+/* We can't use TLS in non-PIC programs, since TLS relies on loader magic. */
+#if (!defined(PIC) && !defined(NO_TLS))
+# define NO_TLS
+#endif
+
+#ifdef NO_TLS
+ /* MALLOC_BALANCE requires TLS. */
+# ifdef MALLOC_BALANCE
+# undef MALLOC_BALANCE
+# endif
+#endif
+
+/*
+ * Size and alignment of memory chunks that are allocated by the OS's virtual
+ * memory system.
+ */
+#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
+#define CHUNK_2POW_DEFAULT 21
+#else
+#define CHUNK_2POW_DEFAULT 20
+#endif
+/* Maximum number of dirty pages per arena. */
+#define DIRTY_MAX_DEFAULT (1U << 10)
+
+/* Default reserve chunks. */
+#define RESERVE_MIN_2POW_DEFAULT 1
+/*
+ * Default range (in chunks) between reserve_min and reserve_max, in addition
+ * to the mandatory one chunk per arena.
+ */
+#ifdef MALLOC_PAGEFILE
+# define RESERVE_RANGE_2POW_DEFAULT 5
+#else
+# define RESERVE_RANGE_2POW_DEFAULT 0
+#endif
+
+/*
+ * Maximum size of L1 cache line. This is used to avoid cache line aliasing,
+ * so over-estimates are okay (up to a point), but under-estimates will
+ * negatively affect performance.
+ */
+#define CACHELINE_2POW 6
+#define CACHELINE ((size_t)(1U << CACHELINE_2POW))
+
+/* Smallest size class to support. */
+#define TINY_MIN_2POW 1
+
+/*
+ * Maximum size class that is a multiple of the quantum, but not (necessarily)
+ * a power of 2. Above this size, allocations are rounded up to the nearest
+ * power of 2.
+ */
+#define SMALL_MAX_2POW_DEFAULT 9
+#define SMALL_MAX_DEFAULT (1U << SMALL_MAX_2POW_DEFAULT)
+
+/*
+ * RUN_MAX_OVRHD indicates maximum desired run header overhead. Runs are sized
+ * as small as possible such that this setting is still honored, without
+ * violating other constraints. The goal is to make runs as small as possible
+ * without exceeding a per run external fragmentation threshold.
+ *
+ * We use binary fixed point math for overhead computations, where the binary
+ * point is implicitly RUN_BFP bits to the left.
+ *
+ * Note that it is possible to set RUN_MAX_OVRHD low enough that it cannot be
+ * honored for some/all object sizes, since there is one bit of header overhead
+ * per object (plus a constant). This constraint is relaxed (ignored) for runs
+ * that are so small that the per-region overhead is greater than:
+ *
+ * (RUN_MAX_OVRHD / (reg_size << (3+RUN_BFP))
+ */
+#define RUN_BFP 12
+/* \/ Implicit binary fixed point. */
+#define RUN_MAX_OVRHD 0x0000003dU
+#define RUN_MAX_OVRHD_RELAX 0x00001800U
+
+/* Put a cap on small object run size. This overrides RUN_MAX_OVRHD. */
+#define RUN_MAX_SMALL_2POW 15
+#define RUN_MAX_SMALL (1U << RUN_MAX_SMALL_2POW)
+
+/*
+ * Hyper-threaded CPUs may need a special instruction inside spin loops in
+ * order to yield to another virtual CPU. If no such instruction is defined
+ * above, make CPU_SPINWAIT a no-op.
+ */
+#ifndef CPU_SPINWAIT
+# define CPU_SPINWAIT
+#endif
+
+/*
+ * Adaptive spinning must eventually switch to blocking, in order to avoid the
+ * potential for priority inversion deadlock. Backing off past a certain point
+ * can actually waste time.
+ */
+#define SPIN_LIMIT_2POW 11
+
+/*
+ * Conversion from spinning to blocking is expensive; we use (1U <<
+ * BLOCK_COST_2POW) to estimate how many more times costly blocking is than
+ * worst-case spinning.
+ */
+#define BLOCK_COST_2POW 4
+
+#ifdef MALLOC_BALANCE
+ /*
+ * We use an exponential moving average to track recent lock contention,
+ * where the size of the history window is N, and alpha=2/(N+1).
+ *
+ * Due to integer math rounding, very small values here can cause
+ * substantial degradation in accuracy, thus making the moving average decay
+ * faster than it would with precise calculation.
+ */
+# define BALANCE_ALPHA_INV_2POW 9
+
+ /*
+ * Threshold value for the exponential moving contention average at which to
+ * re-assign a thread.
+ */
+# define BALANCE_THRESHOLD_DEFAULT (1U << (SPIN_LIMIT_2POW-4))
+#endif
+
+/******************************************************************************/
+
+/*
+ * Mutexes based on spinlocks. We can't use normal pthread spinlocks in all
+ * places, because they require malloc()ed memory, which causes bootstrapping
+ * issues in some cases.
+ */
+#if defined(MOZ_MEMORY_WINDOWS)
+#define malloc_mutex_t CRITICAL_SECTION
+#define malloc_spinlock_t CRITICAL_SECTION
+#elif defined(MOZ_MEMORY_DARWIN)
+typedef struct {
+ OSSpinLock lock;
+} malloc_mutex_t;
+typedef struct {
+ OSSpinLock lock;
+} malloc_spinlock_t;
+#elif defined(MOZ_MEMORY)
+typedef pthread_mutex_t malloc_mutex_t;
+typedef pthread_mutex_t malloc_spinlock_t;
+#else
+/* XXX these should #ifdef these for freebsd (and linux?) only */
+typedef struct {
+ spinlock_t lock;
+} malloc_mutex_t;
+typedef malloc_spinlock_t malloc_mutex_t;
+#endif
+
+/* Set to true once the allocator has been initialized. */
+static bool malloc_initialized = false;
+
+#if defined(MOZ_MEMORY_WINDOWS)
+/* No init lock for Windows. */
+#elif defined(MOZ_MEMORY_DARWIN)
+static malloc_mutex_t init_lock = {OS_SPINLOCK_INIT};
+#elif defined(MOZ_MEMORY_LINUX)
+static malloc_mutex_t init_lock = PTHREAD_ADAPTIVE_MUTEX_INITIALIZER_NP;
+#elif defined(MOZ_MEMORY)
+static malloc_mutex_t init_lock = PTHREAD_MUTEX_INITIALIZER;
+#else
+static malloc_mutex_t init_lock = {_SPINLOCK_INITIALIZER};
+#endif
+
+/******************************************************************************/
+/*
+ * Statistics data structures.
+ */
+
+#ifdef MALLOC_STATS
+
+typedef struct malloc_bin_stats_s malloc_bin_stats_t;
+struct malloc_bin_stats_s {
+ /*
+ * Number of allocation requests that corresponded to the size of this
+ * bin.
+ */
+ uint64_t nrequests;
+
+ /* Total number of runs created for this bin's size class. */
+ uint64_t nruns;
+
+ /*
+ * Total number of runs reused by extracting them from the runs tree for
+ * this bin's size class.
+ */
+ uint64_t reruns;
+
+ /* High-water mark for this bin. */
+ unsigned long highruns;
+
+ /* Current number of runs in this bin. */
+ unsigned long curruns;
+};
+
+typedef struct arena_stats_s arena_stats_t;
+struct arena_stats_s {
+ /* Number of bytes currently mapped. */
+ size_t mapped;
+
+ /*
+ * Total number of purge sweeps, total number of madvise calls made,
+ * and total pages purged in order to keep dirty unused memory under
+ * control.
+ */
+ uint64_t npurge;
+ uint64_t nmadvise;
+ uint64_t purged;
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Total number of decommit/commit operations, and total number of
+ * pages decommitted.
+ */
+ uint64_t ndecommit;
+ uint64_t ncommit;
+ uint64_t decommitted;
+#endif
+
+ /* Per-size-category statistics. */
+ size_t allocated_small;
+ uint64_t nmalloc_small;
+ uint64_t ndalloc_small;
+
+ size_t allocated_large;
+ uint64_t nmalloc_large;
+ uint64_t ndalloc_large;
+
+#ifdef MALLOC_BALANCE
+ /* Number of times this arena reassigned a thread due to contention. */
+ uint64_t nbalance;
+#endif
+};
+
+typedef struct chunk_stats_s chunk_stats_t;
+struct chunk_stats_s {
+ /* Number of chunks that were allocated. */
+ uint64_t nchunks;
+
+ /* High-water mark for number of chunks allocated. */
+ unsigned long highchunks;
+
+ /*
+ * Current number of chunks allocated. This value isn't maintained for
+ * any other purpose, so keep track of it in order to be able to set
+ * highchunks.
+ */
+ unsigned long curchunks;
+};
+
+#endif /* #ifdef MALLOC_STATS */
+
+/******************************************************************************/
+/*
+ * Extent data structures.
+ */
+
+/* Tree of extents. */
+typedef struct extent_node_s extent_node_t;
+struct extent_node_s {
+ /* Linkage for the size/address-ordered tree. */
+ rb_node(extent_node_t) link_szad;
+
+ /* Linkage for the address-ordered tree. */
+ rb_node(extent_node_t) link_ad;
+
+ /* Pointer to the extent that this tree node is responsible for. */
+ void *addr;
+
+ /* Total region size. */
+ size_t size;
+};
+typedef rb_tree(extent_node_t) extent_tree_t;
+
+/******************************************************************************/
+/*
+ * Radix tree data structures.
+ */
+
+#ifdef MALLOC_VALIDATE
+ /*
+ * Size of each radix tree node (must be a power of 2). This impacts tree
+ * depth.
+ */
+# if (SIZEOF_PTR == 4)
+# define MALLOC_RTREE_NODESIZE (1U << 14)
+# else
+# define MALLOC_RTREE_NODESIZE CACHELINE
+# endif
+
+typedef struct malloc_rtree_s malloc_rtree_t;
+struct malloc_rtree_s {
+ malloc_spinlock_t lock;
+ void **root;
+ unsigned height;
+ unsigned level2bits[1]; /* Dynamically sized. */
+};
+#endif
+
+/******************************************************************************/
+/*
+ * Reserve data structures.
+ */
+
+/* Callback registration. */
+typedef struct reserve_reg_s reserve_reg_t;
+struct reserve_reg_s {
+ /* Linkage for list of all registered callbacks. */
+ ql_elm(reserve_reg_t) link;
+
+ /* Callback function pointer. */
+ reserve_cb_t *cb;
+
+ /* Opaque application data pointer. */
+ void *ctx;
+
+ /*
+ * Sequence number of condition notification most recently sent to this
+ * callback.
+ */
+ uint64_t seq;
+};
+
+/******************************************************************************/
+/*
+ * Arena data structures.
+ */
+
+typedef struct arena_s arena_t;
+typedef struct arena_bin_s arena_bin_t;
+
+/* Each element of the chunk map corresponds to one page within the chunk. */
+typedef struct arena_chunk_map_s arena_chunk_map_t;
+struct arena_chunk_map_s {
+ /*
+ * Linkage for run trees. There are two disjoint uses:
+ *
+ * 1) arena_t's runs_avail tree.
+ * 2) arena_run_t conceptually uses this linkage for in-use non-full
+ * runs, rather than directly embedding linkage.
+ */
+ rb_node(arena_chunk_map_t) link;
+
+ /*
+ * Run address (or size) and various flags are stored together. The bit
+ * layout looks like (assuming 32-bit system):
+ *
+ * ???????? ???????? ????---- --ckdzla
+ *
+ * ? : Unallocated: Run address for first/last pages, unset for internal
+ * pages.
+ * Small: Run address.
+ * Large: Run size for first page, unset for trailing pages.
+ * - : Unused.
+ * c : decommitted?
+ * k : key?
+ * d : dirty?
+ * z : zeroed?
+ * l : large?
+ * a : allocated?
+ *
+ * Following are example bit patterns for the three types of runs.
+ *
+ * r : run address
+ * s : run size
+ * x : don't care
+ * - : 0
+ * [cdzla] : bit set
+ *
+ * Unallocated:
+ * ssssssss ssssssss ssss---- --c-----
+ * xxxxxxxx xxxxxxxx xxxx---- ----d---
+ * ssssssss ssssssss ssss---- -----z--
+ *
+ * Small:
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ * rrrrrrrr rrrrrrrr rrrr---- -------a
+ *
+ * Large:
+ * ssssssss ssssssss ssss---- ------la
+ * -------- -------- -------- ------la
+ * -------- -------- -------- ------la
+ */
+ size_t bits;
+#ifdef MALLOC_DECOMMIT
+#define CHUNK_MAP_DECOMMITTED ((size_t)0x20U)
+#endif
+#define CHUNK_MAP_KEY ((size_t)0x10U)
+#define CHUNK_MAP_DIRTY ((size_t)0x08U)
+#define CHUNK_MAP_ZEROED ((size_t)0x04U)
+#define CHUNK_MAP_LARGE ((size_t)0x02U)
+#define CHUNK_MAP_ALLOCATED ((size_t)0x01U)
+};
+typedef rb_tree(arena_chunk_map_t) arena_avail_tree_t;
+typedef rb_tree(arena_chunk_map_t) arena_run_tree_t;
+
+/* Arena chunk header. */
+typedef struct arena_chunk_s arena_chunk_t;
+struct arena_chunk_s {
+ /* Arena that owns the chunk. */
+ arena_t *arena;
+
+ /* Linkage for the arena's chunks_dirty tree. */
+ rb_node(arena_chunk_t) link_dirty;
+
+ /* Number of dirty pages. */
+ size_t ndirty;
+
+ /* Map of pages within chunk that keeps track of free/large/small. */
+ arena_chunk_map_t map[1]; /* Dynamically sized. */
+};
+typedef rb_tree(arena_chunk_t) arena_chunk_tree_t;
+
+typedef struct arena_run_s arena_run_t;
+struct arena_run_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_RUN_MAGIC 0x384adf93
+#endif
+
+ /* Bin this run is associated with. */
+ arena_bin_t *bin;
+
+ /* Index of first element that might have a free region. */
+ unsigned regs_minelm;
+
+ /* Number of free regions in run. */
+ unsigned nfree;
+
+ /* Bitmask of in-use regions (0: in use, 1: free). */
+ unsigned regs_mask[1]; /* Dynamically sized. */
+};
+
+struct arena_bin_s {
+ /*
+ * Current run being used to service allocations of this bin's size
+ * class.
+ */
+ arena_run_t *runcur;
+
+ /*
+ * Tree of non-full runs. This tree is used when looking for an
+ * existing run when runcur is no longer usable. We choose the
+ * non-full run that is lowest in memory; this policy tends to keep
+ * objects packed well, and it can also help reduce the number of
+ * almost-empty chunks.
+ */
+ arena_run_tree_t runs;
+
+ /* Size of regions in a run for this bin's size class. */
+ size_t reg_size;
+
+ /* Total size of a run for this bin's size class. */
+ size_t run_size;
+
+ /* Total number of regions in a run for this bin's size class. */
+ uint32_t nregs;
+
+ /* Number of elements in a run's regs_mask for this bin's size class. */
+ uint32_t regs_mask_nelms;
+
+ /* Offset of first region in a run for this bin's size class. */
+ uint32_t reg0_offset;
+
+#ifdef MALLOC_STATS
+ /* Bin statistics. */
+ malloc_bin_stats_t stats;
+#endif
+};
+
+struct arena_s {
+#ifdef MALLOC_DEBUG
+ uint32_t magic;
+# define ARENA_MAGIC 0x947d3d24
+#endif
+
+ /* All operations on this arena require that lock be locked. */
+#ifdef MOZ_MEMORY
+ malloc_spinlock_t lock;
+#else
+ pthread_mutex_t lock;
+#endif
+
+#ifdef MALLOC_STATS
+ arena_stats_t stats;
+#endif
+
+ /*
+ * Chunk allocation sequence number, used to detect races with other
+ * threads during chunk allocation, and then discard unnecessary chunks.
+ */
+ uint64_t chunk_seq;
+
+ /* Tree of dirty-page-containing chunks this arena manages. */
+ arena_chunk_tree_t chunks_dirty;
+
+ /*
+ * In order to avoid rapid chunk allocation/deallocation when an arena
+ * oscillates right on the cusp of needing a new chunk, cache the most
+ * recently freed chunk. The spare is left in the arena's chunk trees
+ * until it is deleted.
+ *
+ * There is one spare chunk per arena, rather than one spare total, in
+ * order to avoid interactions between multiple threads that could make
+ * a single spare inadequate.
+ */
+ arena_chunk_t *spare;
+
+ /*
+ * Current count of pages within unused runs that are potentially
+ * dirty, and for which madvise(... MADV_FREE) has not been called. By
+ * tracking this, we can institute a limit on how much dirty unused
+ * memory is mapped for each arena.
+ */
+ size_t ndirty;
+
+ /*
+ * Size/address-ordered tree of this arena's available runs. This tree
+ * is used for first-best-fit run allocation.
+ */
+ arena_avail_tree_t runs_avail;
+
+#ifdef MALLOC_BALANCE
+ /*
+ * The arena load balancing machinery needs to keep track of how much
+ * lock contention there is. This value is exponentially averaged.
+ */
+ uint32_t contention;
+#endif
+
+ /*
+ * bins is used to store rings of free regions of the following sizes,
+ * assuming a 16-byte quantum, 4kB pagesize, and default MALLOC_OPTIONS.
+ *
+ * bins[i] | size |
+ * --------+------+
+ * 0 | 2 |
+ * 1 | 4 |
+ * 2 | 8 |
+ * --------+------+
+ * 3 | 16 |
+ * 4 | 32 |
+ * 5 | 48 |
+ * 6 | 64 |
+ * : :
+ * : :
+ * 33 | 496 |
+ * 34 | 512 |
+ * --------+------+
+ * 35 | 1024 |
+ * 36 | 2048 |
+ * --------+------+
+ */
+ arena_bin_t bins[1]; /* Dynamically sized. */
+};
+
+/******************************************************************************/
+/*
+ * Data.
+ */
+
+/* Number of CPUs. */
+static unsigned ncpus;
+
+/* VM page size. */
+static size_t pagesize;
+static size_t pagesize_mask;
+static size_t pagesize_2pow;
+
+/* Various bin-related settings. */
+static size_t bin_maxclass; /* Max size class for bins. */
+static unsigned ntbins; /* Number of (2^n)-spaced tiny bins. */
+static unsigned nqbins; /* Number of quantum-spaced bins. */
+static unsigned nsbins; /* Number of (2^n)-spaced sub-page bins. */
+static size_t small_min;
+static size_t small_max;
+
+/* Various quantum-related settings. */
+static size_t quantum;
+static size_t quantum_mask; /* (quantum - 1). */
+
+/* Various chunk-related settings. */
+static size_t chunksize;
+static size_t chunksize_mask; /* (chunksize - 1). */
+static size_t chunk_npages;
+static size_t arena_chunk_header_npages;
+static size_t arena_maxclass; /* Max size class for arenas. */
+
+/********/
+/*
+ * Chunks.
+ */
+
+#ifdef MALLOC_VALIDATE
+static malloc_rtree_t *chunk_rtree;
+#endif
+
+/* Protects chunk-related data structures. */
+static malloc_mutex_t huge_mtx;
+
+/* Tree of chunks that are stand-alone huge allocations. */
+static extent_tree_t huge;
+
+#ifdef MALLOC_STATS
+/* Huge allocation statistics. */
+static uint64_t huge_nmalloc;
+static uint64_t huge_ndalloc;
+static size_t huge_allocated;
+#endif
+
+/****************/
+/*
+ * Memory reserve.
+ */
+
+#ifdef MALLOC_PAGEFILE
+static char pagefile_templ[PATH_MAX];
+#endif
+
+/* Protects reserve-related data structures. */
+static malloc_mutex_t reserve_mtx;
+
+/*
+ * Bounds on acceptable reserve size, and current reserve size. Reserve
+ * depletion may cause (reserve_cur < reserve_min).
+ */
+static size_t reserve_min;
+static size_t reserve_cur;
+static size_t reserve_max;
+
+/* List of registered callbacks. */
+static ql_head(reserve_reg_t) reserve_regs;
+
+/*
+ * Condition notification sequence number, used to determine whether all
+ * registered callbacks have been notified of the most current condition.
+ */
+static uint64_t reserve_seq;
+
+/*
+ * Trees of chunks currently in the memory reserve. Depending on function,
+ * different tree orderings are needed, which is why there are two trees with
+ * the same contents.
+ */
+static extent_tree_t reserve_chunks_szad;
+static extent_tree_t reserve_chunks_ad;
+
+/****************************/
+/*
+ * base (internal allocation).
+ */
+
+/*
+ * Current pages that are being used for internal memory allocations. These
+ * pages are carved up in cacheline-size quanta, so that there is no chance of
+ * false cache line sharing.
+ */
+static void *base_pages;
+static void *base_next_addr;
+#ifdef MALLOC_DECOMMIT
+static void *base_next_decommitted;
+#endif
+static void *base_past_addr; /* Addr immediately past base_pages. */
+static extent_node_t *base_nodes;
+static reserve_reg_t *base_reserve_regs;
+static malloc_mutex_t base_mtx;
+#ifdef MALLOC_STATS
+static size_t base_mapped;
+#endif
+
+/********/
+/*
+ * Arenas.
+ */
+
+/*
+ * Arenas that are used to service external requests. Not all elements of the
+ * arenas array are necessarily used; arenas are created lazily as needed.
+ */
+static arena_t **arenas;
+static unsigned narenas;
+static unsigned narenas_2pow;
+#ifndef NO_TLS
+# ifdef MALLOC_BALANCE
+static unsigned narenas_2pow;
+# else
+static unsigned next_arena;
+# endif
+#endif
+#ifdef MOZ_MEMORY
+static malloc_spinlock_t arenas_lock; /* Protects arenas initialization. */
+#else
+static pthread_mutex_t arenas_lock; /* Protects arenas initialization. */
+#endif
+
+#ifndef NO_TLS
+/*
+ * Map of pthread_self() --> arenas[???], used for selecting an arena to use
+ * for allocations.
+ */
+#ifndef MOZ_MEMORY_WINDOWS
+static __thread arena_t *arenas_map;
+#endif
+#endif
+
+#ifdef MALLOC_STATS
+/* Chunk statistics. */
+static chunk_stats_t stats_chunks;
+#endif
+
+/*******************************/
+/*
+ * Runtime configuration options.
+ */
+const char *_malloc_options;
+
+#ifndef MALLOC_PRODUCTION
+static bool opt_abort = true;
+#ifdef MALLOC_FILL
+static bool opt_junk = true;
+#endif
+#else
+static bool opt_abort = false;
+#ifdef MALLOC_FILL
+static bool opt_junk = false;
+#endif
+#endif
+static size_t opt_dirty_max = DIRTY_MAX_DEFAULT;
+#ifdef MALLOC_BALANCE
+static uint64_t opt_balance_threshold = BALANCE_THRESHOLD_DEFAULT;
+#endif
+static bool opt_print_stats = false;
+static size_t opt_quantum_2pow = QUANTUM_2POW_MIN;
+static size_t opt_small_max_2pow = SMALL_MAX_2POW_DEFAULT;
+static size_t opt_chunk_2pow = CHUNK_2POW_DEFAULT;
+static int opt_reserve_min_lshift = 0;
+static int opt_reserve_range_lshift = 0;
+#ifdef MALLOC_PAGEFILE
+static bool opt_pagefile = false;
+#endif
+#ifdef MALLOC_UTRACE
+static bool opt_utrace = false;
+#endif
+#ifdef MALLOC_SYSV
+static bool opt_sysv = false;
+#endif
+#ifdef MALLOC_XMALLOC
+static bool opt_xmalloc = false;
+#endif
+#ifdef MALLOC_FILL
+static bool opt_zero = false;
+#endif
+static int opt_narenas_lshift = 0;
+
+#ifdef MALLOC_UTRACE
+typedef struct {
+ void *p;
+ size_t s;
+ void *r;
+} malloc_utrace_t;
+
+#define UTRACE(a, b, c) \
+ if (opt_utrace) { \
+ malloc_utrace_t ut; \
+ ut.p = (a); \
+ ut.s = (b); \
+ ut.r = (c); \
+ utrace(&ut, sizeof(ut)); \
+ }
+#else
+#define UTRACE(a, b, c)
+#endif
+
+/******************************************************************************/
+/*
+ * Begin function prototypes for non-inline static functions.
+ */
+
+static char *umax2s(uintmax_t x, char *s);
+static bool malloc_mutex_init(malloc_mutex_t *mutex);
+static bool malloc_spin_init(malloc_spinlock_t *lock);
+static void wrtmessage(const char *p1, const char *p2, const char *p3,
+ const char *p4);
+#ifdef MALLOC_STATS
+#ifdef MOZ_MEMORY_DARWIN
+/* Avoid namespace collision with OS X's malloc APIs. */
+#define malloc_printf moz_malloc_printf
+#endif
+static void malloc_printf(const char *format, ...);
+#endif
+static bool base_pages_alloc_mmap(size_t minsize);
+static bool base_pages_alloc(size_t minsize);
+static void *base_alloc(size_t size);
+static void *base_calloc(size_t number, size_t size);
+static extent_node_t *base_node_alloc(void);
+static void base_node_dealloc(extent_node_t *node);
+static reserve_reg_t *base_reserve_reg_alloc(void);
+static void base_reserve_reg_dealloc(reserve_reg_t *reg);
+#ifdef MALLOC_STATS
+static void stats_print(arena_t *arena);
+#endif
+static void *pages_map(void *addr, size_t size, int pfd);
+static void pages_unmap(void *addr, size_t size);
+static void *chunk_alloc_mmap(size_t size, bool pagefile);
+#ifdef MALLOC_PAGEFILE
+static int pagefile_init(size_t size);
+static void pagefile_close(int pfd);
+#endif
+static void *chunk_recycle_reserve(size_t size, bool zero);
+static void *chunk_alloc(size_t size, bool zero, bool pagefile);
+static extent_node_t *chunk_dealloc_reserve(void *chunk, size_t size);
+static void chunk_dealloc_mmap(void *chunk, size_t size);
+static void chunk_dealloc(void *chunk, size_t size);
+#ifndef NO_TLS
+static arena_t *choose_arena_hard(void);
+#endif
+static void arena_run_split(arena_t *arena, arena_run_t *run, size_t size,
+ bool large, bool zero);
+static void arena_chunk_init(arena_t *arena, arena_chunk_t *chunk);
+static void arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk);
+static arena_run_t *arena_run_alloc(arena_t *arena, arena_bin_t *bin,
+ size_t size, bool large, bool zero);
+static void arena_purge(arena_t *arena);
+static void arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty);
+static void arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize);
+static void arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk,
+ arena_run_t *run, size_t oldsize, size_t newsize, bool dirty);
+static arena_run_t *arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin);
+static void *arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin);
+static size_t arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size);
+#ifdef MALLOC_BALANCE
+static void arena_lock_balance_hard(arena_t *arena);
+#endif
+static void *arena_malloc_large(arena_t *arena, size_t size, bool zero);
+static void *arena_palloc(arena_t *arena, size_t alignment, size_t size,
+ size_t alloc_size);
+static size_t arena_salloc(const void *ptr);
+static void arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr);
+static void arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk,
+ void *ptr, size_t size, size_t oldsize);
+static bool arena_ralloc_large(void *ptr, size_t size, size_t oldsize);
+static void *arena_ralloc(void *ptr, size_t size, size_t oldsize);
+static bool arena_new(arena_t *arena);
+static arena_t *arenas_extend(unsigned ind);
+static void *huge_malloc(size_t size, bool zero);
+static void *huge_palloc(size_t alignment, size_t size);
+static void *huge_ralloc(void *ptr, size_t size, size_t oldsize);
+static void huge_dalloc(void *ptr);
+static void malloc_print_stats(void);
+#ifndef MOZ_MEMORY_WINDOWS
+static
+#endif
+bool malloc_init_hard(void);
+static void reserve_shrink(void);
+static uint64_t reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq);
+static uint64_t reserve_crit(size_t size, const char *fname, uint64_t seq);
+static void reserve_fail(size_t size, const char *fname);
+
+void _malloc_prefork(void);
+void _malloc_postfork(void);
+
+/*
+ * End function prototypes.
+ */
+/******************************************************************************/
+
+/*
+ * umax2s() provides minimal integer printing functionality, which is
+ * especially useful for situations where allocation in vsnprintf() calls would
+ * potentially cause deadlock.
+ */
+#define UMAX2S_BUFSIZE 21
+static char *
+umax2s(uintmax_t x, char *s)
+{
+ unsigned i;
+
+ i = UMAX2S_BUFSIZE - 1;
+ s[i] = '\0';
+ do {
+ i--;
+ s[i] = "0123456789"[x % 10];
+ x /= 10;
+ } while (x > 0);
+
+ return (&s[i]);
+}
+
+static void
+wrtmessage(const char *p1, const char *p2, const char *p3, const char *p4)
+{
+#ifdef MOZ_MEMORY_WINCE
+ wchar_t buf[1024];
+#define WRT_PRINT(s) \
+ MultiByteToWideChar(CP_ACP, 0, s, -1, buf, 1024); \
+ OutputDebugStringW(buf)
+
+ WRT_PRINT(p1);
+ WRT_PRINT(p2);
+ WRT_PRINT(p3);
+ WRT_PRINT(p4);
+#else
+#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_WINDOWS)
+#define _write write
+#endif
+ _write(STDERR_FILENO, p1, (unsigned int) strlen(p1));
+ _write(STDERR_FILENO, p2, (unsigned int) strlen(p2));
+ _write(STDERR_FILENO, p3, (unsigned int) strlen(p3));
+ _write(STDERR_FILENO, p4, (unsigned int) strlen(p4));
+#endif
+
+}
+
+#define _malloc_message malloc_message
+
+void (*_malloc_message)(const char *p1, const char *p2, const char *p3,
+ const char *p4) = wrtmessage;
+
+#ifdef MALLOC_DEBUG
+# define assert(e) do { \
+ if (!(e)) { \
+ char line_buf[UMAX2S_BUFSIZE]; \
+ _malloc_message(__FILE__, ":", umax2s(__LINE__, \
+ line_buf), ": Failed assertion: "); \
+ _malloc_message("\"", #e, "\"\n", ""); \
+ abort(); \
+ } \
+} while (0)
+#else
+#define assert(e)
+#endif
+
+/******************************************************************************/
+/*
+ * Begin mutex. We can't use normal pthread mutexes in all places, because
+ * they require malloc()ed memory, which causes bootstrapping issues in some
+ * cases.
+ */
+
+static bool
+malloc_mutex_init(malloc_mutex_t *mutex)
+{
+#if defined(MOZ_MEMORY_WINCE)
+ InitializeCriticalSection(mutex);
+#elif defined(MOZ_MEMORY_WINDOWS)
+ // XXXMB
+ //if (__isthreaded)
+ // if (! __crtInitCritSecAndSpinCount(mutex, _CRT_SPINCOUNT))
+ // return (true);
+ if (!InitializeCriticalSectionAndSpinCount(mutex, 4000))
+ return true;
+#elif defined(MOZ_MEMORY_DARWIN)
+ mutex->lock = OS_SPINLOCK_INIT;
+#elif defined(MOZ_MEMORY_LINUX)
+ pthread_mutexattr_t attr;
+ if (pthread_mutexattr_init(&attr) != 0)
+ return (true);
+ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+ if (pthread_mutex_init(mutex, &attr) != 0) {
+ pthread_mutexattr_destroy(&attr);
+ return (true);
+ }
+ pthread_mutexattr_destroy(&attr);
+#elif defined(MOZ_MEMORY)
+ if (pthread_mutex_init(mutex, NULL) != 0)
+ return (true);
+#else
+ static const spinlock_t lock = _SPINLOCK_INITIALIZER;
+
+ mutex->lock = lock;
+#endif
+ return (false);
+}
+
+static inline void
+malloc_mutex_lock(malloc_mutex_t *mutex)
+{
+
+#if defined(MOZ_MEMORY_WINDOWS)
+ EnterCriticalSection(mutex);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockLock(&mutex->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_lock(mutex);
+#else
+ if (__isthreaded)
+ _SPINLOCK(&mutex->lock);
+#endif
+}
+
+static inline void
+malloc_mutex_unlock(malloc_mutex_t *mutex)
+{
+
+#if defined(MOZ_MEMORY_WINDOWS)
+ LeaveCriticalSection(mutex);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockUnlock(&mutex->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_unlock(mutex);
+#else
+ if (__isthreaded)
+ _SPINUNLOCK(&mutex->lock);
+#endif
+}
+
+static bool
+malloc_spin_init(malloc_spinlock_t *lock)
+{
+#if defined(MOZ_MEMORY_WINCE)
+ InitializeCriticalSection(lock);
+#elif defined(MOZ_MEMORY_WINDOWS)
+ // XXXMB
+ //if (__isthreaded)
+ // if (! __crtInitCritSecAndSpinCount(lock, _CRT_SPINCOUNT))
+ // return (true);
+#elif defined(MOZ_MEMORY_DARWIN)
+ lock->lock = OS_SPINLOCK_INIT;
+#elif defined(MOZ_MEMORY_LINUX)
+ pthread_mutexattr_t attr;
+ if (pthread_mutexattr_init(&attr) != 0)
+ return (true);
+ pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_ADAPTIVE_NP);
+ if (pthread_mutex_init(lock, &attr) != 0) {
+ pthread_mutexattr_destroy(&attr);
+ return (true);
+ }
+ pthread_mutexattr_destroy(&attr);
+#elif defined(MOZ_MEMORY)
+ if (pthread_mutex_init(lock, NULL) != 0)
+ return (true);
+#else
+ lock->lock = _SPINLOCK_INITIALIZER;
+#endif
+ return (false);
+}
+
+static inline void
+malloc_spin_lock(malloc_spinlock_t *lock)
+{
+
+#if defined(MOZ_MEMORY_WINDOWS)
+ EnterCriticalSection(lock);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockLock(&lock->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_lock(lock);
+#else
+ if (__isthreaded)
+ _SPINLOCK(&lock->lock);
+#endif
+}
+
+static inline void
+malloc_spin_unlock(malloc_spinlock_t *lock)
+{
+#if defined(MOZ_MEMORY_WINDOWS)
+ LeaveCriticalSection(lock);
+#elif defined(MOZ_MEMORY_DARWIN)
+ OSSpinLockUnlock(&lock->lock);
+#elif defined(MOZ_MEMORY)
+ pthread_mutex_unlock(lock);
+#else
+ if (__isthreaded)
+ _SPINUNLOCK(&lock->lock);
+#endif
+}
+
+/*
+ * End mutex.
+ */
+/******************************************************************************/
+/*
+ * Begin spin lock. Spin locks here are actually adaptive mutexes that block
+ * after a period of spinning, because unbounded spinning would allow for
+ * priority inversion.
+ */
+
+#if defined(MOZ_MEMORY) && !defined(MOZ_MEMORY_DARWIN)
+# define malloc_spin_init malloc_mutex_init
+# define malloc_spin_lock malloc_mutex_lock
+# define malloc_spin_unlock malloc_mutex_unlock
+#endif
+
+#ifndef MOZ_MEMORY
+/*
+ * We use an unpublished interface to initialize pthread mutexes with an
+ * allocation callback, in order to avoid infinite recursion.
+ */
+int _pthread_mutex_init_calloc_cb(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t));
+
+__weak_reference(_pthread_mutex_init_calloc_cb_stub,
+ _pthread_mutex_init_calloc_cb);
+
+int
+_pthread_mutex_init_calloc_cb_stub(pthread_mutex_t *mutex,
+ void *(calloc_cb)(size_t, size_t))
+{
+
+ return (0);
+}
+
+static bool
+malloc_spin_init(pthread_mutex_t *lock)
+{
+
+ if (_pthread_mutex_init_calloc_cb(lock, base_calloc) != 0)
+ return (true);
+
+ return (false);
+}
+
+static inline unsigned
+malloc_spin_lock(pthread_mutex_t *lock)
+{
+ unsigned ret = 0;
+
+ if (__isthreaded) {
+ if (_pthread_mutex_trylock(lock) != 0) {
+ unsigned i;
+ volatile unsigned j;
+
+ /* Exponentially back off. */
+ for (i = 1; i <= SPIN_LIMIT_2POW; i++) {
+ for (j = 0; j < (1U << i); j++)
+ ret++;
+
+ CPU_SPINWAIT;
+ if (_pthread_mutex_trylock(lock) == 0)
+ return (ret);
+ }
+
+ /*
+ * Spinning failed. Block until the lock becomes
+ * available, in order to avoid indefinite priority
+ * inversion.
+ */
+ _pthread_mutex_lock(lock);
+ assert((ret << BLOCK_COST_2POW) != 0);
+ return (ret << BLOCK_COST_2POW);
+ }
+ }
+
+ return (ret);
+}
+
+static inline void
+malloc_spin_unlock(pthread_mutex_t *lock)
+{
+
+ if (__isthreaded)
+ _pthread_mutex_unlock(lock);
+}
+#endif
+
+/*
+ * End spin lock.
+ */
+/******************************************************************************/
+/*
+ * Begin Utility functions/macros.
+ */
+
+/* Return the chunk address for allocation address a. */
+#define CHUNK_ADDR2BASE(a) \
+ ((void *)((uintptr_t)(a) & ~chunksize_mask))
+
+/* Return the chunk offset of address a. */
+#define CHUNK_ADDR2OFFSET(a) \
+ ((size_t)((uintptr_t)(a) & chunksize_mask))
+
+/* Return the smallest chunk multiple that is >= s. */
+#define CHUNK_CEILING(s) \
+ (((s) + chunksize_mask) & ~chunksize_mask)
+
+/* Return the smallest cacheline multiple that is >= s. */
+#define CACHELINE_CEILING(s) \
+ (((s) + (CACHELINE - 1)) & ~(CACHELINE - 1))
+
+/* Return the smallest quantum multiple that is >= a. */
+#define QUANTUM_CEILING(a) \
+ (((a) + quantum_mask) & ~quantum_mask)
+
+/* Return the smallest pagesize multiple that is >= s. */
+#define PAGE_CEILING(s) \
+ (((s) + pagesize_mask) & ~pagesize_mask)
+
+/* Compute the smallest power of 2 that is >= x. */
+static inline size_t
+pow2_ceil(size_t x)
+{
+
+ x--;
+ x |= x >> 1;
+ x |= x >> 2;
+ x |= x >> 4;
+ x |= x >> 8;
+ x |= x >> 16;
+#if (SIZEOF_PTR == 8)
+ x |= x >> 32;
+#endif
+ x++;
+ return (x);
+}
+
+#ifdef MALLOC_BALANCE
+/*
+ * Use a simple linear congruential pseudo-random number generator:
+ *
+ * prn(y) = (a*x + c) % m
+ *
+ * where the following constants ensure maximal period:
+ *
+ * a == Odd number (relatively prime to 2^n), and (a-1) is a multiple of 4.
+ * c == Odd number (relatively prime to 2^n).
+ * m == 2^32
+ *
+ * See Knuth's TAOCP 3rd Ed., Vol. 2, pg. 17 for details on these constraints.
+ *
+ * This choice of m has the disadvantage that the quality of the bits is
+ * proportional to bit position. For example. the lowest bit has a cycle of 2,
+ * the next has a cycle of 4, etc. For this reason, we prefer to use the upper
+ * bits.
+ */
+# define PRN_DEFINE(suffix, var, a, c) \
+static inline void \
+sprn_##suffix(uint32_t seed) \
+{ \
+ var = seed; \
+} \
+ \
+static inline uint32_t \
+prn_##suffix(uint32_t lg_range) \
+{ \
+ uint32_t ret, x; \
+ \
+ assert(lg_range > 0); \
+ assert(lg_range <= 32); \
+ \
+ x = (var * (a)) + (c); \
+ var = x; \
+ ret = x >> (32 - lg_range); \
+ \
+ return (ret); \
+}
+# define SPRN(suffix, seed) sprn_##suffix(seed)
+# define PRN(suffix, lg_range) prn_##suffix(lg_range)
+#endif
+
+#ifdef MALLOC_BALANCE
+/* Define the PRNG used for arena assignment. */
+static __thread uint32_t balance_x;
+PRN_DEFINE(balance, balance_x, 1297, 1301)
+#endif
+
+#ifdef MALLOC_UTRACE
+static int
+utrace(const void *addr, size_t len)
+{
+ malloc_utrace_t *ut = (malloc_utrace_t *)addr;
+
+ assert(len == sizeof(malloc_utrace_t));
+
+ if (ut->p == NULL && ut->s == 0 && ut->r == NULL)
+ malloc_printf("%d x USER malloc_init()\n", getpid());
+ else if (ut->p == NULL && ut->r != NULL) {
+ malloc_printf("%d x USER %p = malloc(%zu)\n", getpid(), ut->r,
+ ut->s);
+ } else if (ut->p != NULL && ut->r != NULL) {
+ malloc_printf("%d x USER %p = realloc(%p, %zu)\n", getpid(),
+ ut->r, ut->p, ut->s);
+ } else
+ malloc_printf("%d x USER free(%p)\n", getpid(), ut->p);
+
+ return (0);
+}
+#endif
+
+static inline const char *
+_getprogname(void)
+{
+
+ return ("<jemalloc>");
+}
+
+#ifdef MALLOC_STATS
+/*
+ * Print to stderr in such a way as to (hopefully) avoid memory allocation.
+ */
+static void
+malloc_printf(const char *format, ...)
+{
+#ifndef WINCE
+ char buf[4096];
+ va_list ap;
+
+ va_start(ap, format);
+ vsnprintf(buf, sizeof(buf), format, ap);
+ va_end(ap);
+ _malloc_message(buf, "", "", "");
+#endif
+}
+#endif
+
+/******************************************************************************/
+
+#ifdef MALLOC_DECOMMIT
+static inline void
+pages_decommit(void *addr, size_t size)
+{
+
+#ifdef MOZ_MEMORY_WINDOWS
+ VirtualFree(addr, size, MEM_DECOMMIT);
+#else
+ if (mmap(addr, size, PROT_NONE, MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1,
+ 0) == MAP_FAILED)
+ abort();
+#endif
+}
+
+static inline void
+pages_commit(void *addr, size_t size)
+{
+
+# ifdef MOZ_MEMORY_WINDOWS
+ VirtualAlloc(addr, size, MEM_COMMIT, PAGE_READWRITE);
+# else
+ if (mmap(addr, size, PROT_READ | PROT_WRITE, MAP_FIXED | MAP_PRIVATE |
+ MAP_ANON, -1, 0) == MAP_FAILED)
+ abort();
+# endif
+}
+#endif
+
+static bool
+base_pages_alloc_mmap(size_t minsize)
+{
+ bool ret;
+ size_t csize;
+#ifdef MALLOC_DECOMMIT
+ size_t pminsize;
+#endif
+ int pfd;
+
+ assert(minsize != 0);
+ csize = CHUNK_CEILING(minsize);
+#ifdef MALLOC_PAGEFILE
+ if (opt_pagefile) {
+ pfd = pagefile_init(csize);
+ if (pfd == -1)
+ return (true);
+ } else
+#endif
+ pfd = -1;
+ base_pages = pages_map(NULL, csize, pfd);
+ if (base_pages == NULL) {
+ ret = true;
+ goto RETURN;
+ }
+ base_next_addr = base_pages;
+ base_past_addr = (void *)((uintptr_t)base_pages + csize);
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Leave enough pages for minsize committed, since otherwise they would
+ * have to be immediately recommitted.
+ */
+ pminsize = PAGE_CEILING(minsize);
+ base_next_decommitted = (void *)((uintptr_t)base_pages + pminsize);
+ if (pminsize < csize)
+ pages_decommit(base_next_decommitted, csize - pminsize);
+#endif
+#ifdef MALLOC_STATS
+ base_mapped += csize;
+#endif
+
+ ret = false;
+RETURN:
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1)
+ pagefile_close(pfd);
+#endif
+ return (false);
+}
+
+static bool
+base_pages_alloc(size_t minsize)
+{
+
+ if (base_pages_alloc_mmap(minsize) == false)
+ return (false);
+
+ return (true);
+}
+
+static void *
+base_alloc(size_t size)
+{
+ void *ret;
+ size_t csize;
+
+ /* Round size up to nearest multiple of the cacheline size. */
+ csize = CACHELINE_CEILING(size);
+
+ malloc_mutex_lock(&base_mtx);
+ /* Make sure there's enough space for the allocation. */
+ if ((uintptr_t)base_next_addr + csize > (uintptr_t)base_past_addr) {
+ if (base_pages_alloc(csize)) {
+ malloc_mutex_unlock(&base_mtx);
+ return (NULL);
+ }
+ }
+ /* Allocate. */
+ ret = base_next_addr;
+ base_next_addr = (void *)((uintptr_t)base_next_addr + csize);
+#ifdef MALLOC_DECOMMIT
+ /* Make sure enough pages are committed for the new allocation. */
+ if ((uintptr_t)base_next_addr > (uintptr_t)base_next_decommitted) {
+ void *pbase_next_addr =
+ (void *)(PAGE_CEILING((uintptr_t)base_next_addr));
+
+ pages_commit(base_next_decommitted, (uintptr_t)pbase_next_addr -
+ (uintptr_t)base_next_decommitted);
+ base_next_decommitted = pbase_next_addr;
+ }
+#endif
+ malloc_mutex_unlock(&base_mtx);
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false);
+
+ return (ret);
+}
+
+static void *
+base_calloc(size_t number, size_t size)
+{
+ void *ret;
+
+ ret = base_alloc(number * size);
+#ifdef MALLOC_VALGRIND
+ if (ret != NULL) {
+ VALGRIND_FREELIKE_BLOCK(ret, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, true);
+ }
+#endif
+ memset(ret, 0, number * size);
+
+ return (ret);
+}
+
+static extent_node_t *
+base_node_alloc(void)
+{
+ extent_node_t *ret;
+
+ malloc_mutex_lock(&base_mtx);
+ if (base_nodes != NULL) {
+ ret = base_nodes;
+ base_nodes = *(extent_node_t **)ret;
+ VALGRIND_FREELIKE_BLOCK(ret, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(extent_node_t), 0, false);
+ malloc_mutex_unlock(&base_mtx);
+ } else {
+ malloc_mutex_unlock(&base_mtx);
+ ret = (extent_node_t *)base_alloc(sizeof(extent_node_t));
+ }
+
+ return (ret);
+}
+
+static void
+base_node_dealloc(extent_node_t *node)
+{
+
+ malloc_mutex_lock(&base_mtx);
+ VALGRIND_FREELIKE_BLOCK(node, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(node, sizeof(extent_node_t *), 0, false);
+ *(extent_node_t **)node = base_nodes;
+ base_nodes = node;
+ malloc_mutex_unlock(&base_mtx);
+}
+
+static reserve_reg_t *
+base_reserve_reg_alloc(void)
+{
+ reserve_reg_t *ret;
+
+ malloc_mutex_lock(&base_mtx);
+ if (base_reserve_regs != NULL) {
+ ret = base_reserve_regs;
+ base_reserve_regs = *(reserve_reg_t **)ret;
+ VALGRIND_FREELIKE_BLOCK(ret, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(ret, sizeof(reserve_reg_t), 0, false);
+ malloc_mutex_unlock(&base_mtx);
+ } else {
+ malloc_mutex_unlock(&base_mtx);
+ ret = (reserve_reg_t *)base_alloc(sizeof(reserve_reg_t));
+ }
+
+ return (ret);
+}
+
+static void
+base_reserve_reg_dealloc(reserve_reg_t *reg)
+{
+
+ malloc_mutex_lock(&base_mtx);
+ VALGRIND_FREELIKE_BLOCK(reg, 0);
+ VALGRIND_MALLOCLIKE_BLOCK(reg, sizeof(reserve_reg_t *), 0, false);
+ *(reserve_reg_t **)reg = base_reserve_regs;
+ base_reserve_regs = reg;
+ malloc_mutex_unlock(&base_mtx);
+}
+
+/******************************************************************************/
+
+#ifdef MALLOC_STATS
+static void
+stats_print(arena_t *arena)
+{
+ unsigned i, gap_start;
+
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf("dirty: %Iu page%s dirty, %I64u sweep%s,"
+ " %I64u madvise%s, %I64u page%s purged\n",
+ arena->ndirty, arena->ndirty == 1 ? "" : "s",
+ arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+ arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+ arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+# ifdef MALLOC_DECOMMIT
+ malloc_printf("decommit: %I64u decommit%s, %I64u commit%s,"
+ " %I64u page%s decommitted\n",
+ arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
+ arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
+ arena->stats.decommitted,
+ (arena->stats.decommitted == 1) ? "" : "s");
+# endif
+
+ malloc_printf(" allocated nmalloc ndalloc\n");
+ malloc_printf("small: %12Iu %12I64u %12I64u\n",
+ arena->stats.allocated_small, arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("large: %12Iu %12I64u %12I64u\n",
+ arena->stats.allocated_large, arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12Iu %12I64u %12I64u\n",
+ arena->stats.allocated_small + arena->stats.allocated_large,
+ arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+ malloc_printf("mapped: %12Iu\n", arena->stats.mapped);
+#else
+ malloc_printf("dirty: %zu page%s dirty, %llu sweep%s,"
+ " %llu madvise%s, %llu page%s purged\n",
+ arena->ndirty, arena->ndirty == 1 ? "" : "s",
+ arena->stats.npurge, arena->stats.npurge == 1 ? "" : "s",
+ arena->stats.nmadvise, arena->stats.nmadvise == 1 ? "" : "s",
+ arena->stats.purged, arena->stats.purged == 1 ? "" : "s");
+# ifdef MALLOC_DECOMMIT
+ malloc_printf("decommit: %llu decommit%s, %llu commit%s,"
+ " %llu page%s decommitted\n",
+ arena->stats.ndecommit, (arena->stats.ndecommit == 1) ? "" : "s",
+ arena->stats.ncommit, (arena->stats.ncommit == 1) ? "" : "s",
+ arena->stats.decommitted,
+ (arena->stats.decommitted == 1) ? "" : "s");
+# endif
+
+ malloc_printf(" allocated nmalloc ndalloc\n");
+ malloc_printf("small: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small, arena->stats.nmalloc_small,
+ arena->stats.ndalloc_small);
+ malloc_printf("large: %12zu %12llu %12llu\n",
+ arena->stats.allocated_large, arena->stats.nmalloc_large,
+ arena->stats.ndalloc_large);
+ malloc_printf("total: %12zu %12llu %12llu\n",
+ arena->stats.allocated_small + arena->stats.allocated_large,
+ arena->stats.nmalloc_small + arena->stats.nmalloc_large,
+ arena->stats.ndalloc_small + arena->stats.ndalloc_large);
+ malloc_printf("mapped: %12zu\n", arena->stats.mapped);
+#endif
+ malloc_printf("bins: bin size regs pgs requests newruns"
+ " reruns maxruns curruns\n");
+ for (i = 0, gap_start = UINT_MAX; i < ntbins + nqbins + nsbins; i++) {
+ if (arena->bins[i].stats.nrequests == 0) {
+ if (gap_start == UINT_MAX)
+ gap_start = i;
+ } else {
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n",
+ gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ gap_start = UINT_MAX;
+ }
+ malloc_printf(
+#if defined(MOZ_MEMORY_WINDOWS)
+ "%13u %1s %4u %4u %3u %9I64u %9I64u"
+ " %9I64u %7u %7u\n",
+#else
+ "%13u %1s %4u %4u %3u %9llu %9llu"
+ " %9llu %7lu %7lu\n",
+#endif
+ i,
+ i < ntbins ? "T" : i < ntbins + nqbins ? "Q" : "S",
+ arena->bins[i].reg_size,
+ arena->bins[i].nregs,
+ arena->bins[i].run_size >> pagesize_2pow,
+ arena->bins[i].stats.nrequests,
+ arena->bins[i].stats.nruns,
+ arena->bins[i].stats.reruns,
+ arena->bins[i].stats.highruns,
+ arena->bins[i].stats.curruns);
+ }
+ }
+ if (gap_start != UINT_MAX) {
+ if (i > gap_start + 1) {
+ /* Gap of more than one size class. */
+ malloc_printf("[%u..%u]\n", gap_start, i - 1);
+ } else {
+ /* Gap of one size class. */
+ malloc_printf("[%u]\n", gap_start);
+ }
+ }
+}
+#endif
+
+/*
+ * End Utility functions/macros.
+ */
+/******************************************************************************/
+/*
+ * Begin extent tree code.
+ */
+
+static inline int
+extent_szad_comp(extent_node_t *a, extent_node_t *b)
+{
+ int ret;
+ size_t a_size = a->size;
+ size_t b_size = b->size;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ ret = (a_addr > b_addr) - (a_addr < b_addr);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_szad_, extent_tree_t, extent_node_t,
+ link_szad, extent_szad_comp)
+
+static inline int
+extent_ad_comp(extent_node_t *a, extent_node_t *b)
+{
+ uintptr_t a_addr = (uintptr_t)a->addr;
+ uintptr_t b_addr = (uintptr_t)b->addr;
+
+ return ((a_addr > b_addr) - (a_addr < b_addr));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, extent_tree_ad_, extent_tree_t, extent_node_t, link_ad,
+ extent_ad_comp)
+
+/*
+ * End extent tree code.
+ */
+/******************************************************************************/
+/*
+ * Begin chunk management functions.
+ */
+
+#ifdef MOZ_MEMORY_WINDOWS
+#ifdef MOZ_MEMORY_WINCE
+#define ALIGN_ADDR2OFFSET(al, ad) \
+ ((uintptr_t)ad & (al - 1))
+static void *
+pages_map_align(size_t size, int pfd, size_t alignment)
+{
+
+ void *ret;
+ int offset;
+ if (size % alignment)
+ size += (alignment - (size % alignment));
+ assert(size >= alignment);
+ ret = pages_map(NULL, size, pfd);
+ offset = ALIGN_ADDR2OFFSET(alignment, ret);
+ if (offset) {
+ /* try to over allocate by the ammount we're offset */
+ void *tmp;
+ pages_unmap(ret, size);
+ tmp = VirtualAlloc(NULL, size + alignment - offset,
+ MEM_RESERVE, PAGE_NOACCESS);
+ if (offset == ALIGN_ADDR2OFFSET(alignment, tmp))
+ ret = VirtualAlloc((void*)((intptr_t)tmp + alignment
+ - offset), size, MEM_COMMIT,
+ PAGE_READWRITE);
+ else
+ VirtualFree(tmp, 0, MEM_RELEASE);
+ offset = ALIGN_ADDR2OFFSET(alignment, ret);
+
+
+ if (offset) {
+ /* over allocate to ensure we have an aligned region */
+ ret = VirtualAlloc(NULL, size + alignment, MEM_RESERVE,
+ PAGE_NOACCESS);
+ offset = ALIGN_ADDR2OFFSET(alignment, ret);
+ ret = VirtualAlloc((void*)((intptr_t)ret +
+ alignment - offset),
+ size, MEM_COMMIT, PAGE_READWRITE);
+ }
+ }
+ return (ret);
+}
+#endif
+
+static void *
+pages_map(void *addr, size_t size, int pfd)
+{
+ void *ret = NULL;
+#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
+ void *va_ret;
+ assert(addr == NULL);
+ va_ret = VirtualAlloc(addr, size, MEM_RESERVE, PAGE_NOACCESS);
+ if (va_ret)
+ ret = VirtualAlloc(va_ret, size, MEM_COMMIT, PAGE_READWRITE);
+ assert(va_ret == ret);
+#else
+ ret = VirtualAlloc(addr, size, MEM_COMMIT | MEM_RESERVE,
+ PAGE_READWRITE);
+#endif
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+ if (VirtualFree(addr, 0, MEM_RELEASE) == 0) {
+#if defined(MOZ_MEMORY_WINCE) && !defined(MOZ_MEMORY_WINCE6)
+ if (GetLastError() == ERROR_INVALID_PARAMETER) {
+ MEMORY_BASIC_INFORMATION info;
+ VirtualQuery(addr, &info, sizeof(info));
+ if (VirtualFree(info.AllocationBase, 0, MEM_RELEASE))
+ return;
+ }
+#endif
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in VirtualFree()\n", "", "");
+ if (opt_abort)
+ abort();
+ }
+}
+#elif (defined(MOZ_MEMORY_DARWIN))
+static void *
+pages_map(void *addr, size_t size, int pfd)
+{
+ void *ret;
+ kern_return_t err;
+ int flags;
+
+ if (addr != NULL) {
+ ret = addr;
+ flags = 0;
+ } else
+ flags = VM_FLAGS_ANYWHERE;
+
+ err = vm_allocate((vm_map_t)mach_task_self(), (vm_address_t *)&ret,
+ (vm_size_t)size, flags);
+ if (err != KERN_SUCCESS)
+ ret = NULL;
+
+ assert(ret == NULL || (addr == NULL && ret != addr)
+ || (addr != NULL && ret == addr));
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+ kern_return_t err;
+
+ err = vm_deallocate((vm_map_t)mach_task_self(), (vm_address_t)addr,
+ (vm_size_t)size);
+ if (err != KERN_SUCCESS) {
+ malloc_message(_getprogname(),
+ ": (malloc) Error in vm_deallocate(): ",
+ mach_error_string(err), "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+
+#define VM_COPY_MIN (pagesize << 5)
+static inline void
+pages_copy(void *dest, const void *src, size_t n)
+{
+
+ assert((void *)((uintptr_t)dest & ~pagesize_mask) == dest);
+ assert(n >= VM_COPY_MIN);
+ assert((void *)((uintptr_t)src & ~pagesize_mask) == src);
+
+ vm_copy(mach_task_self(), (vm_address_t)src, (vm_size_t)n,
+ (vm_address_t)dest);
+}
+#else /* MOZ_MEMORY_DARWIN */
+#ifdef JEMALLOC_USES_MAP_ALIGN
+static void *
+pages_map_align(size_t size, int pfd, size_t alignment)
+{
+ void *ret;
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1) {
+ ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_NOSYNC | MAP_ALIGN, pfd, 0);
+ } else
+#endif
+ {
+ ret = mmap((void *)alignment, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_NOSYNC | MAP_ALIGN | MAP_ANON, -1, 0);
+ }
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED)
+ ret = NULL;
+ return (ret);
+}
+#endif
+
+static void *
+pages_map(void *addr, size_t size, int pfd)
+{
+ void *ret;
+
+ /*
+ * We don't use MAP_FIXED here, because it can cause the *replacement*
+ * of existing mappings, and we only want to create new mappings.
+ */
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1) {
+ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_NOSYNC, pfd, 0);
+ } else
+#endif
+ {
+ ret = mmap(addr, size, PROT_READ | PROT_WRITE, MAP_PRIVATE |
+ MAP_ANON, -1, 0);
+ }
+ assert(ret != NULL);
+
+ if (ret == MAP_FAILED)
+ ret = NULL;
+ else if (addr != NULL && ret != addr) {
+ /*
+ * We succeeded in mapping memory, but not in the right place.
+ */
+ if (munmap(ret, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+ ret = NULL;
+ }
+
+ assert(ret == NULL || (addr == NULL && ret != addr)
+ || (addr != NULL && ret == addr));
+ return (ret);
+}
+
+static void
+pages_unmap(void *addr, size_t size)
+{
+
+ if (munmap(addr, size) == -1) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in munmap(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+#endif
+
+#ifdef MALLOC_VALIDATE
+static inline malloc_rtree_t *
+malloc_rtree_new(unsigned bits)
+{
+ malloc_rtree_t *ret;
+ unsigned bits_per_level, height, i;
+
+ bits_per_level = ffs(pow2_ceil((MALLOC_RTREE_NODESIZE /
+ sizeof(void *)))) - 1;
+ height = bits / bits_per_level;
+ if (height * bits_per_level != bits)
+ height++;
+ assert(height * bits_per_level >= bits);
+
+ ret = (malloc_rtree_t*)base_calloc(1, sizeof(malloc_rtree_t) + (sizeof(unsigned) *
+ (height - 1)));
+ if (ret == NULL)
+ return (NULL);
+
+ malloc_spin_init(&ret->lock);
+ ret->height = height;
+ if (bits_per_level * height > bits)
+ ret->level2bits[0] = bits % bits_per_level;
+ else
+ ret->level2bits[0] = bits_per_level;
+ for (i = 1; i < height; i++)
+ ret->level2bits[i] = bits_per_level;
+
+ ret->root = (void**)base_calloc(1, sizeof(void *) << ret->level2bits[0]);
+ if (ret->root == NULL) {
+ /*
+ * We leak the rtree here, since there's no generic base
+ * deallocation.
+ */
+ return (NULL);
+ }
+
+ return (ret);
+}
+
+/* The least significant bits of the key are ignored. */
+static inline void *
+malloc_rtree_get(malloc_rtree_t *rtree, uintptr_t key)
+{
+ void *ret;
+ uintptr_t subkey;
+ unsigned i, lshift, height, bits;
+ void **node, **child;
+
+ malloc_spin_lock(&rtree->lock);
+ for (i = lshift = 0, height = rtree->height, node = rtree->root;
+ i < height - 1;
+ i++, lshift += bits, node = child) {
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ child = (void**)node[subkey];
+ if (child == NULL) {
+ malloc_spin_unlock(&rtree->lock);
+ return (NULL);
+ }
+ }
+
+ /* node is a leaf, so it contains values rather than node pointers. */
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ ret = node[subkey];
+ malloc_spin_unlock(&rtree->lock);
+
+ return (ret);
+}
+
+static inline bool
+malloc_rtree_set(malloc_rtree_t *rtree, uintptr_t key, void *val)
+{
+ uintptr_t subkey;
+ unsigned i, lshift, height, bits;
+ void **node, **child;
+
+ malloc_spin_lock(&rtree->lock);
+ for (i = lshift = 0, height = rtree->height, node = rtree->root;
+ i < height - 1;
+ i++, lshift += bits, node = child) {
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ child = (void**)node[subkey];
+ if (child == NULL) {
+ child = (void**)base_calloc(1, sizeof(void *) <<
+ rtree->level2bits[i+1]);
+ if (child == NULL) {
+ malloc_spin_unlock(&rtree->lock);
+ return (true);
+ }
+ node[subkey] = child;
+ }
+ }
+
+ /* node is a leaf, so it contains values rather than node pointers. */
+ bits = rtree->level2bits[i];
+ subkey = (key << lshift) >> ((SIZEOF_PTR << 3) - bits);
+ node[subkey] = val;
+ malloc_spin_unlock(&rtree->lock);
+
+ return (false);
+}
+#endif
+
+static void *
+chunk_alloc_mmap(size_t size, bool pagefile)
+{
+ void *ret;
+#ifndef JEMALLOC_USES_MAP_ALIGN
+ size_t offset;
+#endif
+ int pfd;
+
+#ifdef MALLOC_PAGEFILE
+ if (opt_pagefile && pagefile) {
+ pfd = pagefile_init(size);
+ if (pfd == -1)
+ return (NULL);
+ } else
+#endif
+ pfd = -1;
+
+ /*
+ * Windows requires that there be a 1:1 mapping between VM
+ * allocation/deallocation operations. Therefore, take care here to
+ * acquire the final result via one mapping operation. This means
+ * unmapping any preliminary result that is not correctly aligned.
+ *
+ * The MALLOC_PAGEFILE code also benefits from this mapping algorithm,
+ * since it reduces the number of page files.
+ */
+
+#ifdef JEMALLOC_USES_MAP_ALIGN
+ ret = pages_map_align(size, pfd, chunksize);
+#else
+ ret = pages_map(NULL, size, pfd);
+ if (ret == NULL)
+ goto RETURN;
+
+ offset = CHUNK_ADDR2OFFSET(ret);
+ if (offset != 0) {
+ /* Deallocate, then try to allocate at (ret + size - offset). */
+ pages_unmap(ret, size);
+ ret = pages_map((void *)((uintptr_t)ret + size - offset), size,
+ pfd);
+ while (ret == NULL) {
+ /*
+ * Over-allocate in order to map a memory region that
+ * is definitely large enough.
+ */
+ ret = pages_map(NULL, size + chunksize, -1);
+ if (ret == NULL)
+ goto RETURN;
+ /*
+ * Deallocate, then allocate the correct size, within
+ * the over-sized mapping.
+ */
+ offset = CHUNK_ADDR2OFFSET(ret);
+ pages_unmap(ret, size + chunksize);
+ if (offset == 0)
+ ret = pages_map(ret, size, pfd);
+ else {
+ ret = pages_map((void *)((uintptr_t)ret +
+ chunksize - offset), size, pfd);
+ }
+ /*
+ * Failure here indicates a race with another thread, so
+ * try again.
+ */
+ }
+ }
+RETURN:
+#endif
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1)
+ pagefile_close(pfd);
+#endif
+#ifdef MALLOC_STATS
+ if (ret != NULL)
+ stats_chunks.nchunks += (size / chunksize);
+#endif
+ return (ret);
+}
+
+#ifdef MALLOC_PAGEFILE
+static int
+pagefile_init(size_t size)
+{
+ int ret;
+ size_t i;
+ char pagefile_path[PATH_MAX];
+ char zbuf[MALLOC_PAGEFILE_WRITE_SIZE];
+
+ /*
+ * Create a temporary file, then immediately unlink it so that it will
+ * not persist.
+ */
+ strcpy(pagefile_path, pagefile_templ);
+ ret = mkstemp(pagefile_path);
+ if (ret == -1)
+ return (ret);
+ if (unlink(pagefile_path)) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(), ": (malloc) Error in unlink(\"",
+ pagefile_path, "\"):");
+ _malloc_message(buf, "\n", "", "");
+ if (opt_abort)
+ abort();
+ }
+
+ /*
+ * Write sequential zeroes to the file in order to assure that disk
+ * space is committed, with minimal fragmentation. It would be
+ * sufficient to write one zero per disk block, but that potentially
+ * results in more system calls, for no real gain.
+ */
+ memset(zbuf, 0, sizeof(zbuf));
+ for (i = 0; i < size; i += sizeof(zbuf)) {
+ if (write(ret, zbuf, sizeof(zbuf)) != sizeof(zbuf)) {
+ if (errno != ENOSPC) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in write(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+ pagefile_close(ret);
+ return (-1);
+ }
+ }
+
+ return (ret);
+}
+
+static void
+pagefile_close(int pfd)
+{
+
+ if (close(pfd)) {
+ char buf[STRERROR_BUF];
+
+ strerror_r(errno, buf, sizeof(buf));
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in close(): ", buf, "\n");
+ if (opt_abort)
+ abort();
+ }
+}
+#endif
+
+static void *
+chunk_recycle_reserve(size_t size, bool zero)
+{
+ extent_node_t *node, key;
+
+#ifdef MALLOC_DECOMMIT
+ if (size != chunksize)
+ return (NULL);
+#endif
+
+ key.addr = NULL;
+ key.size = size;
+ malloc_mutex_lock(&reserve_mtx);
+ node = extent_tree_szad_nsearch(&reserve_chunks_szad, &key);
+ if (node != NULL) {
+ void *ret = node->addr;
+
+ /* Remove node from the tree. */
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+#ifndef MALLOC_DECOMMIT
+ if (node->size == size) {
+#else
+ assert(node->size == size);
+#endif
+ extent_tree_ad_remove(&reserve_chunks_ad, node);
+ base_node_dealloc(node);
+#ifndef MALLOC_DECOMMIT
+ } else {
+ /*
+ * Insert the remainder of node's address range as a
+ * smaller chunk. Its position within reserve_chunks_ad
+ * does not change.
+ */
+ assert(node->size > size);
+ node->addr = (void *)((uintptr_t)node->addr + size);
+ node->size -= size;
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+ }
+#endif
+ reserve_cur -= size;
+ /*
+ * Try to replenish the reserve if this allocation depleted it.
+ */
+#ifndef MALLOC_DECOMMIT
+ if (reserve_cur < reserve_min) {
+ size_t diff = reserve_min - reserve_cur;
+#else
+ while (reserve_cur < reserve_min) {
+# define diff chunksize
+#endif
+ void *chunk;
+
+ malloc_mutex_unlock(&reserve_mtx);
+ chunk = chunk_alloc_mmap(diff, true);
+ malloc_mutex_lock(&reserve_mtx);
+ if (chunk == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_notify(RESERVE_CND_LOW,
+ size, seq);
+ if (seq == 0)
+ goto MALLOC_OUT;
+ } while (reserve_cur < reserve_min);
+ } else {
+ extent_node_t *node;
+
+ node = chunk_dealloc_reserve(chunk, diff);
+ if (node == NULL) {
+ uint64_t seq = 0;
+
+ pages_unmap(chunk, diff);
+ do {
+ seq = reserve_notify(
+ RESERVE_CND_LOW, size, seq);
+ if (seq == 0)
+ goto MALLOC_OUT;
+ } while (reserve_cur < reserve_min);
+ }
+ }
+ }
+MALLOC_OUT:
+ malloc_mutex_unlock(&reserve_mtx);
+
+#ifdef MALLOC_DECOMMIT
+ pages_commit(ret, size);
+# undef diff
+#else
+ if (zero)
+ memset(ret, 0, size);
+#endif
+ return (ret);
+ }
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (NULL);
+}
+
+static void *
+chunk_alloc(size_t size, bool zero, bool pagefile)
+{
+ void *ret;
+
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+ ret = chunk_recycle_reserve(size, zero);
+ if (ret != NULL)
+ goto RETURN;
+
+ ret = chunk_alloc_mmap(size, pagefile);
+ if (ret != NULL) {
+ goto RETURN;
+ }
+
+ /* All strategies for allocation failed. */
+ ret = NULL;
+RETURN:
+#ifdef MALLOC_STATS
+ if (ret != NULL)
+ stats_chunks.curchunks += (size / chunksize);
+ if (stats_chunks.curchunks > stats_chunks.highchunks)
+ stats_chunks.highchunks = stats_chunks.curchunks;
+#endif
+
+#ifdef MALLOC_VALIDATE
+ if (ret != NULL) {
+ if (malloc_rtree_set(chunk_rtree, (uintptr_t)ret, ret)) {
+ chunk_dealloc(ret, size);
+ return (NULL);
+ }
+ }
+#endif
+
+ assert(CHUNK_ADDR2BASE(ret) == ret);
+ return (ret);
+}
+
+static extent_node_t *
+chunk_dealloc_reserve(void *chunk, size_t size)
+{
+ extent_node_t *node;
+
+#ifdef MALLOC_DECOMMIT
+ if (size != chunksize)
+ return (NULL);
+#else
+ extent_node_t *prev, key;
+
+ key.addr = (void *)((uintptr_t)chunk + size);
+ node = extent_tree_ad_nsearch(&reserve_chunks_ad, &key);
+ /* Try to coalesce forward. */
+ if (node != NULL && node->addr == key.addr) {
+ /*
+ * Coalesce chunk with the following address range. This does
+ * not change the position within reserve_chunks_ad, so only
+ * remove/insert from/into reserve_chunks_szad.
+ */
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+ node->addr = chunk;
+ node->size += size;
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+ } else {
+#endif
+ /* Coalescing forward failed, so insert a new node. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+ node->addr = chunk;
+ node->size = size;
+ extent_tree_ad_insert(&reserve_chunks_ad, node);
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+#ifndef MALLOC_DECOMMIT
+ }
+
+ /* Try to coalesce backward. */
+ prev = extent_tree_ad_prev(&reserve_chunks_ad, node);
+ if (prev != NULL && (void *)((uintptr_t)prev->addr + prev->size) ==
+ chunk) {
+ /*
+ * Coalesce chunk with the previous address range. This does
+ * not change the position within reserve_chunks_ad, so only
+ * remove/insert node from/into reserve_chunks_szad.
+ */
+ extent_tree_szad_remove(&reserve_chunks_szad, prev);
+ extent_tree_ad_remove(&reserve_chunks_ad, prev);
+
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+ node->addr = prev->addr;
+ node->size += prev->size;
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+
+ base_node_dealloc(prev);
+ }
+#endif
+
+#ifdef MALLOC_DECOMMIT
+ pages_decommit(chunk, size);
+#else
+ madvise(chunk, size, MADV_FREE);
+#endif
+
+ reserve_cur += size;
+ if (reserve_cur > reserve_max)
+ reserve_shrink();
+
+ return (node);
+}
+
+static void
+chunk_dealloc_mmap(void *chunk, size_t size)
+{
+
+ pages_unmap(chunk, size);
+}
+
+static void
+chunk_dealloc(void *chunk, size_t size)
+{
+ extent_node_t *node;
+
+ assert(chunk != NULL);
+ assert(CHUNK_ADDR2BASE(chunk) == chunk);
+ assert(size != 0);
+ assert((size & chunksize_mask) == 0);
+
+#ifdef MALLOC_STATS
+ stats_chunks.curchunks -= (size / chunksize);
+#endif
+#ifdef MALLOC_VALIDATE
+ malloc_rtree_set(chunk_rtree, (uintptr_t)chunk, NULL);
+#endif
+
+ /* Try to merge chunk into the reserve. */
+ malloc_mutex_lock(&reserve_mtx);
+ node = chunk_dealloc_reserve(chunk, size);
+ malloc_mutex_unlock(&reserve_mtx);
+ if (node == NULL)
+ chunk_dealloc_mmap(chunk, size);
+}
+
+/*
+ * End chunk management functions.
+ */
+/******************************************************************************/
+/*
+ * Begin arena.
+ */
+
+/*
+ * Choose an arena based on a per-thread value (fast-path code, calls slow-path
+ * code if necessary).
+ */
+static inline arena_t *
+choose_arena(void)
+{
+ arena_t *ret;
+
+ /*
+ * We can only use TLS if this is a PIC library, since for the static
+ * library version, libc's malloc is used by TLS allocation, which
+ * introduces a bootstrapping issue.
+ */
+#ifndef NO_TLS
+ if (__isthreaded == false) {
+ /* Avoid the overhead of TLS for single-threaded operation. */
+ return (arenas[0]);
+ }
+
+# ifdef MOZ_MEMORY_WINDOWS
+ ret = (arena_t*)TlsGetValue(tlsIndex);
+# else
+ ret = arenas_map;
+# endif
+
+ if (ret == NULL) {
+ ret = choose_arena_hard();
+ assert(ret != NULL);
+ }
+#else
+ if (__isthreaded && narenas > 1) {
+ unsigned long ind;
+
+ /*
+ * Hash _pthread_self() to one of the arenas. There is a prime
+ * number of arenas, so this has a reasonable chance of
+ * working. Even so, the hashing can be easily thwarted by
+ * inconvenient _pthread_self() values. Without specific
+ * knowledge of how _pthread_self() calculates values, we can't
+ * easily do much better than this.
+ */
+ ind = (unsigned long) _pthread_self() % narenas;
+
+ /*
+ * Optimistially assume that arenas[ind] has been initialized.
+ * At worst, we find out that some other thread has already
+ * done so, after acquiring the lock in preparation. Note that
+ * this lazy locking also has the effect of lazily forcing
+ * cache coherency; without the lock acquisition, there's no
+ * guarantee that modification of arenas[ind] by another thread
+ * would be seen on this CPU for an arbitrary amount of time.
+ *
+ * In general, this approach to modifying a synchronized value
+ * isn't a good idea, but in this case we only ever modify the
+ * value once, so things work out well.
+ */
+ ret = arenas[ind];
+ if (ret == NULL) {
+ /*
+ * Avoid races with another thread that may have already
+ * initialized arenas[ind].
+ */
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] == NULL)
+ ret = arenas_extend((unsigned)ind);
+ else
+ ret = arenas[ind];
+ malloc_spin_unlock(&arenas_lock);
+ }
+ } else
+ ret = arenas[0];
+#endif
+
+ assert(ret != NULL);
+ return (ret);
+}
+
+#ifndef NO_TLS
+/*
+ * Choose an arena based on a per-thread value (slow-path code only, called
+ * only by choose_arena()).
+ */
+static arena_t *
+choose_arena_hard(void)
+{
+ arena_t *ret;
+
+ assert(__isthreaded);
+
+#ifdef MALLOC_BALANCE
+ /* Seed the PRNG used for arena load balancing. */
+ SPRN(balance, (uint32_t)(uintptr_t)(_pthread_self()));
+#endif
+
+ if (narenas > 1) {
+#ifdef MALLOC_BALANCE
+ unsigned ind;
+
+ ind = PRN(balance, narenas_2pow);
+ if ((ret = arenas[ind]) == NULL) {
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[ind]) == NULL)
+ ret = arenas_extend(ind);
+ malloc_spin_unlock(&arenas_lock);
+ }
+#else
+ malloc_spin_lock(&arenas_lock);
+ if ((ret = arenas[next_arena]) == NULL)
+ ret = arenas_extend(next_arena);
+ next_arena = (next_arena + 1) % narenas;
+ malloc_spin_unlock(&arenas_lock);
+#endif
+ } else
+ ret = arenas[0];
+
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, ret);
+#else
+ arenas_map = ret;
+#endif
+
+ return (ret);
+}
+#endif
+
+static inline int
+arena_chunk_comp(arena_chunk_t *a, arena_chunk_t *b)
+{
+ uintptr_t a_chunk = (uintptr_t)a;
+ uintptr_t b_chunk = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_chunk > b_chunk) - (a_chunk < b_chunk));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_chunk_tree_dirty_, arena_chunk_tree_t,
+ arena_chunk_t, link_dirty, arena_chunk_comp)
+
+static inline int
+arena_run_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ uintptr_t a_mapelm = (uintptr_t)a;
+ uintptr_t b_mapelm = (uintptr_t)b;
+
+ assert(a != NULL);
+ assert(b != NULL);
+
+ return ((a_mapelm > b_mapelm) - (a_mapelm < b_mapelm));
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_run_tree_, arena_run_tree_t, arena_chunk_map_t, link,
+ arena_run_comp)
+
+static inline int
+arena_avail_comp(arena_chunk_map_t *a, arena_chunk_map_t *b)
+{
+ int ret;
+ size_t a_size = a->bits & ~pagesize_mask;
+ size_t b_size = b->bits & ~pagesize_mask;
+
+ ret = (a_size > b_size) - (a_size < b_size);
+ if (ret == 0) {
+ uintptr_t a_mapelm, b_mapelm;
+
+ if ((a->bits & CHUNK_MAP_KEY) == 0)
+ a_mapelm = (uintptr_t)a;
+ else {
+ /*
+ * Treat keys as though they are lower than anything
+ * else.
+ */
+ a_mapelm = 0;
+ }
+ b_mapelm = (uintptr_t)b;
+
+ ret = (a_mapelm > b_mapelm) - (a_mapelm < b_mapelm);
+ }
+
+ return (ret);
+}
+
+/* Wrap red-black tree macros in functions. */
+rb_wrap(static, arena_avail_tree_, arena_avail_tree_t, arena_chunk_map_t, link,
+ arena_avail_comp)
+
+static inline void *
+arena_run_reg_alloc(arena_run_t *run, arena_bin_t *bin)
+{
+ void *ret;
+ unsigned i, mask, bit, regind;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->regs_minelm < bin->regs_mask_nelms);
+
+ /*
+ * Move the first check outside the loop, so that run->regs_minelm can
+ * be updated unconditionally, without the possibility of updating it
+ * multiple times.
+ */
+ i = run->regs_minelm;
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ return (ret);
+ }
+
+ for (i++; i < bin->regs_mask_nelms; i++) {
+ mask = run->regs_mask[i];
+ if (mask != 0) {
+ /* Usable allocation found. */
+ bit = ffs((int)mask) - 1;
+
+ regind = ((i << (SIZEOF_INT_2POW + 3)) + bit);
+ assert(regind < bin->nregs);
+ ret = (void *)(((uintptr_t)run) + bin->reg0_offset
+ + (bin->reg_size * regind));
+
+ /* Clear bit. */
+ mask ^= (1U << bit);
+ run->regs_mask[i] = mask;
+
+ /*
+ * Make a note that nothing before this element
+ * contains a free region.
+ */
+ run->regs_minelm = i; /* Low payoff: + (mask == 0); */
+
+ return (ret);
+ }
+ }
+ /* Not reached. */
+ assert(0);
+ return (NULL);
+}
+
+static inline void
+arena_run_reg_dalloc(arena_run_t *run, arena_bin_t *bin, void *ptr, size_t size)
+{
+ /*
+ * To divide by a number D that is not a power of two we multiply
+ * by (2^21 / D) and then right shift by 21 positions.
+ *
+ * X / D
+ *
+ * becomes
+ *
+ * (X * size_invs[(D >> QUANTUM_2POW_MIN) - 3]) >> SIZE_INV_SHIFT
+ */
+#define SIZE_INV_SHIFT 21
+#define SIZE_INV(s) (((1U << SIZE_INV_SHIFT) / (s << QUANTUM_2POW_MIN)) + 1)
+ static const unsigned size_invs[] = {
+ SIZE_INV(3),
+ SIZE_INV(4), SIZE_INV(5), SIZE_INV(6), SIZE_INV(7),
+ SIZE_INV(8), SIZE_INV(9), SIZE_INV(10), SIZE_INV(11),
+ SIZE_INV(12),SIZE_INV(13), SIZE_INV(14), SIZE_INV(15),
+ SIZE_INV(16),SIZE_INV(17), SIZE_INV(18), SIZE_INV(19),
+ SIZE_INV(20),SIZE_INV(21), SIZE_INV(22), SIZE_INV(23),
+ SIZE_INV(24),SIZE_INV(25), SIZE_INV(26), SIZE_INV(27),
+ SIZE_INV(28),SIZE_INV(29), SIZE_INV(30), SIZE_INV(31)
+#if (QUANTUM_2POW_MIN < 4)
+ ,
+ SIZE_INV(32), SIZE_INV(33), SIZE_INV(34), SIZE_INV(35),
+ SIZE_INV(36), SIZE_INV(37), SIZE_INV(38), SIZE_INV(39),
+ SIZE_INV(40), SIZE_INV(41), SIZE_INV(42), SIZE_INV(43),
+ SIZE_INV(44), SIZE_INV(45), SIZE_INV(46), SIZE_INV(47),
+ SIZE_INV(48), SIZE_INV(49), SIZE_INV(50), SIZE_INV(51),
+ SIZE_INV(52), SIZE_INV(53), SIZE_INV(54), SIZE_INV(55),
+ SIZE_INV(56), SIZE_INV(57), SIZE_INV(58), SIZE_INV(59),
+ SIZE_INV(60), SIZE_INV(61), SIZE_INV(62), SIZE_INV(63)
+#endif
+ };
+ unsigned diff, regind, elm, bit;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(((sizeof(size_invs)) / sizeof(unsigned)) + 3
+ >= (SMALL_MAX_DEFAULT >> QUANTUM_2POW_MIN));
+
+ /*
+ * Avoid doing division with a variable divisor if possible. Using
+ * actual division here can reduce allocator throughput by over 20%!
+ */
+ diff = (unsigned)((uintptr_t)ptr - (uintptr_t)run - bin->reg0_offset);
+ if ((size & (size - 1)) == 0) {
+ /*
+ * log2_table allows fast division of a power of two in the
+ * [1..128] range.
+ *
+ * (x / divisor) becomes (x >> log2_table[divisor - 1]).
+ */
+ static const unsigned char log2_table[] = {
+ 0, 1, 0, 2, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 4,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7
+ };
+
+ if (size <= 128)
+ regind = (diff >> log2_table[size - 1]);
+ else if (size <= 32768)
+ regind = diff >> (8 + log2_table[(size >> 8) - 1]);
+ else {
+ /*
+ * The run size is too large for us to use the lookup
+ * table. Use real division.
+ */
+ regind = diff / size;
+ }
+ } else if (size <= ((sizeof(size_invs) / sizeof(unsigned))
+ << QUANTUM_2POW_MIN) + 2) {
+ regind = size_invs[(size >> QUANTUM_2POW_MIN) - 3] * diff;
+ regind >>= SIZE_INV_SHIFT;
+ } else {
+ /*
+ * size_invs isn't large enough to handle this size class, so
+ * calculate regind using actual division. This only happens
+ * if the user increases small_max via the 'S' runtime
+ * configuration option.
+ */
+ regind = diff / size;
+ };
+ assert(diff == regind * size);
+ assert(regind < bin->nregs);
+
+ elm = regind >> (SIZEOF_INT_2POW + 3);
+ if (elm < run->regs_minelm)
+ run->regs_minelm = elm;
+ bit = regind - (elm << (SIZEOF_INT_2POW + 3));
+ assert((run->regs_mask[elm] & (1U << bit)) == 0);
+ run->regs_mask[elm] |= (1U << bit);
+#undef SIZE_INV
+#undef SIZE_INV_SHIFT
+}
+
+static void
+arena_run_split(arena_t *arena, arena_run_t *run, size_t size, bool large,
+ bool zero)
+{
+ arena_chunk_t *chunk;
+ size_t old_ndirty, run_ind, total_pages, need_pages, rem_pages, i;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ old_ndirty = chunk->ndirty;
+ run_ind = (unsigned)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ total_pages = (chunk->map[run_ind].bits & ~pagesize_mask) >>
+ pagesize_2pow;
+ need_pages = (size >> pagesize_2pow);
+ assert(need_pages > 0);
+ assert(need_pages <= total_pages);
+ rem_pages = total_pages - need_pages;
+
+ arena_avail_tree_remove(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Keep track of trailing unused pages for later use. */
+ if (rem_pages > 0) {
+ chunk->map[run_ind+need_pages].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+need_pages].bits &
+ pagesize_mask);
+ chunk->map[run_ind+total_pages-1].bits = (rem_pages <<
+ pagesize_2pow) | (chunk->map[run_ind+total_pages-1].bits &
+ pagesize_mask);
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[run_ind+need_pages]);
+ }
+
+ for (i = 0; i < need_pages; i++) {
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Commit decommitted pages if necessary. If a decommitted
+ * page is encountered, commit all needed adjacent decommitted
+ * pages in one operation, in order to reduce system call
+ * overhead.
+ */
+ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DECOMMITTED) {
+ size_t j;
+
+ /*
+ * Advance i+j to just past the index of the last page
+ * to commit. Clear CHUNK_MAP_DECOMMITTED along the
+ * way.
+ */
+ for (j = 0; i + j < need_pages && (chunk->map[run_ind +
+ i + j].bits & CHUNK_MAP_DECOMMITTED); j++) {
+ chunk->map[run_ind + i + j].bits ^=
+ CHUNK_MAP_DECOMMITTED;
+ }
+
+ pages_commit((void *)((uintptr_t)chunk + ((run_ind + i)
+ << pagesize_2pow)), (j << pagesize_2pow));
+# ifdef MALLOC_STATS
+ arena->stats.ncommit++;
+# endif
+ } else /* No need to zero since commit zeros. */
+#endif
+
+ /* Zero if necessary. */
+ if (zero) {
+ if ((chunk->map[run_ind + i].bits & CHUNK_MAP_ZEROED)
+ == 0) {
+ VALGRIND_MALLOCLIKE_BLOCK((void *)((uintptr_t)
+ chunk + ((run_ind + i) << pagesize_2pow)),
+ pagesize, 0, false);
+ memset((void *)((uintptr_t)chunk + ((run_ind
+ + i) << pagesize_2pow)), 0, pagesize);
+ VALGRIND_FREELIKE_BLOCK((void *)((uintptr_t)
+ chunk + ((run_ind + i) << pagesize_2pow)),
+ 0);
+ /* CHUNK_MAP_ZEROED is cleared below. */
+ }
+ }
+
+ /* Update dirty page accounting. */
+ if (chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY) {
+ chunk->ndirty--;
+ arena->ndirty--;
+ /* CHUNK_MAP_DIRTY is cleared below. */
+ }
+
+ /* Initialize the chunk map. */
+ if (large) {
+ chunk->map[run_ind + i].bits = CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+ } else {
+ chunk->map[run_ind + i].bits = (size_t)run
+ | CHUNK_MAP_ALLOCATED;
+ }
+ }
+
+ /*
+ * Set the run size only in the first element for large runs. This is
+ * primarily a debugging aid, since the lack of size info for trailing
+ * pages only matters if the application tries to operate on an
+ * interior pointer.
+ */
+ if (large)
+ chunk->map[run_ind].bits |= size;
+
+ if (chunk->ndirty == 0 && old_ndirty > 0)
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty, chunk);
+}
+
+static void
+arena_chunk_init(arena_t *arena, arena_chunk_t *chunk)
+{
+ arena_run_t *run;
+ size_t i;
+
+ VALGRIND_MALLOCLIKE_BLOCK(chunk, (arena_chunk_header_npages <<
+ pagesize_2pow), 0, false);
+#ifdef MALLOC_STATS
+ arena->stats.mapped += chunksize;
+#endif
+
+ chunk->arena = arena;
+
+ /*
+ * Claim that no pages are in use, since the header is merely overhead.
+ */
+ chunk->ndirty = 0;
+
+ /* Initialize the map to contain one maximal free untouched run. */
+ run = (arena_run_t *)((uintptr_t)chunk + (arena_chunk_header_npages <<
+ pagesize_2pow));
+ for (i = 0; i < arena_chunk_header_npages; i++)
+ chunk->map[i].bits = 0;
+ chunk->map[i].bits = arena_maxclass
+#ifdef MALLOC_DECOMMIT
+ | CHUNK_MAP_DECOMMITTED
+#endif
+ | CHUNK_MAP_ZEROED;
+ for (i++; i < chunk_npages-1; i++) {
+ chunk->map[i].bits =
+#ifdef MALLOC_DECOMMIT
+ CHUNK_MAP_DECOMMITTED |
+#endif
+ CHUNK_MAP_ZEROED;
+ }
+ chunk->map[chunk_npages-1].bits = arena_maxclass
+#ifdef MALLOC_DECOMMIT
+ | CHUNK_MAP_DECOMMITTED
+#endif
+ | CHUNK_MAP_ZEROED;
+
+#ifdef MALLOC_DECOMMIT
+ /*
+ * Start out decommitted, in order to force a closer correspondence
+ * between dirty pages and committed untouched pages.
+ */
+ pages_decommit(run, arena_maxclass);
+# ifdef MALLOC_STATS
+ arena->stats.ndecommit++;
+ arena->stats.decommitted += (chunk_npages - arena_chunk_header_npages);
+# endif
+#endif
+
+ /* Insert the run into the runs_avail tree. */
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+}
+
+static void
+arena_chunk_dealloc(arena_t *arena, arena_chunk_t *chunk)
+{
+
+ if (arena->spare != NULL) {
+ if (arena->spare->ndirty > 0) {
+ arena_chunk_tree_dirty_remove(
+ &chunk->arena->chunks_dirty, arena->spare);
+ arena->ndirty -= arena->spare->ndirty;
+ }
+ VALGRIND_FREELIKE_BLOCK(arena->spare, 0);
+ chunk_dealloc((void *)arena->spare, chunksize);
+#ifdef MALLOC_STATS
+ arena->stats.mapped -= chunksize;
+#endif
+ }
+
+ /*
+ * Remove run from runs_avail, regardless of whether this chunk
+ * will be cached, so that the arena does not use it. Dirty page
+ * flushing only uses the chunks_dirty tree, so leaving this chunk in
+ * the chunks_* trees is sufficient for that purpose.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+
+ arena->spare = chunk;
+}
+
+static arena_run_t *
+arena_run_alloc(arena_t *arena, arena_bin_t *bin, size_t size, bool large,
+ bool zero)
+{
+ arena_chunk_t *chunk;
+ arena_run_t *run;
+ arena_chunk_map_t *mapelm, key;
+
+ assert(size <= arena_maxclass);
+ assert((size & pagesize_mask) == 0);
+
+ chunk = NULL;
+ while (true) {
+ /* Search the arena's chunks for the lowest best fit. */
+ key.bits = size | CHUNK_MAP_KEY;
+ mapelm = arena_avail_tree_nsearch(&arena->runs_avail, &key);
+ if (mapelm != NULL) {
+ arena_chunk_t *run_chunk = (arena_chunk_t*)CHUNK_ADDR2BASE(mapelm);
+ size_t pageind = ((uintptr_t)mapelm -
+ (uintptr_t)run_chunk->map) /
+ sizeof(arena_chunk_map_t);
+
+ if (chunk != NULL)
+ chunk_dealloc(chunk, chunksize);
+ run = (arena_run_t *)((uintptr_t)run_chunk + (pageind
+ << pagesize_2pow));
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+
+ if (arena->spare != NULL) {
+ /* Use the spare. */
+ chunk = arena->spare;
+ arena->spare = NULL;
+ run = (arena_run_t *)((uintptr_t)chunk +
+ (arena_chunk_header_npages << pagesize_2pow));
+ /* Insert the run into the runs_avail tree. */
+ arena_avail_tree_insert(&arena->runs_avail,
+ &chunk->map[arena_chunk_header_npages]);
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+
+ /*
+ * No usable runs. Create a new chunk from which to allocate
+ * the run.
+ */
+ if (chunk == NULL) {
+ uint64_t chunk_seq;
+
+ /*
+ * Record the chunk allocation sequence number in order
+ * to detect races.
+ */
+ arena->chunk_seq++;
+ chunk_seq = arena->chunk_seq;
+
+ /*
+ * Drop the arena lock while allocating a chunk, since
+ * reserve notifications may cause recursive
+ * allocation. Dropping the lock here opens an
+ * allocataion race, but we recover.
+ */
+ malloc_mutex_unlock(&arena->lock);
+ chunk = (arena_chunk_t *)chunk_alloc(chunksize, true,
+ true);
+ malloc_mutex_lock(&arena->lock);
+
+ /*
+ * Check whether a race allowed a usable run to appear.
+ */
+ if (bin != NULL && (run = bin->runcur) != NULL &&
+ run->nfree > 0) {
+ if (chunk != NULL)
+ chunk_dealloc(chunk, chunksize);
+ return (run);
+ }
+
+ /*
+ * If this thread raced with another such that multiple
+ * chunks were allocated, make sure that there is still
+ * inadequate space before using this chunk.
+ */
+ if (chunk_seq != arena->chunk_seq)
+ continue;
+
+ /*
+ * Check for an error *after* checking for a race,
+ * since a race could also cause a transient OOM
+ * condition.
+ */
+ if (chunk == NULL)
+ return (NULL);
+ }
+
+ arena_chunk_init(arena, chunk);
+ run = (arena_run_t *)((uintptr_t)chunk +
+ (arena_chunk_header_npages << pagesize_2pow));
+ /* Update page map. */
+ arena_run_split(arena, run, size, large, zero);
+ return (run);
+ }
+}
+
+static void
+arena_purge(arena_t *arena)
+{
+ arena_chunk_t *chunk;
+ size_t i, npages;
+#ifdef MALLOC_DEBUG
+ size_t ndirty = 0;
+ rb_foreach_begin(arena_chunk_t, link_dirty, &arena->chunks_dirty,
+ chunk) {
+ ndirty += chunk->ndirty;
+ } rb_foreach_end(arena_chunk_t, link_dirty, &arena->chunks_dirty, chunk)
+ assert(ndirty == arena->ndirty);
+#endif
+ assert(arena->ndirty > opt_dirty_max);
+
+#ifdef MALLOC_STATS
+ arena->stats.npurge++;
+#endif
+
+ /*
+ * Iterate downward through chunks until enough dirty memory has been
+ * purged. Terminate as soon as possible in order to minimize the
+ * number of system calls, even if a chunk has only been partially
+ * purged.
+ */
+ while (arena->ndirty > (opt_dirty_max >> 1)) {
+ chunk = arena_chunk_tree_dirty_last(&arena->chunks_dirty);
+ assert(chunk != NULL);
+
+ for (i = chunk_npages - 1; chunk->ndirty > 0; i--) {
+ assert(i >= arena_chunk_header_npages);
+
+ if (chunk->map[i].bits & CHUNK_MAP_DIRTY) {
+#ifdef MALLOC_DECOMMIT
+ assert((chunk->map[i].bits &
+ CHUNK_MAP_DECOMMITTED) == 0);
+#endif
+ chunk->map[i].bits ^=
+#ifdef MALLOC_DECOMMIT
+ CHUNK_MAP_DECOMMITTED |
+#endif
+ CHUNK_MAP_DIRTY;
+ /* Find adjacent dirty run(s). */
+ for (npages = 1; i > arena_chunk_header_npages
+ && (chunk->map[i - 1].bits &
+ CHUNK_MAP_DIRTY); npages++) {
+ i--;
+#ifdef MALLOC_DECOMMIT
+ assert((chunk->map[i].bits &
+ CHUNK_MAP_DECOMMITTED) == 0);
+#endif
+ chunk->map[i].bits ^=
+#ifdef MALLOC_DECOMMIT
+ CHUNK_MAP_DECOMMITTED |
+#endif
+ CHUNK_MAP_DIRTY;
+ }
+ chunk->ndirty -= npages;
+ arena->ndirty -= npages;
+
+#ifdef MALLOC_DECOMMIT
+ pages_decommit((void *)((uintptr_t)
+ chunk + (i << pagesize_2pow)),
+ (npages << pagesize_2pow));
+# ifdef MALLOC_STATS
+ arena->stats.ndecommit++;
+ arena->stats.decommitted += npages;
+# endif
+#else
+ madvise((void *)((uintptr_t)chunk + (i <<
+ pagesize_2pow)), (npages << pagesize_2pow),
+ MADV_FREE);
+#endif
+#ifdef MALLOC_STATS
+ arena->stats.nmadvise++;
+ arena->stats.purged += npages;
+#endif
+ if (arena->ndirty <= (opt_dirty_max >> 1))
+ break;
+ }
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_remove(&arena->chunks_dirty,
+ chunk);
+ }
+ }
+}
+
+static void
+arena_run_dalloc(arena_t *arena, arena_run_t *run, bool dirty)
+{
+ arena_chunk_t *chunk;
+ size_t size, run_ind, run_pages;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(run);
+ run_ind = (size_t)(((uintptr_t)run - (uintptr_t)chunk)
+ >> pagesize_2pow);
+ assert(run_ind >= arena_chunk_header_npages);
+ assert(run_ind < chunk_npages);
+ if ((chunk->map[run_ind].bits & CHUNK_MAP_LARGE) != 0)
+ size = chunk->map[run_ind].bits & ~pagesize_mask;
+ else
+ size = run->bin->run_size;
+ run_pages = (size >> pagesize_2pow);
+
+ /* Mark pages as unallocated in the chunk map. */
+ if (dirty) {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ assert((chunk->map[run_ind + i].bits & CHUNK_MAP_DIRTY)
+ == 0);
+ chunk->map[run_ind + i].bits = CHUNK_MAP_DIRTY;
+ }
+
+ if (chunk->ndirty == 0) {
+ arena_chunk_tree_dirty_insert(&arena->chunks_dirty,
+ chunk);
+ }
+ chunk->ndirty += run_pages;
+ arena->ndirty += run_pages;
+ } else {
+ size_t i;
+
+ for (i = 0; i < run_pages; i++) {
+ chunk->map[run_ind + i].bits &= ~(CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED);
+ }
+ }
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+
+ /* Try to coalesce forward. */
+ if (run_ind + run_pages < chunk_npages &&
+ (chunk->map[run_ind+run_pages].bits & CHUNK_MAP_ALLOCATED) == 0) {
+ size_t nrun_size = chunk->map[run_ind+run_pages].bits &
+ ~pagesize_mask;
+
+ /*
+ * Remove successor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind+run_pages]);
+
+ size += nrun_size;
+ run_pages = size >> pagesize_2pow;
+
+ assert((chunk->map[run_ind+run_pages-1].bits & ~pagesize_mask)
+ == nrun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Try to coalesce backward. */
+ if (run_ind > arena_chunk_header_npages && (chunk->map[run_ind-1].bits &
+ CHUNK_MAP_ALLOCATED) == 0) {
+ size_t prun_size = chunk->map[run_ind-1].bits & ~pagesize_mask;
+
+ run_ind -= prun_size >> pagesize_2pow;
+
+ /*
+ * Remove predecessor from runs_avail; the coalesced run is
+ * inserted later.
+ */
+ arena_avail_tree_remove(&arena->runs_avail,
+ &chunk->map[run_ind]);
+
+ size += prun_size;
+ run_pages = size >> pagesize_2pow;
+
+ assert((chunk->map[run_ind].bits & ~pagesize_mask) ==
+ prun_size);
+ chunk->map[run_ind].bits = size | (chunk->map[run_ind].bits &
+ pagesize_mask);
+ chunk->map[run_ind+run_pages-1].bits = size |
+ (chunk->map[run_ind+run_pages-1].bits & pagesize_mask);
+ }
+
+ /* Insert into runs_avail, now that coalescing is complete. */
+ arena_avail_tree_insert(&arena->runs_avail, &chunk->map[run_ind]);
+
+ /* Deallocate chunk if it is now completely unused. */
+ if ((chunk->map[arena_chunk_header_npages].bits & (~pagesize_mask |
+ CHUNK_MAP_ALLOCATED)) == arena_maxclass)
+ arena_chunk_dealloc(arena, chunk);
+
+ /* Enforce opt_dirty_max. */
+ if (arena->ndirty > opt_dirty_max)
+ arena_purge(arena);
+}
+
+static void
+arena_run_trim_head(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t head_npages = (oldsize - newsize) >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * leading run as separately allocated.
+ */
+ chunk->map[pageind].bits = (oldsize - newsize) | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+head_npages].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, run, false);
+}
+
+static void
+arena_run_trim_tail(arena_t *arena, arena_chunk_t *chunk, arena_run_t *run,
+ size_t oldsize, size_t newsize, bool dirty)
+{
+ size_t pageind = ((uintptr_t)run - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = newsize >> pagesize_2pow;
+
+ assert(oldsize > newsize);
+
+ /*
+ * Update the chunk map so that arena_run_dalloc() can treat the
+ * trailing run as separately allocated.
+ */
+ chunk->map[pageind].bits = newsize | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = (oldsize - newsize) | CHUNK_MAP_LARGE
+ | CHUNK_MAP_ALLOCATED;
+
+ arena_run_dalloc(arena, (arena_run_t *)((uintptr_t)run + newsize),
+ dirty);
+}
+
+static arena_run_t *
+arena_bin_nonfull_run_get(arena_t *arena, arena_bin_t *bin)
+{
+ arena_chunk_map_t *mapelm;
+ arena_run_t *run;
+ unsigned i, remainder;
+
+ /* Look for a usable run. */
+ mapelm = arena_run_tree_first(&bin->runs);
+ if (mapelm != NULL) {
+ /* run is guaranteed to have available space. */
+ arena_run_tree_remove(&bin->runs, mapelm);
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+#ifdef MALLOC_STATS
+ bin->stats.reruns++;
+#endif
+ return (run);
+ }
+ /* No existing runs have any space available. */
+
+ /* Allocate a new run. */
+ run = arena_run_alloc(arena, bin, bin->run_size, false, false);
+ if (run == NULL)
+ return (NULL);
+ /*
+ * Don't initialize if a race in arena_run_alloc() allowed an existing
+ * run to become usable.
+ */
+ if (run == bin->runcur)
+ return (run);
+
+ VALGRIND_MALLOCLIKE_BLOCK(run, sizeof(arena_run_t) + (sizeof(unsigned) *
+ (bin->regs_mask_nelms - 1)), 0, false);
+
+ /* Initialize run internals. */
+ run->bin = bin;
+
+ for (i = 0; i < bin->regs_mask_nelms - 1; i++)
+ run->regs_mask[i] = UINT_MAX;
+ remainder = bin->nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1);
+ if (remainder == 0)
+ run->regs_mask[i] = UINT_MAX;
+ else {
+ /* The last element has spare bits that need to be unset. */
+ run->regs_mask[i] = (UINT_MAX >> ((1U << (SIZEOF_INT_2POW + 3))
+ - remainder));
+ }
+
+ run->regs_minelm = 0;
+
+ run->nfree = bin->nregs;
+#ifdef MALLOC_DEBUG
+ run->magic = ARENA_RUN_MAGIC;
+#endif
+
+#ifdef MALLOC_STATS
+ bin->stats.nruns++;
+ bin->stats.curruns++;
+ if (bin->stats.curruns > bin->stats.highruns)
+ bin->stats.highruns = bin->stats.curruns;
+#endif
+ return (run);
+}
+
+/* bin->runcur must have space available before this function is called. */
+static inline void *
+arena_bin_malloc_easy(arena_t *arena, arena_bin_t *bin, arena_run_t *run)
+{
+ void *ret;
+
+ assert(run->magic == ARENA_RUN_MAGIC);
+ assert(run->nfree > 0);
+
+ ret = arena_run_reg_alloc(run, bin);
+ assert(ret != NULL);
+ run->nfree--;
+
+ return (ret);
+}
+
+/* Re-fill bin->runcur, then call arena_bin_malloc_easy(). */
+static void *
+arena_bin_malloc_hard(arena_t *arena, arena_bin_t *bin)
+{
+
+ bin->runcur = arena_bin_nonfull_run_get(arena, bin);
+ if (bin->runcur == NULL)
+ return (NULL);
+ assert(bin->runcur->magic == ARENA_RUN_MAGIC);
+ assert(bin->runcur->nfree > 0);
+
+ return (arena_bin_malloc_easy(arena, bin, bin->runcur));
+}
+
+/*
+ * Calculate bin->run_size such that it meets the following constraints:
+ *
+ * *) bin->run_size >= min_run_size
+ * *) bin->run_size <= arena_maxclass
+ * *) bin->run_size <= RUN_MAX_SMALL
+ * *) run header overhead <= RUN_MAX_OVRHD (or header overhead relaxed).
+ *
+ * bin->nregs, bin->regs_mask_nelms, and bin->reg0_offset are
+ * also calculated here, since these settings are all interdependent.
+ */
+static size_t
+arena_bin_run_size_calc(arena_bin_t *bin, size_t min_run_size)
+{
+ size_t try_run_size, good_run_size;
+ unsigned good_nregs, good_mask_nelms, good_reg0_offset;
+ unsigned try_nregs, try_mask_nelms, try_reg0_offset;
+
+ assert(min_run_size >= pagesize);
+ assert(min_run_size <= arena_maxclass);
+ assert(min_run_size <= RUN_MAX_SMALL);
+
+ /*
+ * Calculate known-valid settings before entering the run_size
+ * expansion loop, so that the first part of the loop always copies
+ * valid settings.
+ *
+ * The do..while loop iteratively reduces the number of regions until
+ * the run header and the regions no longer overlap. A closed formula
+ * would be quite messy, since there is an interdependency between the
+ * header's mask length and the number of regions.
+ */
+ try_run_size = min_run_size;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) / bin->reg_size)
+ + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ? 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs * bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) * (try_mask_nelms - 1))
+ > try_reg0_offset);
+
+ /* run_size expansion loop. */
+ do {
+ /*
+ * Copy valid settings before trying more aggressive settings.
+ */
+ good_run_size = try_run_size;
+ good_nregs = try_nregs;
+ good_mask_nelms = try_mask_nelms;
+ good_reg0_offset = try_reg0_offset;
+
+ /* Try more aggressive settings. */
+ try_run_size += pagesize;
+ try_nregs = ((try_run_size - sizeof(arena_run_t)) /
+ bin->reg_size) + 1; /* Counter-act try_nregs-- in loop. */
+ do {
+ try_nregs--;
+ try_mask_nelms = (try_nregs >> (SIZEOF_INT_2POW + 3)) +
+ ((try_nregs & ((1U << (SIZEOF_INT_2POW + 3)) - 1)) ?
+ 1 : 0);
+ try_reg0_offset = try_run_size - (try_nregs *
+ bin->reg_size);
+ } while (sizeof(arena_run_t) + (sizeof(unsigned) *
+ (try_mask_nelms - 1)) > try_reg0_offset);
+ } while (try_run_size <= arena_maxclass && try_run_size <= RUN_MAX_SMALL
+ && RUN_MAX_OVRHD * (bin->reg_size << 3) > RUN_MAX_OVRHD_RELAX
+ && (try_reg0_offset << RUN_BFP) > RUN_MAX_OVRHD * try_run_size);
+
+ assert(sizeof(arena_run_t) + (sizeof(unsigned) * (good_mask_nelms - 1))
+ <= good_reg0_offset);
+ assert((good_mask_nelms << (SIZEOF_INT_2POW + 3)) >= good_nregs);
+
+ /* Copy final settings. */
+ bin->run_size = good_run_size;
+ bin->nregs = good_nregs;
+ bin->regs_mask_nelms = good_mask_nelms;
+ bin->reg0_offset = good_reg0_offset;
+
+ return (good_run_size);
+}
+
+#ifdef MALLOC_BALANCE
+static inline void
+arena_lock_balance(arena_t *arena)
+{
+ unsigned contention;
+
+ contention = malloc_spin_lock(&arena->lock);
+ if (narenas > 1) {
+ /*
+ * Calculate the exponentially averaged contention for this
+ * arena. Due to integer math always rounding down, this value
+ * decays somewhat faster then normal.
+ */
+ arena->contention = (((uint64_t)arena->contention
+ * (uint64_t)((1U << BALANCE_ALPHA_INV_2POW)-1))
+ + (uint64_t)contention) >> BALANCE_ALPHA_INV_2POW;
+ if (arena->contention >= opt_balance_threshold)
+ arena_lock_balance_hard(arena);
+ }
+}
+
+static void
+arena_lock_balance_hard(arena_t *arena)
+{
+ uint32_t ind;
+
+ arena->contention = 0;
+#ifdef MALLOC_STATS
+ arena->stats.nbalance++;
+#endif
+ ind = PRN(balance, narenas_2pow);
+ if (arenas[ind] != NULL) {
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas[ind]);
+#else
+ arenas_map = arenas[ind];
+#endif
+ } else {
+ malloc_spin_lock(&arenas_lock);
+ if (arenas[ind] != NULL) {
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas[ind]);
+#else
+ arenas_map = arenas[ind];
+#endif
+ } else {
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas_extend(ind));
+#else
+ arenas_map = arenas_extend(ind);
+#endif
+ }
+ malloc_spin_unlock(&arenas_lock);
+ }
+}
+#endif
+
+static inline void *
+arena_malloc_small(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+ arena_bin_t *bin;
+ arena_run_t *run;
+
+ if (size < small_min) {
+ /* Tiny. */
+ size = pow2_ceil(size);
+ bin = &arena->bins[ffs((int)(size >> (TINY_MIN_2POW +
+ 1)))];
+#if (!defined(NDEBUG) || defined(MALLOC_STATS))
+ /*
+ * Bin calculation is always correct, but we may need
+ * to fix size for the purposes of assertions and/or
+ * stats accuracy.
+ */
+ if (size < (1U << TINY_MIN_2POW))
+ size = (1U << TINY_MIN_2POW);
+#endif
+ } else if (size <= small_max) {
+ /* Quantum-spaced. */
+ size = QUANTUM_CEILING(size);
+ bin = &arena->bins[ntbins + (size >> opt_quantum_2pow)
+ - 1];
+ } else {
+ /* Sub-page. */
+ size = pow2_ceil(size);
+ bin = &arena->bins[ntbins + nqbins
+ + (ffs((int)(size >> opt_small_max_2pow)) - 2)];
+ }
+ assert(size == bin->reg_size);
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if ((run = bin->runcur) != NULL && run->nfree > 0)
+ ret = arena_bin_malloc_easy(arena, bin, run);
+ else
+ ret = arena_bin_malloc_hard(arena, bin);
+
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+#ifdef MALLOC_STATS
+ bin->stats.nrequests++;
+ arena->stats.nmalloc_small++;
+ arena->stats.allocated_small += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero);
+ if (zero == false) {
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+#endif
+ } else
+ memset(ret, 0, size);
+
+ return (ret);
+}
+
+static void *
+arena_malloc_large(arena_t *arena, size_t size, bool zero)
+{
+ void *ret;
+
+ /* Large allocation. */
+ size = PAGE_CEILING(size);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, NULL, size, true, zero);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, zero);
+ if (zero == false) {
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+#endif
+ }
+
+ return (ret);
+}
+
+static inline void *
+arena_malloc(arena_t *arena, size_t size, bool zero)
+{
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(size != 0);
+ assert(QUANTUM_CEILING(size) <= arena_maxclass);
+
+ if (size <= bin_maxclass) {
+ return (arena_malloc_small(arena, size, zero));
+ } else
+ return (arena_malloc_large(arena, size, zero));
+}
+
+static inline void *
+imalloc(size_t size)
+{
+
+ assert(size != 0);
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, false));
+ else
+ return (huge_malloc(size, false));
+}
+
+static inline void *
+icalloc(size_t size)
+{
+
+ if (size <= arena_maxclass)
+ return (arena_malloc(choose_arena(), size, true));
+ else
+ return (huge_malloc(size, true));
+}
+
+/* Only handles large allocations that require more than page alignment. */
+static void *
+arena_palloc(arena_t *arena, size_t alignment, size_t size, size_t alloc_size)
+{
+ void *ret;
+ size_t offset;
+ arena_chunk_t *chunk;
+
+ assert((size & pagesize_mask) == 0);
+ assert((alignment & pagesize_mask) == 0);
+
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ ret = (void *)arena_run_alloc(arena, NULL, alloc_size, true, false);
+ if (ret == NULL) {
+ malloc_spin_unlock(&arena->lock);
+ return (NULL);
+ }
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ret);
+
+ offset = (uintptr_t)ret & (alignment - 1);
+ assert((offset & pagesize_mask) == 0);
+ assert(offset < alloc_size);
+ if (offset == 0)
+ arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, alloc_size, size, false);
+ else {
+ size_t leadsize, trailsize;
+
+ leadsize = alignment - offset;
+ if (leadsize > 0) {
+ arena_run_trim_head(arena, chunk, (arena_run_t*)ret, alloc_size,
+ alloc_size - leadsize);
+ ret = (void *)((uintptr_t)ret + leadsize);
+ }
+
+ trailsize = alloc_size - leadsize - size;
+ if (trailsize != 0) {
+ /* Trim trailing space. */
+ assert(trailsize < alloc_size);
+ arena_run_trim_tail(arena, chunk, (arena_run_t*)ret, size + trailsize,
+ size, false);
+ }
+ }
+
+#ifdef MALLOC_STATS
+ arena->stats.nmalloc_large++;
+ arena->stats.allocated_large += size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+
+ VALGRIND_MALLOCLIKE_BLOCK(ret, size, 0, false);
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ret, 0xa5, size);
+ else if (opt_zero)
+ memset(ret, 0, size);
+#endif
+ return (ret);
+}
+
+static inline void *
+ipalloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t ceil_size;
+
+ /*
+ * Round size up to the nearest multiple of alignment.
+ *
+ * This done, we can take advantage of the fact that for each small
+ * size class, every object is aligned at the smallest power of two
+ * that is non-zero in the base two representation of the size. For
+ * example:
+ *
+ * Size | Base 2 | Minimum alignment
+ * -----+----------+------------------
+ * 96 | 1100000 | 32
+ * 144 | 10100000 | 32
+ * 192 | 11000000 | 64
+ *
+ * Depending on runtime settings, it is possible that arena_malloc()
+ * will further round up to a power of two, but that never causes
+ * correctness issues.
+ */
+ ceil_size = (size + (alignment - 1)) & (-alignment);
+ /*
+ * (ceil_size < size) protects against the combination of maximal
+ * alignment and size greater than maximal alignment.
+ */
+ if (ceil_size < size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ if (ceil_size <= pagesize || (alignment <= pagesize
+ && ceil_size <= arena_maxclass))
+ ret = arena_malloc(choose_arena(), ceil_size, false);
+ else {
+ size_t run_size;
+
+ /*
+ * We can't achieve sub-page alignment, so round up alignment
+ * permanently; it makes later calculations simpler.
+ */
+ alignment = PAGE_CEILING(alignment);
+ ceil_size = PAGE_CEILING(size);
+ /*
+ * (ceil_size < size) protects against very large sizes within
+ * pagesize of SIZE_T_MAX.
+ *
+ * (ceil_size + alignment < ceil_size) protects against the
+ * combination of maximal alignment and ceil_size large enough
+ * to cause overflow. This is similar to the first overflow
+ * check above, but it needs to be repeated due to the new
+ * ceil_size value, which may now be *equal* to maximal
+ * alignment, whereas before we only detected overflow if the
+ * original size was *greater* than maximal alignment.
+ */
+ if (ceil_size < size || ceil_size + alignment < ceil_size) {
+ /* size_t overflow. */
+ return (NULL);
+ }
+
+ /*
+ * Calculate the size of the over-size run that arena_palloc()
+ * would need to allocate in order to guarantee the alignment.
+ */
+ if (ceil_size >= alignment)
+ run_size = ceil_size + alignment - pagesize;
+ else {
+ /*
+ * It is possible that (alignment << 1) will cause
+ * overflow, but it doesn't matter because we also
+ * subtract pagesize, which in the case of overflow
+ * leaves us with a very large run_size. That causes
+ * the first conditional below to fail, which means
+ * that the bogus run_size value never gets used for
+ * anything important.
+ */
+ run_size = (alignment << 1) - pagesize;
+ }
+
+ if (run_size <= arena_maxclass) {
+ ret = arena_palloc(choose_arena(), alignment, ceil_size,
+ run_size);
+ } else if (alignment <= chunksize)
+ ret = huge_malloc(ceil_size, false);
+ else
+ ret = huge_palloc(alignment, ceil_size);
+ }
+
+ assert(((uintptr_t)ret & (alignment - 1)) == 0);
+ return (ret);
+}
+
+/* Return the size of the allocation pointed to by ptr. */
+static size_t
+arena_salloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+ size_t pageind, mapbits;
+
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapbits = chunk->map[pageind].bits;
+ assert((mapbits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapbits & CHUNK_MAP_LARGE) == 0) {
+ arena_run_t *run = (arena_run_t *)(mapbits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ ret = run->bin->reg_size;
+ } else {
+ ret = mapbits & ~pagesize_mask;
+ assert(ret != 0);
+ }
+
+ return (ret);
+}
+
+#if (defined(MALLOC_VALIDATE) || defined(MOZ_MEMORY_DARWIN))
+/*
+ * Validate ptr before assuming that it points to an allocation. Currently,
+ * the following validation is performed:
+ *
+ * + Check that ptr is not NULL.
+ *
+ * + Check that ptr lies within a mapped chunk.
+ */
+static inline size_t
+isalloc_validate(const void *ptr)
+{
+ arena_chunk_t *chunk;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk == NULL)
+ return (0);
+
+ if (malloc_rtree_get(chunk_rtree, (uintptr_t)chunk) == NULL)
+ return (0);
+
+ if (chunk != ptr) {
+ assert(chunk->arena->magic == ARENA_MAGIC);
+ return (arena_salloc(ptr));
+ } else {
+ size_t ret;
+ extent_node_t *node;
+ extent_node_t key;
+
+ /* Chunk. */
+ key.addr = (void *)chunk;
+ malloc_mutex_lock(&huge_mtx);
+ node = extent_tree_ad_search(&huge, &key);
+ if (node != NULL)
+ ret = node->size;
+ else
+ ret = 0;
+ malloc_mutex_unlock(&huge_mtx);
+ return (ret);
+ }
+}
+#endif
+
+static inline size_t
+isalloc(const void *ptr)
+{
+ size_t ret;
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr) {
+ /* Region. */
+ assert(chunk->arena->magic == ARENA_MAGIC);
+
+ ret = arena_salloc(ptr);
+ } else {
+ extent_node_t *node, key;
+
+ /* Chunk (huge allocation). */
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+
+ ret = node->size;
+
+ malloc_mutex_unlock(&huge_mtx);
+ }
+
+ return (ret);
+}
+
+static inline void
+arena_dalloc_small(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ arena_chunk_map_t *mapelm)
+{
+ arena_run_t *run;
+ arena_bin_t *bin;
+ size_t size;
+
+ run = (arena_run_t *)(mapelm->bits & ~pagesize_mask);
+ assert(run->magic == ARENA_RUN_MAGIC);
+ bin = run->bin;
+ size = bin->reg_size;
+
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(ptr, 0x5a, size);
+#endif
+
+ arena_run_reg_dalloc(run, bin, ptr, size);
+ run->nfree++;
+
+ if (run->nfree == bin->nregs) {
+ /* Deallocate run. */
+ if (run == bin->runcur)
+ bin->runcur = NULL;
+ else if (bin->nregs != 1) {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+ /*
+ * This block's conditional is necessary because if the
+ * run only contains one region, then it never gets
+ * inserted into the non-full runs tree.
+ */
+ assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
+ run_mapelm);
+ arena_run_tree_remove(&bin->runs, run_mapelm);
+ }
+#ifdef MALLOC_DEBUG
+ run->magic = 0;
+#endif
+ VALGRIND_FREELIKE_BLOCK(run, 0);
+ arena_run_dalloc(arena, run, true);
+#ifdef MALLOC_STATS
+ bin->stats.curruns--;
+#endif
+ } else if (run->nfree == 1 && run != bin->runcur) {
+ /*
+ * Make sure that bin->runcur always refers to the lowest
+ * non-full run, if one exists.
+ */
+ if (bin->runcur == NULL)
+ bin->runcur = run;
+ else if ((uintptr_t)run < (uintptr_t)bin->runcur) {
+ /* Switch runcur. */
+ if (bin->runcur->nfree > 0) {
+ arena_chunk_t *runcur_chunk =
+ (arena_chunk_t*)CHUNK_ADDR2BASE(bin->runcur);
+ size_t runcur_pageind =
+ (((uintptr_t)bin->runcur -
+ (uintptr_t)runcur_chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *runcur_mapelm =
+ &runcur_chunk->map[runcur_pageind];
+
+ /* Insert runcur. */
+ assert(arena_run_tree_search(&bin->runs,
+ runcur_mapelm) == NULL);
+ arena_run_tree_insert(&bin->runs,
+ runcur_mapelm);
+ }
+ bin->runcur = run;
+ } else {
+ size_t run_pageind = (((uintptr_t)run -
+ (uintptr_t)chunk)) >> pagesize_2pow;
+ arena_chunk_map_t *run_mapelm =
+ &chunk->map[run_pageind];
+
+ assert(arena_run_tree_search(&bin->runs, run_mapelm) ==
+ NULL);
+ arena_run_tree_insert(&bin->runs, run_mapelm);
+ }
+ }
+#ifdef MALLOC_STATS
+ arena->stats.allocated_small -= size;
+ arena->stats.ndalloc_small++;
+#endif
+}
+
+static void
+arena_dalloc_large(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ /* Large allocation. */
+ malloc_spin_lock(&arena->lock);
+
+#ifdef MALLOC_FILL
+#ifndef MALLOC_STATS
+ if (opt_junk)
+#endif
+#endif
+ {
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >>
+ pagesize_2pow;
+ size_t size = chunk->map[pageind].bits & ~pagesize_mask;
+
+#ifdef MALLOC_FILL
+#ifdef MALLOC_STATS
+ if (opt_junk)
+#endif
+ memset(ptr, 0x5a, size);
+#endif
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= size;
+#endif
+ }
+#ifdef MALLOC_STATS
+ arena->stats.ndalloc_large++;
+#endif
+
+ arena_run_dalloc(arena, (arena_run_t *)ptr, true);
+ malloc_spin_unlock(&arena->lock);
+}
+
+static inline void
+arena_dalloc(arena_t *arena, arena_chunk_t *chunk, void *ptr)
+{
+ size_t pageind;
+ arena_chunk_map_t *mapelm;
+
+ assert(arena != NULL);
+ assert(arena->magic == ARENA_MAGIC);
+ assert(chunk->arena == arena);
+ assert(ptr != NULL);
+ assert(CHUNK_ADDR2BASE(ptr) != ptr);
+
+ pageind = (((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow);
+ mapelm = &chunk->map[pageind];
+ assert((mapelm->bits & CHUNK_MAP_ALLOCATED) != 0);
+ if ((mapelm->bits & CHUNK_MAP_LARGE) == 0) {
+ /* Small allocation. */
+ malloc_spin_lock(&arena->lock);
+ arena_dalloc_small(arena, chunk, ptr, mapelm);
+ malloc_spin_unlock(&arena->lock);
+ } else
+ arena_dalloc_large(arena, chunk, ptr);
+ VALGRIND_FREELIKE_BLOCK(ptr, 0);
+}
+
+static inline void
+idalloc(void *ptr)
+{
+ arena_chunk_t *chunk;
+
+ assert(ptr != NULL);
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ if (chunk != ptr)
+ arena_dalloc(chunk->arena, chunk, ptr);
+ else
+ huge_dalloc(ptr);
+}
+
+static void
+arena_ralloc_large_shrink(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+
+ assert(size < oldsize);
+
+ /*
+ * Shrink the run, and make trailing pages available for other
+ * allocations.
+ */
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ arena_run_trim_tail(arena, chunk, (arena_run_t *)ptr, oldsize, size,
+ true);
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large -= oldsize - size;
+#endif
+ malloc_spin_unlock(&arena->lock);
+}
+
+static bool
+arena_ralloc_large_grow(arena_t *arena, arena_chunk_t *chunk, void *ptr,
+ size_t size, size_t oldsize)
+{
+ size_t pageind = ((uintptr_t)ptr - (uintptr_t)chunk) >> pagesize_2pow;
+ size_t npages = oldsize >> pagesize_2pow;
+
+ assert(oldsize == (chunk->map[pageind].bits & ~pagesize_mask));
+
+ /* Try to extend the run. */
+ assert(size > oldsize);
+#ifdef MALLOC_BALANCE
+ arena_lock_balance(arena);
+#else
+ malloc_spin_lock(&arena->lock);
+#endif
+ if (pageind + npages < chunk_npages && (chunk->map[pageind+npages].bits
+ & CHUNK_MAP_ALLOCATED) == 0 && (chunk->map[pageind+npages].bits &
+ ~pagesize_mask) >= size - oldsize) {
+ /*
+ * The next run is available and sufficiently large. Split the
+ * following run, then merge the first part with the existing
+ * allocation.
+ */
+ arena_run_split(arena, (arena_run_t *)((uintptr_t)chunk +
+ ((pageind+npages) << pagesize_2pow)), size - oldsize, true,
+ false);
+
+ chunk->map[pageind].bits = size | CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+ chunk->map[pageind+npages].bits = CHUNK_MAP_LARGE |
+ CHUNK_MAP_ALLOCATED;
+
+#ifdef MALLOC_STATS
+ arena->stats.allocated_large += size - oldsize;
+#endif
+ malloc_spin_unlock(&arena->lock);
+ return (false);
+ }
+ malloc_spin_unlock(&arena->lock);
+
+ return (true);
+}
+
+/*
+ * Try to resize a large allocation, in order to avoid copying. This will
+ * always fail if growing an object, and the following run is already in use.
+ */
+static bool
+arena_ralloc_large(void *ptr, size_t size, size_t oldsize)
+{
+ size_t psize;
+
+ psize = PAGE_CEILING(size);
+ if (psize == oldsize) {
+ /* Same size class. */
+#ifdef MALLOC_FILL
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize -
+ size);
+ }
+#endif
+ return (false);
+ } else {
+ arena_chunk_t *chunk;
+ arena_t *arena;
+
+ chunk = (arena_chunk_t *)CHUNK_ADDR2BASE(ptr);
+ arena = chunk->arena;
+ assert(arena->magic == ARENA_MAGIC);
+
+ if (psize < oldsize) {
+#ifdef MALLOC_FILL
+ /* Fill before shrinking in order avoid a race. */
+ if (opt_junk) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a,
+ oldsize - size);
+ }
+#endif
+ arena_ralloc_large_shrink(arena, chunk, ptr, psize,
+ oldsize);
+ return (false);
+ } else {
+ bool ret = arena_ralloc_large_grow(arena, chunk, ptr,
+ psize, oldsize);
+#ifdef MALLOC_FILL
+ if (ret == false && opt_zero) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0,
+ size - oldsize);
+ }
+#endif
+ return (ret);
+ }
+ }
+}
+
+static void *
+arena_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Try to avoid moving the allocation. */
+ if (size < small_min) {
+ if (oldsize < small_min &&
+ ffs((int)(pow2_ceil(size) >> (TINY_MIN_2POW + 1)))
+ == ffs((int)(pow2_ceil(oldsize) >> (TINY_MIN_2POW + 1))))
+ goto IN_PLACE; /* Same size class. */
+ } else if (size <= small_max) {
+ if (oldsize >= small_min && oldsize <= small_max &&
+ (QUANTUM_CEILING(size) >> opt_quantum_2pow)
+ == (QUANTUM_CEILING(oldsize) >> opt_quantum_2pow))
+ goto IN_PLACE; /* Same size class. */
+ } else if (size <= bin_maxclass) {
+ if (oldsize > small_max && oldsize <= bin_maxclass &&
+ pow2_ceil(size) == pow2_ceil(oldsize))
+ goto IN_PLACE; /* Same size class. */
+ } else if (oldsize > bin_maxclass && oldsize <= arena_maxclass) {
+ assert(size > bin_maxclass);
+ if (arena_ralloc_large(ptr, size, oldsize) == false)
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to move the object. In that case, fall back to allocating new
+ * space and copying.
+ */
+ ret = arena_malloc(choose_arena(), size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ /* Junk/zero-filling were already done by arena_malloc(). */
+ copysize = (size < oldsize) ? size : oldsize;
+#ifdef VM_COPY_MIN
+ if (copysize >= VM_COPY_MIN)
+ pages_copy(ret, ptr, copysize);
+ else
+#endif
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+IN_PLACE:
+#ifdef MALLOC_FILL
+ if (opt_junk && size < oldsize)
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize - size);
+ else if (opt_zero && size > oldsize)
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size - oldsize);
+#endif
+ return (ptr);
+}
+
+static inline void *
+iralloc(void *ptr, size_t size)
+{
+ size_t oldsize;
+
+ assert(ptr != NULL);
+ assert(size != 0);
+
+ oldsize = isalloc(ptr);
+
+#ifndef MALLOC_VALGRIND
+ if (size <= arena_maxclass)
+ return (arena_ralloc(ptr, size, oldsize));
+ else
+ return (huge_ralloc(ptr, size, oldsize));
+#else
+ /*
+ * Valgrind does not provide a public interface for modifying an
+ * existing allocation, so use malloc/memcpy/free instead.
+ */
+ {
+ void *ret = imalloc(size);
+ if (ret != NULL) {
+ if (oldsize < size)
+ memcpy(ret, ptr, oldsize);
+ else
+ memcpy(ret, ptr, size);
+ idalloc(ptr);
+ }
+ return (ret);
+ }
+#endif
+}
+
+static bool
+arena_new(arena_t *arena)
+{
+ unsigned i;
+ arena_bin_t *bin;
+ size_t pow2_size, prev_run_size;
+
+ if (malloc_spin_init(&arena->lock))
+ return (true);
+
+#ifdef MALLOC_STATS
+ memset(&arena->stats, 0, sizeof(arena_stats_t));
+#endif
+
+ arena->chunk_seq = 0;
+
+ /* Initialize chunks. */
+ arena_chunk_tree_dirty_new(&arena->chunks_dirty);
+ arena->spare = NULL;
+
+ arena->ndirty = 0;
+
+ arena_avail_tree_new(&arena->runs_avail);
+
+#ifdef MALLOC_BALANCE
+ arena->contention = 0;
+#endif
+
+ /* Initialize bins. */
+ prev_run_size = pagesize;
+
+ /* (2^n)-spaced tiny bins. */
+ for (i = 0; i < ntbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (1U << (TINY_MIN_2POW + i));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* Quantum-spaced bins. */
+ for (; i < ntbins + nqbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = quantum * (i - ntbins + 1);
+
+ pow2_size = pow2_ceil(quantum * (i - ntbins + 1));
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+ /* (2^n)-spaced sub-page bins. */
+ for (; i < ntbins + nqbins + nsbins; i++) {
+ bin = &arena->bins[i];
+ bin->runcur = NULL;
+ arena_run_tree_new(&bin->runs);
+
+ bin->reg_size = (small_max << (i - (ntbins + nqbins) + 1));
+
+ prev_run_size = arena_bin_run_size_calc(bin, prev_run_size);
+
+#ifdef MALLOC_STATS
+ memset(&bin->stats, 0, sizeof(malloc_bin_stats_t));
+#endif
+ }
+
+#ifdef MALLOC_DEBUG
+ arena->magic = ARENA_MAGIC;
+#endif
+
+ return (false);
+}
+
+/* Create a new arena and insert it into the arenas array at index ind. */
+static arena_t *
+arenas_extend(unsigned ind)
+{
+ arena_t *ret;
+
+ /* Allocate enough space for trailing bins. */
+ ret = (arena_t *)base_alloc(sizeof(arena_t)
+ + (sizeof(arena_bin_t) * (ntbins + nqbins + nsbins - 1)));
+ if (ret != NULL && arena_new(ret) == false) {
+ arenas[ind] = ret;
+ return (ret);
+ }
+ /* Only reached if there is an OOM error. */
+
+ /*
+ * OOM here is quite inconvenient to propagate, since dealing with it
+ * would require a check for failure in the fast path. Instead, punt
+ * by using arenas[0]. In practice, this is an extremely unlikely
+ * failure.
+ */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error initializing arena\n", "", "");
+ if (opt_abort)
+ abort();
+
+ return (arenas[0]);
+}
+
+/*
+ * End arena.
+ */
+/******************************************************************************/
+/*
+ * Begin general internal functions.
+ */
+
+static void *
+huge_malloc(size_t size, bool zero)
+{
+ void *ret;
+ size_t csize;
+#ifdef MALLOC_DECOMMIT
+ size_t psize;
+#endif
+ extent_node_t *node;
+
+ /* Allocate one or more contiguous chunks for this request. */
+
+ csize = CHUNK_CEILING(size);
+ if (csize == 0) {
+ /* size is large enough to cause size_t wrap-around. */
+ return (NULL);
+ }
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ ret = chunk_alloc(csize, zero, true);
+ if (ret == NULL) {
+ base_node_dealloc(node);
+ return (NULL);
+ }
+
+ /* Insert node into huge. */
+ node->addr = ret;
+#ifdef MALLOC_DECOMMIT
+ psize = PAGE_CEILING(size);
+ node->size = psize;
+#else
+ node->size = csize;
+#endif
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+# ifdef MALLOC_DECOMMIT
+ huge_allocated += psize;
+# else
+ huge_allocated += csize;
+# endif
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+#ifdef MALLOC_DECOMMIT
+ if (csize - psize > 0)
+ pages_decommit((void *)((uintptr_t)ret + psize), csize - psize);
+#endif
+
+#ifdef MALLOC_DECOMMIT
+ VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, zero);
+#else
+ VALGRIND_MALLOCLIKE_BLOCK(ret, csize, 0, zero);
+#endif
+
+#ifdef MALLOC_FILL
+ if (zero == false) {
+ if (opt_junk)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0xa5, psize);
+# else
+ memset(ret, 0xa5, csize);
+# endif
+ else if (opt_zero)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0, psize);
+# else
+ memset(ret, 0, csize);
+# endif
+ }
+#endif
+
+ return (ret);
+}
+
+/* Only handles large allocations that require more than chunk alignment. */
+static void *
+huge_palloc(size_t alignment, size_t size)
+{
+ void *ret;
+ size_t alloc_size, chunk_size, offset;
+#ifdef MALLOC_DECOMMIT
+ size_t psize;
+#endif
+ extent_node_t *node;
+ int pfd;
+
+ /*
+ * This allocation requires alignment that is even larger than chunk
+ * alignment. This means that huge_malloc() isn't good enough.
+ *
+ * Allocate almost twice as many chunks as are demanded by the size or
+ * alignment, in order to assure the alignment can be achieved, then
+ * unmap leading and trailing chunks.
+ */
+ assert(alignment >= chunksize);
+
+ chunk_size = CHUNK_CEILING(size);
+
+ if (size >= alignment)
+ alloc_size = chunk_size + alignment - chunksize;
+ else
+ alloc_size = (alignment << 1) - chunksize;
+
+ /* Allocate an extent node with which to track the chunk. */
+ node = base_node_alloc();
+ if (node == NULL)
+ return (NULL);
+
+ /*
+ * Windows requires that there be a 1:1 mapping between VM
+ * allocation/deallocation operations. Therefore, take care here to
+ * acquire the final result via one mapping operation.
+ *
+ * The MALLOC_PAGEFILE code also benefits from this mapping algorithm,
+ * since it reduces the number of page files.
+ */
+#ifdef MALLOC_PAGEFILE
+ if (opt_pagefile) {
+ pfd = pagefile_init(size);
+ if (pfd == -1)
+ return (NULL);
+ } else
+#endif
+ pfd = -1;
+#ifdef JEMALLOC_USES_MAP_ALIGN
+ ret = pages_map_align(chunk_size, pfd, alignment);
+#else
+ do {
+ void *over;
+
+ over = chunk_alloc(alloc_size, false, false);
+ if (over == NULL) {
+ base_node_dealloc(node);
+ ret = NULL;
+ goto RETURN;
+ }
+
+ offset = (uintptr_t)over & (alignment - 1);
+ assert((offset & chunksize_mask) == 0);
+ assert(offset < alloc_size);
+ ret = (void *)((uintptr_t)over + offset);
+ chunk_dealloc(over, alloc_size);
+ ret = pages_map(ret, chunk_size, pfd);
+ /*
+ * Failure here indicates a race with another thread, so try
+ * again.
+ */
+ } while (ret == NULL);
+#endif
+ /* Insert node into huge. */
+ node->addr = ret;
+#ifdef MALLOC_DECOMMIT
+ psize = PAGE_CEILING(size);
+ node->size = psize;
+#else
+ node->size = chunk_size;
+#endif
+
+ malloc_mutex_lock(&huge_mtx);
+ extent_tree_ad_insert(&huge, node);
+#ifdef MALLOC_STATS
+ huge_nmalloc++;
+# ifdef MALLOC_DECOMMIT
+ huge_allocated += psize;
+# else
+ huge_allocated += chunk_size;
+# endif
+#endif
+ malloc_mutex_unlock(&huge_mtx);
+
+#ifdef MALLOC_DECOMMIT
+ if (chunk_size - psize > 0) {
+ pages_decommit((void *)((uintptr_t)ret + psize),
+ chunk_size - psize);
+ }
+#endif
+
+#ifdef MALLOC_DECOMMIT
+ VALGRIND_MALLOCLIKE_BLOCK(ret, psize, 0, false);
+#else
+ VALGRIND_MALLOCLIKE_BLOCK(ret, chunk_size, 0, false);
+#endif
+
+#ifdef MALLOC_FILL
+ if (opt_junk)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0xa5, psize);
+# else
+ memset(ret, 0xa5, chunk_size);
+# endif
+ else if (opt_zero)
+# ifdef MALLOC_DECOMMIT
+ memset(ret, 0, psize);
+# else
+ memset(ret, 0, chunk_size);
+# endif
+#endif
+
+RETURN:
+#ifdef MALLOC_PAGEFILE
+ if (pfd != -1)
+ pagefile_close(pfd);
+#endif
+ return (ret);
+}
+
+static void *
+huge_ralloc(void *ptr, size_t size, size_t oldsize)
+{
+ void *ret;
+ size_t copysize;
+
+ /* Avoid moving the allocation if the size class would not change. */
+
+ if (oldsize > arena_maxclass &&
+ CHUNK_CEILING(size) == CHUNK_CEILING(oldsize)) {
+#ifdef MALLOC_DECOMMIT
+ size_t psize = PAGE_CEILING(size);
+#endif
+#ifdef MALLOC_FILL
+ if (opt_junk && size < oldsize) {
+ memset((void *)((uintptr_t)ptr + size), 0x5a, oldsize
+ - size);
+ }
+#endif
+#ifdef MALLOC_DECOMMIT
+ if (psize < oldsize) {
+ extent_node_t *node, key;
+
+ pages_decommit((void *)((uintptr_t)ptr + psize),
+ oldsize - psize);
+
+ /* Update recorded size. */
+ malloc_mutex_lock(&huge_mtx);
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->size == oldsize);
+# ifdef MALLOC_STATS
+ huge_allocated -= oldsize - psize;
+# endif
+ node->size = psize;
+ malloc_mutex_unlock(&huge_mtx);
+ } else if (psize > oldsize) {
+ extent_node_t *node, key;
+
+ pages_commit((void *)((uintptr_t)ptr + oldsize),
+ psize - oldsize);
+
+ /* Update recorded size. */
+ malloc_mutex_lock(&huge_mtx);
+ key.addr = __DECONST(void *, ptr);
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->size == oldsize);
+# ifdef MALLOC_STATS
+ huge_allocated += psize - oldsize;
+# endif
+ node->size = psize;
+ malloc_mutex_unlock(&huge_mtx);
+ }
+#endif
+#ifdef MALLOC_FILL
+ if (opt_zero && size > oldsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, size
+ - oldsize);
+ }
+#endif
+ return (ptr);
+ }
+
+ /*
+ * If we get here, then size and oldsize are different enough that we
+ * need to use a different size class. In that case, fall back to
+ * allocating new space and copying.
+ */
+ ret = huge_malloc(size, false);
+ if (ret == NULL)
+ return (NULL);
+
+ copysize = (size < oldsize) ? size : oldsize;
+#ifdef VM_COPY_MIN
+ if (copysize >= VM_COPY_MIN)
+ pages_copy(ret, ptr, copysize);
+ else
+#endif
+ memcpy(ret, ptr, copysize);
+ idalloc(ptr);
+ return (ret);
+}
+
+static void
+huge_dalloc(void *ptr)
+{
+ extent_node_t *node, key;
+
+ malloc_mutex_lock(&huge_mtx);
+
+ /* Extract from tree of huge allocations. */
+ key.addr = ptr;
+ node = extent_tree_ad_search(&huge, &key);
+ assert(node != NULL);
+ assert(node->addr == ptr);
+ extent_tree_ad_remove(&huge, node);
+
+#ifdef MALLOC_STATS
+ huge_ndalloc++;
+ huge_allocated -= node->size;
+#endif
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ /* Unmap chunk. */
+#ifdef MALLOC_FILL
+ if (opt_junk)
+ memset(node->addr, 0x5a, node->size);
+#endif
+#ifdef MALLOC_DECOMMIT
+ chunk_dealloc(node->addr, CHUNK_CEILING(node->size));
+#else
+ chunk_dealloc(node->addr, node->size);
+#endif
+ VALGRIND_FREELIKE_BLOCK(node->addr, 0);
+
+ base_node_dealloc(node);
+}
+
+#ifdef MOZ_MEMORY_BSD
+static inline unsigned
+malloc_ncpus(void)
+{
+ unsigned ret;
+ int mib[2];
+ size_t len;
+
+ mib[0] = CTL_HW;
+ mib[1] = HW_NCPU;
+ len = sizeof(ret);
+ if (sysctl(mib, 2, &ret, &len, (void *) 0, 0) == -1) {
+ /* Error. */
+ return (1);
+ }
+
+ return (ret);
+}
+#elif (defined(MOZ_MEMORY_LINUX))
+#include <fcntl.h>
+
+static inline unsigned
+malloc_ncpus(void)
+{
+ unsigned ret;
+ int fd, nread, column;
+ char buf[1024];
+ static const char matchstr[] = "processor\t:";
+ int i;
+
+ /*
+ * sysconf(3) would be the preferred method for determining the number
+ * of CPUs, but it uses malloc internally, which causes untennable
+ * recursion during malloc initialization.
+ */
+ fd = open("/proc/cpuinfo", O_RDONLY);
+ if (fd == -1)
+ return (1); /* Error. */
+ /*
+ * Count the number of occurrences of matchstr at the beginnings of
+ * lines. This treats hyperthreaded CPUs as multiple processors.
+ */
+ column = 0;
+ ret = 0;
+ while (true) {
+ nread = read(fd, &buf, sizeof(buf));
+ if (nread <= 0)
+ break; /* EOF or error. */
+ for (i = 0;i < nread;i++) {
+ char c = buf[i];
+ if (c == '\n')
+ column = 0;
+ else if (column != -1) {
+ if (c == matchstr[column]) {
+ column++;
+ if (column == sizeof(matchstr) - 1) {
+ column = -1;
+ ret++;
+ }
+ } else
+ column = -1;
+ }
+ }
+ }
+
+ if (ret == 0)
+ ret = 1; /* Something went wrong in the parser. */
+ close(fd);
+
+ return (ret);
+}
+#elif (defined(MOZ_MEMORY_DARWIN))
+#include <mach/mach_init.h>
+#include <mach/mach_host.h>
+
+static inline unsigned
+malloc_ncpus(void)
+{
+ kern_return_t error;
+ natural_t n;
+ processor_info_array_t pinfo;
+ mach_msg_type_number_t pinfocnt;
+
+ error = host_processor_info(mach_host_self(), PROCESSOR_BASIC_INFO,
+ &n, &pinfo, &pinfocnt);
+ if (error != KERN_SUCCESS)
+ return (1); /* Error. */
+ else
+ return (n);
+}
+#elif (defined(MOZ_MEMORY_SOLARIS))
+
+static inline unsigned
+malloc_ncpus(void)
+{
+ return sysconf(_SC_NPROCESSORS_ONLN);
+}
+#else
+static inline unsigned
+malloc_ncpus(void)
+{
+
+ /*
+ * We lack a way to determine the number of CPUs on this platform, so
+ * assume 1 CPU.
+ */
+ return (1);
+}
+#endif
+
+static void
+malloc_print_stats(void)
+{
+
+ if (opt_print_stats) {
+ char s[UMAX2S_BUFSIZE];
+ _malloc_message("___ Begin malloc statistics ___\n", "", "",
+ "");
+ _malloc_message("Assertions ",
+#ifdef NDEBUG
+ "disabled",
+#else
+ "enabled",
+#endif
+ "\n", "");
+ _malloc_message("Boolean MALLOC_OPTIONS: ",
+ opt_abort ? "A" : "a", "", "");
+#ifdef MALLOC_FILL
+ _malloc_message(opt_junk ? "J" : "j", "", "", "");
+#endif
+#ifdef MALLOC_PAGEFILE
+ _malloc_message(opt_pagefile ? "o" : "O", "", "", "");
+#endif
+ _malloc_message("P", "", "", "");
+#ifdef MALLOC_UTRACE
+ _malloc_message(opt_utrace ? "U" : "u", "", "", "");
+#endif
+#ifdef MALLOC_SYSV
+ _malloc_message(opt_sysv ? "V" : "v", "", "", "");
+#endif
+#ifdef MALLOC_XMALLOC
+ _malloc_message(opt_xmalloc ? "X" : "x", "", "", "");
+#endif
+#ifdef MALLOC_FILL
+ _malloc_message(opt_zero ? "Z" : "z", "", "", "");
+#endif
+ _malloc_message("\n", "", "", "");
+
+ _malloc_message("CPUs: ", umax2s(ncpus, s), "\n", "");
+ _malloc_message("Max arenas: ", umax2s(narenas, s), "\n", "");
+#ifdef MALLOC_BALANCE
+ _malloc_message("Arena balance threshold: ",
+ umax2s(opt_balance_threshold, s), "\n", "");
+#endif
+ _malloc_message("Pointer size: ", umax2s(sizeof(void *), s),
+ "\n", "");
+ _malloc_message("Quantum size: ", umax2s(quantum, s), "\n", "");
+ _malloc_message("Max small size: ", umax2s(small_max, s), "\n",
+ "");
+ _malloc_message("Max dirty pages per arena: ",
+ umax2s(opt_dirty_max, s), "\n", "");
+
+ _malloc_message("Chunk size: ", umax2s(chunksize, s), "", "");
+ _malloc_message(" (2^", umax2s(opt_chunk_2pow, s), ")\n", "");
+
+#ifdef MALLOC_STATS
+ {
+ size_t allocated, mapped;
+#ifdef MALLOC_BALANCE
+ uint64_t nbalance = 0;
+#endif
+ unsigned i;
+ arena_t *arena;
+
+ /* Calculate and print allocated/mapped stats. */
+
+ /* arenas. */
+ for (i = 0, allocated = 0; i < narenas; i++) {
+ if (arenas[i] != NULL) {
+ malloc_spin_lock(&arenas[i]->lock);
+ allocated +=
+ arenas[i]->stats.allocated_small;
+ allocated +=
+ arenas[i]->stats.allocated_large;
+#ifdef MALLOC_BALANCE
+ nbalance += arenas[i]->stats.nbalance;
+#endif
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ }
+
+ /* huge/base. */
+ malloc_mutex_lock(&huge_mtx);
+ allocated += huge_allocated;
+ mapped = stats_chunks.curchunks * chunksize;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_lock(&base_mtx);
+ mapped += base_mapped;
+ malloc_mutex_unlock(&base_mtx);
+
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf("Allocated: %lu, mapped: %lu\n",
+ allocated, mapped);
+#else
+ malloc_printf("Allocated: %zu, mapped: %zu\n",
+ allocated, mapped);
+#endif
+
+ malloc_mutex_lock(&reserve_mtx);
+ malloc_printf("Reserve: min "
+ "cur max\n");
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf(" %12lu %12lu %12lu\n",
+ CHUNK_CEILING(reserve_min) >> opt_chunk_2pow,
+ reserve_cur >> opt_chunk_2pow,
+ reserve_max >> opt_chunk_2pow);
+#else
+ malloc_printf(" %12zu %12zu %12zu\n",
+ CHUNK_CEILING(reserve_min) >> opt_chunk_2pow,
+ reserve_cur >> opt_chunk_2pow,
+ reserve_max >> opt_chunk_2pow);
+#endif
+ malloc_mutex_unlock(&reserve_mtx);
+
+#ifdef MALLOC_BALANCE
+ malloc_printf("Arena balance reassignments: %llu\n",
+ nbalance);
+#endif
+
+ /* Print chunk stats. */
+ {
+ chunk_stats_t chunks_stats;
+
+ malloc_mutex_lock(&huge_mtx);
+ chunks_stats = stats_chunks;
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_printf("chunks: nchunks "
+ "highchunks curchunks\n");
+ malloc_printf(" %13llu%13lu%13lu\n",
+ chunks_stats.nchunks,
+ chunks_stats.highchunks,
+ chunks_stats.curchunks);
+ }
+
+ /* Print chunk stats. */
+ malloc_printf(
+ "huge: nmalloc ndalloc allocated\n");
+#ifdef MOZ_MEMORY_WINDOWS
+ malloc_printf(" %12llu %12llu %12lu\n",
+ huge_nmalloc, huge_ndalloc, huge_allocated);
+#else
+ malloc_printf(" %12llu %12llu %12zu\n",
+ huge_nmalloc, huge_ndalloc, huge_allocated);
+#endif
+ /* Print stats for each arena. */
+ for (i = 0; i < narenas; i++) {
+ arena = arenas[i];
+ if (arena != NULL) {
+ malloc_printf(
+ "\narenas[%u]:\n", i);
+ malloc_spin_lock(&arena->lock);
+ stats_print(arena);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+ }
+#endif /* #ifdef MALLOC_STATS */
+ _malloc_message("--- End malloc statistics ---\n", "", "", "");
+ }
+}
+
+/*
+ * FreeBSD's pthreads implementation calls malloc(3), so the malloc
+ * implementation has to take pains to avoid infinite recursion during
+ * initialization.
+ */
+#if (defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_DARWIN)) && !defined(MOZ_MEMORY_WINCE)
+#define malloc_init() false
+#else
+static inline bool
+malloc_init(void)
+{
+
+ if (malloc_initialized == false)
+ return (malloc_init_hard());
+
+ return (false);
+}
+#endif
+
+#if !defined(MOZ_MEMORY_WINDOWS) || defined(MOZ_MEMORY_WINCE)
+static
+#endif
+bool
+je_malloc_init_hard(void)
+{
+ unsigned i;
+ char buf[PATH_MAX + 1];
+ const char *opts;
+ long result;
+#ifndef MOZ_MEMORY_WINDOWS
+ int linklen;
+#endif
+
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_lock(&init_lock);
+#endif
+
+ if (malloc_initialized) {
+ /*
+ * Another thread initialized the allocator before this one
+ * acquired init_lock.
+ */
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (false);
+ }
+
+#ifdef MOZ_MEMORY_WINDOWS
+ /* get a thread local storage index */
+ tlsIndex = TlsAlloc();
+#endif
+
+ /* Get page size and number of CPUs */
+#ifdef MOZ_MEMORY_WINDOWS
+ {
+ SYSTEM_INFO info;
+
+ GetSystemInfo(&info);
+ result = info.dwPageSize;
+
+ pagesize = (unsigned) result;
+
+ ncpus = info.dwNumberOfProcessors;
+ }
+#else
+ ncpus = malloc_ncpus();
+
+ result = sysconf(_SC_PAGESIZE);
+ assert(result != -1);
+
+ pagesize = (unsigned) result;
+#endif
+
+ /*
+ * We assume that pagesize is a power of 2 when calculating
+ * pagesize_mask and pagesize_2pow.
+ */
+ assert(((result - 1) & result) == 0);
+ pagesize_mask = result - 1;
+ pagesize_2pow = ffs((int)result) - 1;
+
+#ifdef MALLOC_PAGEFILE
+ /*
+ * Determine where to create page files. It is insufficient to
+ * unconditionally use P_tmpdir (typically "/tmp"), since for some
+ * operating systems /tmp is a separate filesystem that is rather small.
+ * Therefore prefer, in order, the following locations:
+ *
+ * 1) MALLOC_TMPDIR
+ * 2) TMPDIR
+ * 3) P_tmpdir
+ */
+ {
+ char *s;
+ size_t slen;
+ static const char suffix[] = "/jemalloc.XXXXXX";
+
+ if ((s = getenv("MALLOC_TMPDIR")) == NULL && (s =
+ getenv("TMPDIR")) == NULL)
+ s = P_tmpdir;
+ slen = strlen(s);
+ if (slen + sizeof(suffix) > sizeof(pagefile_templ)) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Page file path too long\n",
+ "", "");
+ abort();
+ }
+ memcpy(pagefile_templ, s, slen);
+ memcpy(&pagefile_templ[slen], suffix, sizeof(suffix));
+ }
+#endif
+
+ for (i = 0; i < 3; i++) {
+ unsigned j;
+
+ /* Get runtime configuration. */
+ switch (i) {
+ case 0:
+#ifndef MOZ_MEMORY_WINDOWS
+ if ((linklen = readlink("/etc/malloc.conf", buf,
+ sizeof(buf) - 1)) != -1) {
+ /*
+ * Use the contents of the "/etc/malloc.conf"
+ * symbolic link's name.
+ */
+ buf[linklen] = '\0';
+ opts = buf;
+ } else
+#endif
+ {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 1:
+ if (issetugid() == 0 && (opts =
+ getenv("MALLOC_OPTIONS")) != NULL) {
+ /*
+ * Do nothing; opts is already initialized to
+ * the value of the MALLOC_OPTIONS environment
+ * variable.
+ */
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ case 2:
+ if (_malloc_options != NULL) {
+ /*
+ * Use options that were compiled into the
+ * program.
+ */
+ opts = _malloc_options;
+ } else {
+ /* No configuration specified. */
+ buf[0] = '\0';
+ opts = buf;
+ }
+ break;
+ default:
+ /* NOTREACHED */
+ buf[0] = '\0';
+ opts = buf;
+ assert(false);
+ }
+
+ for (j = 0; opts[j] != '\0'; j++) {
+ unsigned k, nreps;
+ bool nseen;
+
+ /* Parse repetition count, if any. */
+ for (nreps = 0, nseen = false;; j++, nseen = true) {
+ switch (opts[j]) {
+ case '0': case '1': case '2': case '3':
+ case '4': case '5': case '6': case '7':
+ case '8': case '9':
+ nreps *= 10;
+ nreps += opts[j] - '0';
+ break;
+ default:
+ goto MALLOC_OUT;
+ }
+ }
+MALLOC_OUT:
+ if (nseen == false)
+ nreps = 1;
+
+ for (k = 0; k < nreps; k++) {
+ switch (opts[j]) {
+ case 'a':
+ opt_abort = false;
+ break;
+ case 'A':
+ opt_abort = true;
+ break;
+ case 'b':
+#ifdef MALLOC_BALANCE
+ opt_balance_threshold >>= 1;
+#endif
+ break;
+ case 'B':
+#ifdef MALLOC_BALANCE
+ if (opt_balance_threshold == 0)
+ opt_balance_threshold = 1;
+ else if ((opt_balance_threshold << 1)
+ > opt_balance_threshold)
+ opt_balance_threshold <<= 1;
+#endif
+ break;
+ case 'f':
+ opt_dirty_max >>= 1;
+ break;
+ case 'F':
+ if (opt_dirty_max == 0)
+ opt_dirty_max = 1;
+ else if ((opt_dirty_max << 1) != 0)
+ opt_dirty_max <<= 1;
+ break;
+ case 'g':
+ opt_reserve_range_lshift--;
+ break;
+ case 'G':
+ opt_reserve_range_lshift++;
+ break;
+#ifdef MALLOC_FILL
+ case 'j':
+ opt_junk = false;
+ break;
+ case 'J':
+ opt_junk = true;
+ break;
+#endif
+ case 'k':
+ /*
+ * Chunks always require at least one
+ * header page, so chunks can never be
+ * smaller than two pages.
+ */
+ if (opt_chunk_2pow > pagesize_2pow + 1)
+ opt_chunk_2pow--;
+ break;
+ case 'K':
+ if (opt_chunk_2pow + 1 <
+ (sizeof(size_t) << 3))
+ opt_chunk_2pow++;
+ break;
+ case 'n':
+ opt_narenas_lshift--;
+ break;
+ case 'N':
+ opt_narenas_lshift++;
+ break;
+#ifdef MALLOC_PAGEFILE
+ case 'o':
+ /* Do not over-commit. */
+ opt_pagefile = true;
+ break;
+ case 'O':
+ /* Allow over-commit. */
+ opt_pagefile = false;
+ break;
+#endif
+ case 'p':
+ opt_print_stats = false;
+ break;
+ case 'P':
+ opt_print_stats = true;
+ break;
+ case 'q':
+ if (opt_quantum_2pow > QUANTUM_2POW_MIN)
+ opt_quantum_2pow--;
+ break;
+ case 'Q':
+ if (opt_quantum_2pow < pagesize_2pow -
+ 1)
+ opt_quantum_2pow++;
+ break;
+ case 'r':
+ opt_reserve_min_lshift--;
+ break;
+ case 'R':
+ opt_reserve_min_lshift++;
+ break;
+ case 's':
+ if (opt_small_max_2pow >
+ QUANTUM_2POW_MIN)
+ opt_small_max_2pow--;
+ break;
+ case 'S':
+ if (opt_small_max_2pow < pagesize_2pow
+ - 1)
+ opt_small_max_2pow++;
+ break;
+#ifdef MALLOC_UTRACE
+ case 'u':
+ opt_utrace = false;
+ break;
+ case 'U':
+ opt_utrace = true;
+ break;
+#endif
+#ifdef MALLOC_SYSV
+ case 'v':
+ opt_sysv = false;
+ break;
+ case 'V':
+ opt_sysv = true;
+ break;
+#endif
+#ifdef MALLOC_XMALLOC
+ case 'x':
+ opt_xmalloc = false;
+ break;
+ case 'X':
+ opt_xmalloc = true;
+ break;
+#endif
+#ifdef MALLOC_FILL
+ case 'z':
+ opt_zero = false;
+ break;
+ case 'Z':
+ opt_zero = true;
+ break;
+#endif
+ default: {
+ char cbuf[2];
+
+ cbuf[0] = opts[j];
+ cbuf[1] = '\0';
+ _malloc_message(_getprogname(),
+ ": (malloc) Unsupported character "
+ "in malloc options: '", cbuf,
+ "'\n");
+ }
+ }
+ }
+ }
+ }
+
+ /* Take care to call atexit() only once. */
+ if (opt_print_stats) {
+#ifndef MOZ_MEMORY_WINDOWS
+ /* Print statistics at exit. */
+ atexit(malloc_print_stats);
+#endif
+ }
+
+#if (!defined(MOZ_MEMORY_WINDOWS) && !defined(MOZ_MEMORY_DARWIN))
+ /* Prevent potential deadlock on malloc locks after fork. */
+ pthread_atfork(_malloc_prefork, _malloc_postfork, _malloc_postfork);
+#endif
+
+ /* Set variables according to the value of opt_small_max_2pow. */
+ if (opt_small_max_2pow < opt_quantum_2pow)
+ opt_small_max_2pow = opt_quantum_2pow;
+ small_max = (1U << opt_small_max_2pow);
+
+ /* Set bin-related variables. */
+ bin_maxclass = (pagesize >> 1);
+ assert(opt_quantum_2pow >= TINY_MIN_2POW);
+ ntbins = opt_quantum_2pow - TINY_MIN_2POW;
+ assert(ntbins <= opt_quantum_2pow);
+ nqbins = (small_max >> opt_quantum_2pow);
+ nsbins = pagesize_2pow - opt_small_max_2pow - 1;
+
+ /* Set variables according to the value of opt_quantum_2pow. */
+ quantum = (1U << opt_quantum_2pow);
+ quantum_mask = quantum - 1;
+ if (ntbins > 0)
+ small_min = (quantum >> 1) + 1;
+ else
+ small_min = 1;
+ assert(small_min <= quantum);
+
+ /* Set variables according to the value of opt_chunk_2pow. */
+ chunksize = (1LU << opt_chunk_2pow);
+ chunksize_mask = chunksize - 1;
+ chunk_npages = (chunksize >> pagesize_2pow);
+ {
+ size_t header_size;
+
+ /*
+ * Compute the header size such that it is large
+ * enough to contain the page map and enough nodes for the
+ * worst case: one node per non-header page plus one extra for
+ * situations where we briefly have one more node allocated
+ * than we will need.
+ */
+ header_size = sizeof(arena_chunk_t) +
+ (sizeof(arena_chunk_map_t) * (chunk_npages - 1));
+ arena_chunk_header_npages = (header_size >> pagesize_2pow) +
+ ((header_size & pagesize_mask) != 0);
+ }
+ arena_maxclass = chunksize - (arena_chunk_header_npages <<
+ pagesize_2pow);
+
+#ifdef JEMALLOC_USES_MAP_ALIGN
+ /*
+ * When using MAP_ALIGN, the alignment parameter must be a power of two
+ * multiple of the system pagesize, or mmap will fail.
+ */
+ assert((chunksize % pagesize) == 0);
+ assert((1 << (ffs(chunksize / pagesize) - 1)) == (chunksize/pagesize));
+#endif
+
+ UTRACE(0, 0, 0);
+
+#ifdef MALLOC_STATS
+ memset(&stats_chunks, 0, sizeof(chunk_stats_t));
+#endif
+
+ /* Various sanity checks that regard configuration. */
+ assert(quantum >= sizeof(void *));
+ assert(quantum <= pagesize);
+ assert(chunksize >= pagesize);
+ assert(quantum * 4 <= chunksize);
+
+ /* Initialize chunks data. */
+ malloc_mutex_init(&huge_mtx);
+ extent_tree_ad_new(&huge);
+#ifdef MALLOC_STATS
+ huge_nmalloc = 0;
+ huge_ndalloc = 0;
+ huge_allocated = 0;
+#endif
+
+ /* Initialize base allocation data structures. */
+#ifdef MALLOC_STATS
+ base_mapped = 0;
+#endif
+ base_nodes = NULL;
+ base_reserve_regs = NULL;
+ malloc_mutex_init(&base_mtx);
+
+#ifdef MOZ_MEMORY_NARENAS_DEFAULT_ONE
+ narenas = 1;
+#else
+ if (ncpus > 1) {
+ /*
+ * For SMP systems, create four times as many arenas as there
+ * are CPUs by default.
+ */
+ opt_narenas_lshift += 2;
+ }
+
+ /* Determine how many arenas to use. */
+ narenas = ncpus;
+#endif
+ if (opt_narenas_lshift > 0) {
+ if ((narenas << opt_narenas_lshift) > narenas)
+ narenas <<= opt_narenas_lshift;
+ /*
+ * Make sure not to exceed the limits of what base_alloc() can
+ * handle.
+ */
+ if (narenas * sizeof(arena_t *) > chunksize)
+ narenas = chunksize / sizeof(arena_t *);
+ } else if (opt_narenas_lshift < 0) {
+ if ((narenas >> -opt_narenas_lshift) < narenas)
+ narenas >>= -opt_narenas_lshift;
+ /* Make sure there is at least one arena. */
+ if (narenas == 0)
+ narenas = 1;
+ }
+#ifdef MALLOC_BALANCE
+ assert(narenas != 0);
+ for (narenas_2pow = 0;
+ (narenas >> (narenas_2pow + 1)) != 0;
+ narenas_2pow++);
+#endif
+
+#ifdef NO_TLS
+ if (narenas > 1) {
+ static const unsigned primes[] = {1, 3, 5, 7, 11, 13, 17, 19,
+ 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,
+ 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149,
+ 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
+ 223, 227, 229, 233, 239, 241, 251, 257, 263};
+ unsigned nprimes, parenas;
+
+ /*
+ * Pick a prime number of hash arenas that is more than narenas
+ * so that direct hashing of pthread_self() pointers tends to
+ * spread allocations evenly among the arenas.
+ */
+ assert((narenas & 1) == 0); /* narenas must be even. */
+ nprimes = (sizeof(primes) >> SIZEOF_INT_2POW);
+ parenas = primes[nprimes - 1]; /* In case not enough primes. */
+ for (i = 1; i < nprimes; i++) {
+ if (primes[i] > narenas) {
+ parenas = primes[i];
+ break;
+ }
+ }
+ narenas = parenas;
+ }
+#endif
+
+#ifndef NO_TLS
+# ifndef MALLOC_BALANCE
+ next_arena = 0;
+# endif
+#endif
+
+ /* Allocate and initialize arenas. */
+ arenas = (arena_t **)base_alloc(sizeof(arena_t *) * narenas);
+ if (arenas == NULL) {
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (true);
+ }
+ /*
+ * Zero the array. In practice, this should always be pre-zeroed,
+ * since it was just mmap()ed, but let's be sure.
+ */
+ memset(arenas, 0, sizeof(arena_t *) * narenas);
+
+ /*
+ * Initialize one arena here. The rest are lazily created in
+ * choose_arena_hard().
+ */
+ arenas_extend(0);
+ if (arenas[0] == NULL) {
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (true);
+ }
+#ifndef NO_TLS
+ /*
+ * Assign the initial arena to the initial thread, in order to avoid
+ * spurious creation of an extra arena if the application switches to
+ * threaded mode.
+ */
+#ifdef MOZ_MEMORY_WINDOWS
+ TlsSetValue(tlsIndex, arenas[0]);
+#else
+ arenas_map = arenas[0];
+#endif
+#endif
+
+ /*
+ * Seed here for the initial thread, since choose_arena_hard() is only
+ * called for other threads. The seed value doesn't really matter.
+ */
+#ifdef MALLOC_BALANCE
+ SPRN(balance, 42);
+#endif
+
+ malloc_spin_init(&arenas_lock);
+
+#ifdef MALLOC_VALIDATE
+ chunk_rtree = malloc_rtree_new((SIZEOF_PTR << 3) - opt_chunk_2pow);
+ if (chunk_rtree == NULL)
+ return (true);
+#endif
+
+ /*
+ * Configure and initialize the memory reserve. This needs to happen
+ * late during initialization, since chunks are allocated.
+ */
+ malloc_mutex_init(&reserve_mtx);
+ reserve_min = 0;
+ reserve_cur = 0;
+ reserve_max = 0;
+ if (RESERVE_RANGE_2POW_DEFAULT + opt_reserve_range_lshift >= 0) {
+ reserve_max += chunksize << (RESERVE_RANGE_2POW_DEFAULT +
+ opt_reserve_range_lshift);
+ }
+ ql_new(&reserve_regs);
+ reserve_seq = 0;
+ extent_tree_szad_new(&reserve_chunks_szad);
+ extent_tree_ad_new(&reserve_chunks_ad);
+ if (RESERVE_MIN_2POW_DEFAULT + opt_reserve_min_lshift >= 0) {
+ reserve_min_set(chunksize << (RESERVE_MIN_2POW_DEFAULT +
+ opt_reserve_min_lshift));
+ }
+
+ malloc_initialized = true;
+#ifndef MOZ_MEMORY_WINDOWS
+ malloc_mutex_unlock(&init_lock);
+#endif
+ return (false);
+}
+
+/* XXX Why not just expose malloc_print_stats()? */
+#ifdef MOZ_MEMORY_WINDOWS
+void
+malloc_shutdown()
+{
+
+ malloc_print_stats();
+}
+#endif
+
+/*
+ * End general internal functions.
+ */
+/******************************************************************************/
+/*
+ * Begin malloc(3)-compatible functions.
+ */
+
+/*
+ * Inline the standard malloc functions if they are being subsumed by Darwin's
+ * zone infrastructure.
+ */
+#ifdef MOZ_MEMORY_DARWIN
+# define ZONE_INLINE inline
+#else
+# define ZONE_INLINE
+#endif
+
+/* Mangle standard interfaces on Darwin and Windows CE,
+ in order to avoid linking problems. */
+#ifdef MOZ_MEMORY_DARWIN
+#define DONT_OVERRIDE_LIBC
+#endif
+
+#if defined(DONT_OVERRIDE_LIBC)
+#define malloc(a) je_malloc(a)
+#define valloc(a) je_valloc(a)
+#define calloc(a, b) je_calloc(a, b)
+#define realloc(a, b) je_realloc(a, b)
+#define free(a) je_free(a)
+#define _msize(p) je_msize(p)
+#define _recalloc(p, n, s) je_recalloc(p, n, s)
+#endif
+
+ZONE_INLINE
+void *
+malloc(size_t size)
+{
+ void *ret;
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto RETURN;
+ }
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ }
+
+ ret = imalloc(size);
+
+RETURN:
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in malloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+#ifdef MOZ_MEMORY_SOLARIS
+# ifdef __SUNPRO_C
+void *
+memalign(size_t alignment, size_t size);
+#pragma no_inline(memalign)
+# elif (defined(__GNU_C__))
+__attribute__((noinline))
+# endif
+#else
+inline
+#endif
+void *
+memalign(size_t alignment, size_t size)
+{
+ void *ret;
+
+ assert(((alignment - 1) & alignment) == 0 && alignment >=
+ sizeof(void *));
+
+ if (malloc_init()) {
+ ret = NULL;
+ goto RETURN;
+ }
+
+ ret = ipalloc(alignment, size);
+
+RETURN:
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc && ret == NULL) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in memalign(): out of memory\n", "", "");
+ abort();
+ }
+#endif
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+ZONE_INLINE
+int
+posix_memalign(void **memptr, size_t alignment, size_t size)
+{
+ void *result;
+
+ /* Make sure that alignment is a large enough power of 2. */
+ if (((alignment - 1) & alignment) != 0 || alignment < sizeof(void *)) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in posix_memalign(): "
+ "invalid alignment\n", "", "");
+ abort();
+ }
+#endif
+ return (EINVAL);
+ }
+
+#ifdef MOZ_MEMORY_DARWIN
+ result = moz_memalign(alignment, size);
+#else
+ result = memalign(alignment, size);
+#endif
+ if (result == NULL)
+ return (ENOMEM);
+
+ *memptr = result;
+ return (0);
+}
+
+ZONE_INLINE
+void *
+valloc(size_t size)
+{
+#ifdef MOZ_MEMORY_DARWIN
+ return (moz_memalign(pagesize, size));
+#else
+ return (memalign(pagesize, size));
+#endif
+}
+
+ZONE_INLINE
+void *
+calloc(size_t num, size_t size)
+{
+ void *ret;
+ size_t num_size;
+
+ if (malloc_init()) {
+ num_size = 0;
+ ret = NULL;
+ goto RETURN;
+ }
+
+ num_size = num * size;
+ if (num_size == 0) {
+#ifdef MALLOC_SYSV
+ if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+#endif
+ num_size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ /*
+ * Try to avoid division here. We know that it isn't possible to
+ * overflow during multiplication if neither operand uses any of the
+ * most significant half of the bits in a size_t.
+ */
+ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+ && (num_size / size != num)) {
+ /* size_t overflow. */
+ ret = NULL;
+ goto RETURN;
+ }
+
+ ret = icalloc(num_size);
+
+RETURN:
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in calloc(): out of memory\n", "",
+ "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+
+ UTRACE(0, num_size, ret);
+ return (ret);
+}
+
+ZONE_INLINE
+void *
+realloc(void *ptr, size_t size)
+{
+ void *ret;
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ if (ptr != NULL)
+ idalloc(ptr);
+ ret = NULL;
+ goto RETURN;
+ }
+#endif
+ }
+
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ ret = iralloc(ptr, size);
+
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+ } else {
+ if (malloc_init())
+ ret = NULL;
+ else
+ ret = imalloc(size);
+
+ if (ret == NULL) {
+#ifdef MALLOC_XMALLOC
+ if (opt_xmalloc) {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in realloc(): out of "
+ "memory\n", "", "");
+ abort();
+ }
+#endif
+ errno = ENOMEM;
+ }
+ }
+
+#ifdef MALLOC_SYSV
+RETURN:
+#endif
+ UTRACE(ptr, size, ret);
+ return (ret);
+}
+
+ZONE_INLINE
+void
+free(void *ptr)
+{
+
+ UTRACE(ptr, 0, 0);
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ idalloc(ptr);
+ }
+}
+
+/*
+ * End malloc(3)-compatible functions.
+ */
+/******************************************************************************/
+/*
+ * Begin non-standard functions.
+ */
+
+size_t
+malloc_usable_size(const void *ptr)
+{
+
+#ifdef MALLOC_VALIDATE
+ return (isalloc_validate(ptr));
+#else
+ assert(ptr != NULL);
+
+ return (isalloc(ptr));
+#endif
+}
+
+void
+jemalloc_stats(jemalloc_stats_t *stats)
+{
+ size_t i;
+
+ assert(stats != NULL);
+
+ /*
+ * Gather runtime settings.
+ */
+ stats->opt_abort = opt_abort;
+ stats->opt_junk =
+#ifdef MALLOC_FILL
+ opt_junk ? true :
+#endif
+ false;
+ stats->opt_utrace =
+#ifdef MALLOC_UTRACE
+ opt_utrace ? true :
+#endif
+ false;
+ stats->opt_sysv =
+#ifdef MALLOC_SYSV
+ opt_sysv ? true :
+#endif
+ false;
+ stats->opt_xmalloc =
+#ifdef MALLOC_XMALLOC
+ opt_xmalloc ? true :
+#endif
+ false;
+ stats->opt_zero =
+#ifdef MALLOC_FILL
+ opt_zero ? true :
+#endif
+ false;
+ stats->narenas = narenas;
+ stats->balance_threshold =
+#ifdef MALLOC_BALANCE
+ opt_balance_threshold
+#else
+ SIZE_T_MAX
+#endif
+ ;
+ stats->quantum = quantum;
+ stats->small_max = small_max;
+ stats->large_max = arena_maxclass;
+ stats->chunksize = chunksize;
+ stats->dirty_max = opt_dirty_max;
+
+ malloc_mutex_lock(&reserve_mtx);
+ stats->reserve_min = reserve_min;
+ stats->reserve_max = reserve_max;
+ stats->reserve_cur = reserve_cur;
+ malloc_mutex_unlock(&reserve_mtx);
+
+ /*
+ * Gather current memory usage statistics.
+ */
+ stats->mapped = 0;
+ stats->committed = 0;
+ stats->allocated = 0;
+ stats->dirty = 0;
+
+ /* Get huge mapped/allocated. */
+ malloc_mutex_lock(&huge_mtx);
+ stats->mapped += stats_chunks.curchunks * chunksize;
+#ifdef MALLOC_DECOMMIT
+ stats->committed += huge_allocated;
+#endif
+ stats->allocated += huge_allocated;
+ malloc_mutex_unlock(&huge_mtx);
+
+ /* Get base mapped. */
+ malloc_mutex_lock(&base_mtx);
+ stats->mapped += base_mapped;
+#ifdef MALLOC_DECOMMIT
+ stats->committed += base_mapped;
+#endif
+ malloc_mutex_unlock(&base_mtx);
+
+ /* Iterate over arenas and their chunks. */
+ for (i = 0; i < narenas; i++) {
+ arena_t *arena = arenas[i];
+ if (arena != NULL) {
+ arena_chunk_t *chunk;
+
+ malloc_spin_lock(&arena->lock);
+ stats->allocated += arena->stats.allocated_small;
+ stats->allocated += arena->stats.allocated_large;
+#ifdef MALLOC_DECOMMIT
+ rb_foreach_begin(arena_chunk_t, link_dirty,
+ &arena->chunks_dirty, chunk) {
+ size_t j;
+
+ for (j = 0; j < chunk_npages; j++) {
+ if ((chunk->map[j].bits &
+ CHUNK_MAP_DECOMMITTED) == 0)
+ stats->committed += pagesize;
+ }
+ } rb_foreach_end(arena_chunk_t, link_dirty,
+ &arena->chunks_dirty, chunk)
+#endif
+ stats->dirty += (arena->ndirty << pagesize_2pow);
+ malloc_spin_unlock(&arena->lock);
+ }
+ }
+
+#ifndef MALLOC_DECOMMIT
+ stats->committed = stats->mapped;
+#endif
+}
+
+void *
+xmalloc(size_t size)
+{
+ void *ret;
+
+ if (malloc_init())
+ reserve_fail(size, "xmalloc");
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in xmalloc(): ",
+ "invalid size 0", "\n");
+ abort();
+ }
+#endif
+ }
+
+ ret = imalloc(size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(size, "xmalloc", seq);
+ ret = imalloc(size);
+ } while (ret == NULL);
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+void *
+xcalloc(size_t num, size_t size)
+{
+ void *ret;
+ size_t num_size;
+
+ num_size = num * size;
+ if (malloc_init())
+ reserve_fail(num_size, "xcalloc");
+
+ if (num_size == 0) {
+#ifdef MALLOC_SYSV
+ if ((opt_sysv == false) && ((num == 0) || (size == 0)))
+#endif
+ num_size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in xcalloc(): ",
+ "invalid size 0", "\n");
+ abort();
+ }
+#endif
+ /*
+ * Try to avoid division here. We know that it isn't possible to
+ * overflow during multiplication if neither operand uses any of the
+ * most significant half of the bits in a size_t.
+ */
+ } else if (((num | size) & (SIZE_T_MAX << (sizeof(size_t) << 2)))
+ && (num_size / size != num)) {
+ /* size_t overflow. */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in xcalloc(): ",
+ "size overflow", "\n");
+ abort();
+ }
+
+ ret = icalloc(num_size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(num_size, "xcalloc", seq);
+ ret = icalloc(num_size);
+ } while (ret == NULL);
+ }
+
+ UTRACE(0, num_size, ret);
+ return (ret);
+}
+
+void *
+xrealloc(void *ptr, size_t size)
+{
+ void *ret;
+
+ if (size == 0) {
+#ifdef MALLOC_SYSV
+ if (opt_sysv == false)
+#endif
+ size = 1;
+#ifdef MALLOC_SYSV
+ else {
+ if (ptr != NULL)
+ idalloc(ptr);
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in xrealloc(): ",
+ "invalid size 0", "\n");
+ abort();
+ }
+#endif
+ }
+
+ if (ptr != NULL) {
+ assert(malloc_initialized);
+
+ ret = iralloc(ptr, size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(size, "xrealloc", seq);
+ ret = iralloc(ptr, size);
+ } while (ret == NULL);
+ }
+ } else {
+ if (malloc_init())
+ reserve_fail(size, "xrealloc");
+
+ ret = imalloc(size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(size, "xrealloc", seq);
+ ret = imalloc(size);
+ } while (ret == NULL);
+ }
+ }
+
+ UTRACE(ptr, size, ret);
+ return (ret);
+}
+
+void *
+xmemalign(size_t alignment, size_t size)
+{
+ void *ret;
+
+ assert(((alignment - 1) & alignment) == 0 && alignment >=
+ sizeof(void *));
+
+ if (malloc_init())
+ reserve_fail(size, "xmemalign");
+
+ ret = ipalloc(alignment, size);
+ if (ret == NULL) {
+ uint64_t seq = 0;
+
+ do {
+ seq = reserve_crit(size, "xmemalign", seq);
+ ret = ipalloc(alignment, size);
+ } while (ret == NULL);
+ }
+
+ UTRACE(0, size, ret);
+ return (ret);
+}
+
+static void
+reserve_shrink(void)
+{
+ extent_node_t *node;
+
+ assert(reserve_cur > reserve_max);
+#ifdef MALLOC_DEBUG
+ {
+ extent_node_t *node;
+ size_t reserve_size;
+
+ reserve_size = 0;
+ rb_foreach_begin(extent_node_t, link_szad, &reserve_chunks_szad,
+ node) {
+ reserve_size += node->size;
+ } rb_foreach_end(extent_node_t, link_szad, &reserve_chunks_szad,
+ node)
+ assert(reserve_size == reserve_cur);
+
+ reserve_size = 0;
+ rb_foreach_begin(extent_node_t, link_ad, &reserve_chunks_ad,
+ node) {
+ reserve_size += node->size;
+ } rb_foreach_end(extent_node_t, link_ad, &reserve_chunks_ad,
+ node)
+ assert(reserve_size == reserve_cur);
+ }
+#endif
+
+ /* Discard chunks until the the reserve is below the size limit. */
+ rb_foreach_reverse_begin(extent_node_t, link_ad, &reserve_chunks_ad,
+ node) {
+#ifndef MALLOC_DECOMMIT
+ if (node->size <= reserve_cur - reserve_max) {
+#endif
+ extent_node_t *tnode = extent_tree_ad_prev(
+ &reserve_chunks_ad, node);
+
+#ifdef MALLOC_DECOMMIT
+ assert(node->size <= reserve_cur - reserve_max);
+#endif
+
+ /* Discard the entire [multi-]chunk. */
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+ extent_tree_ad_remove(&reserve_chunks_ad, node);
+ reserve_cur -= node->size;
+ pages_unmap(node->addr, node->size);
+#ifdef MALLOC_STATS
+ stats_chunks.curchunks -= (node->size / chunksize);
+#endif
+ base_node_dealloc(node);
+ if (reserve_cur == reserve_max)
+ break;
+
+ rb_foreach_reverse_prev(extent_node_t, link_ad,
+ extent_ad_comp, &reserve_chunks_ad, tnode);
+#ifndef MALLOC_DECOMMIT
+ } else {
+ /* Discard the end of the multi-chunk. */
+ extent_tree_szad_remove(&reserve_chunks_szad, node);
+ node->size -= reserve_cur - reserve_max;
+ extent_tree_szad_insert(&reserve_chunks_szad, node);
+ pages_unmap((void *)((uintptr_t)node->addr +
+ node->size), reserve_cur - reserve_max);
+#ifdef MALLOC_STATS
+ stats_chunks.curchunks -= ((reserve_cur - reserve_max) /
+ chunksize);
+#endif
+ reserve_cur = reserve_max;
+ break;
+ }
+#endif
+ assert(reserve_cur > reserve_max);
+ } rb_foreach_reverse_end(extent_node_t, link_ad, &reserve_chunks_ad,
+ node)
+}
+
+/* Send a condition notification. */
+static uint64_t
+reserve_notify(reserve_cnd_t cnd, size_t size, uint64_t seq)
+{
+ reserve_reg_t *reg;
+
+ /* seq is used to keep track of distinct condition-causing events. */
+ if (seq == 0) {
+ /* Allocate new sequence number. */
+ reserve_seq++;
+ seq = reserve_seq;
+ }
+
+ /*
+ * Advance to the next callback registration and send a notification,
+ * unless one has already been sent for this condition-causing event.
+ */
+ reg = ql_first(&reserve_regs);
+ if (reg == NULL)
+ return (0);
+ ql_first(&reserve_regs) = ql_next(&reserve_regs, reg, link);
+ if (reg->seq == seq)
+ return (0);
+ reg->seq = seq;
+ malloc_mutex_unlock(&reserve_mtx);
+ reg->cb(reg->ctx, cnd, size);
+ malloc_mutex_lock(&reserve_mtx);
+
+ return (seq);
+}
+
+/* Allocation failure due to OOM. Try to free some memory via callbacks. */
+static uint64_t
+reserve_crit(size_t size, const char *fname, uint64_t seq)
+{
+
+ /*
+ * Send one condition notification. Iteration is handled by the
+ * caller of this function.
+ */
+ malloc_mutex_lock(&reserve_mtx);
+ seq = reserve_notify(RESERVE_CND_CRIT, size, seq);
+ malloc_mutex_unlock(&reserve_mtx);
+
+ /* If no notification could be sent, then no further recourse exists. */
+ if (seq == 0)
+ reserve_fail(size, fname);
+
+ return (seq);
+}
+
+/* Permanent allocation failure due to OOM. */
+static void
+reserve_fail(size_t size, const char *fname)
+{
+ uint64_t seq = 0;
+
+ /* Send fail notifications. */
+ malloc_mutex_lock(&reserve_mtx);
+ do {
+ seq = reserve_notify(RESERVE_CND_FAIL, size, seq);
+ } while (seq != 0);
+ malloc_mutex_unlock(&reserve_mtx);
+
+ /* Terminate the application. */
+ _malloc_message(_getprogname(),
+ ": (malloc) Error in ", fname, "(): out of memory\n");
+ abort();
+}
+
+bool
+reserve_cb_register(reserve_cb_t *cb, void *ctx)
+{
+ reserve_reg_t *reg = base_reserve_reg_alloc();
+ if (reg == NULL)
+ return (true);
+
+ ql_elm_new(reg, link);
+ reg->cb = cb;
+ reg->ctx = ctx;
+ reg->seq = 0;
+
+ malloc_mutex_lock(&reserve_mtx);
+ ql_head_insert(&reserve_regs, reg, link);
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (false);
+}
+
+bool
+reserve_cb_unregister(reserve_cb_t *cb, void *ctx)
+{
+ reserve_reg_t *reg = NULL;
+
+ malloc_mutex_lock(&reserve_mtx);
+ ql_foreach(reg, &reserve_regs, link) {
+ if (reg->cb == cb && reg->ctx == ctx) {
+ ql_remove(&reserve_regs, reg, link);
+ break;
+ }
+ }
+ malloc_mutex_unlock(&reserve_mtx);
+
+ if (reg != NULL)
+ base_reserve_reg_dealloc(reg);
+ return (false);
+ return (true);
+}
+
+size_t
+reserve_cur_get(void)
+{
+ size_t ret;
+
+ malloc_mutex_lock(&reserve_mtx);
+ ret = reserve_cur;
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (ret);
+}
+
+size_t
+reserve_min_get(void)
+{
+ size_t ret;
+
+ malloc_mutex_lock(&reserve_mtx);
+ ret = reserve_min;
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (ret);
+}
+
+bool
+reserve_min_set(size_t min)
+{
+
+ min = CHUNK_CEILING(min);
+
+ malloc_mutex_lock(&reserve_mtx);
+ /* Keep |reserve_max - reserve_min| the same. */
+ if (min < reserve_min) {
+ reserve_max -= reserve_min - min;
+ reserve_min = min;
+ } else {
+ /* Protect against wrap-around. */
+ if (reserve_max + min - reserve_min < reserve_max) {
+ reserve_min = SIZE_T_MAX - (reserve_max - reserve_min)
+ - chunksize + 1;
+ reserve_max = SIZE_T_MAX - chunksize + 1;
+ } else {
+ reserve_max += min - reserve_min;
+ reserve_min = min;
+ }
+ }
+
+ /* Resize the reserve if necessary. */
+ if (reserve_cur < reserve_min) {
+ size_t size = reserve_min - reserve_cur;
+
+ /* Force the reserve to grow by allocating/deallocating. */
+ malloc_mutex_unlock(&reserve_mtx);
+#ifdef MALLOC_DECOMMIT
+ {
+ void **chunks;
+ size_t i, n;
+
+ n = size >> opt_chunk_2pow;
+ chunks = (void**)imalloc(n * sizeof(void *));
+ if (chunks == NULL)
+ return (true);
+ for (i = 0; i < n; i++) {
+ chunks[i] = huge_malloc(chunksize, false);
+ if (chunks[i] == NULL) {
+ size_t j;
+
+ for (j = 0; j < i; j++) {
+ huge_dalloc(chunks[j]);
+ }
+ idalloc(chunks);
+ return (true);
+ }
+ }
+ for (i = 0; i < n; i++)
+ huge_dalloc(chunks[i]);
+ idalloc(chunks);
+ }
+#else
+ {
+ void *x = huge_malloc(size, false);
+ if (x == NULL) {
+ return (true);
+ }
+ huge_dalloc(x);
+ }
+#endif
+ } else if (reserve_cur > reserve_max) {
+ reserve_shrink();
+ malloc_mutex_unlock(&reserve_mtx);
+ } else
+ malloc_mutex_unlock(&reserve_mtx);
+
+ return (false);
+}
+
+#ifdef MOZ_MEMORY_WINDOWS
+void*
+_recalloc(void *ptr, size_t count, size_t size)
+{
+ size_t oldsize = (ptr != NULL) ? isalloc(ptr) : 0;
+ size_t newsize = count * size;
+
+ /*
+ * In order for all trailing bytes to be zeroed, the caller needs to
+ * use calloc(), followed by recalloc(). However, the current calloc()
+ * implementation only zeros the bytes requested, so if recalloc() is
+ * to work 100% correctly, calloc() will need to change to zero
+ * trailing bytes.
+ */
+
+ ptr = realloc(ptr, newsize);
+ if (ptr != NULL && oldsize < newsize) {
+ memset((void *)((uintptr_t)ptr + oldsize), 0, newsize -
+ oldsize);
+ }
+
+ return ptr;
+}
+
+/*
+ * This impl of _expand doesn't ever actually expand or shrink blocks: it
+ * simply replies that you may continue using a shrunk block.
+ */
+void*
+_expand(void *ptr, size_t newsize)
+{
+ if (isalloc(ptr) >= newsize)
+ return ptr;
+
+ return NULL;
+}
+
+size_t
+_msize(const void *ptr)
+{
+ return malloc_usable_size(ptr);
+}
+#endif
+
+/*
+ * End non-standard functions.
+ */
+/******************************************************************************/
+/*
+ * Begin library-private functions, used by threading libraries for protection
+ * of malloc during fork(). These functions are only called if the program is
+ * running in threaded mode, so there is no need to check whether the program
+ * is threaded here.
+ */
+
+void
+_malloc_prefork(void)
+{
+ unsigned i;
+
+ /* Acquire all mutexes in a safe order. */
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_lock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+
+ malloc_mutex_lock(&base_mtx);
+
+ malloc_mutex_lock(&huge_mtx);
+}
+
+void
+_malloc_postfork(void)
+{
+ unsigned i;
+
+ /* Release all mutexes, now that fork() has completed. */
+
+ malloc_mutex_unlock(&huge_mtx);
+
+ malloc_mutex_unlock(&base_mtx);
+
+ malloc_spin_lock(&arenas_lock);
+ for (i = 0; i < narenas; i++) {
+ if (arenas[i] != NULL)
+ malloc_spin_unlock(&arenas[i]->lock);
+ }
+ malloc_spin_unlock(&arenas_lock);
+}
+
+/*
+ * End library-private functions.
+ */
+/******************************************************************************/
+
+#ifdef HAVE_LIBDL
+# include <dlfcn.h>
+#endif
+
+#ifdef MOZ_MEMORY_DARWIN
+static malloc_zone_t zone;
+static struct malloc_introspection_t zone_introspect;
+
+static size_t
+zone_size(malloc_zone_t *zone, void *ptr)
+{
+
+ /*
+ * There appear to be places within Darwin (such as setenv(3)) that
+ * cause calls to this function with pointers that *no* zone owns. If
+ * we knew that all pointers were owned by *some* zone, we could split
+ * our zone into two parts, and use one as the default allocator and
+ * the other as the default deallocator/reallocator. Since that will
+ * not work in practice, we must check all pointers to assure that they
+ * reside within a mapped chunk before determining size.
+ */
+ return (isalloc_validate(ptr));
+}
+
+static void *
+zone_malloc(malloc_zone_t *zone, size_t size)
+{
+
+ return (malloc(size));
+}
+
+static void *
+zone_calloc(malloc_zone_t *zone, size_t num, size_t size)
+{
+
+ return (calloc(num, size));
+}
+
+static void *
+zone_valloc(malloc_zone_t *zone, size_t size)
+{
+ void *ret = NULL; /* Assignment avoids useless compiler warning. */
+
+ posix_memalign(&ret, pagesize, size);
+
+ return (ret);
+}
+
+static void
+zone_free(malloc_zone_t *zone, void *ptr)
+{
+
+ free(ptr);
+}
+
+static void *
+zone_realloc(malloc_zone_t *zone, void *ptr, size_t size)
+{
+
+ return (realloc(ptr, size));
+}
+
+static void *
+zone_destroy(malloc_zone_t *zone)
+{
+
+ /* This function should never be called. */
+ assert(false);
+ return (NULL);
+}
+
+static size_t
+zone_good_size(malloc_zone_t *zone, size_t size)
+{
+ size_t ret;
+ void *p;
+
+ /*
+ * Actually create an object of the appropriate size, then find out
+ * how large it could have been without moving up to the next size
+ * class.
+ */
+ p = malloc(size);
+ if (p != NULL) {
+ ret = isalloc(p);
+ free(p);
+ } else
+ ret = size;
+
+ return (ret);
+}
+
+static void
+zone_force_lock(malloc_zone_t *zone)
+{
+
+ _malloc_prefork();
+}
+
+static void
+zone_force_unlock(malloc_zone_t *zone)
+{
+
+ _malloc_postfork();
+}
+
+static malloc_zone_t *
+create_zone(void)
+{
+
+ assert(malloc_initialized);
+
+ zone.size = (void *)zone_size;
+ zone.malloc = (void *)zone_malloc;
+ zone.calloc = (void *)zone_calloc;
+ zone.valloc = (void *)zone_valloc;
+ zone.free = (void *)zone_free;
+ zone.realloc = (void *)zone_realloc;
+ zone.destroy = (void *)zone_destroy;
+ zone.zone_name = "jemalloc_zone";
+ zone.batch_malloc = NULL;
+ zone.batch_free = NULL;
+ zone.introspect = &zone_introspect;
+
+ zone_introspect.enumerator = NULL;
+ zone_introspect.good_size = (void *)zone_good_size;
+ zone_introspect.check = NULL;
+ zone_introspect.print = NULL;
+ zone_introspect.log = NULL;
+ zone_introspect.force_lock = (void *)zone_force_lock;
+ zone_introspect.force_unlock = (void *)zone_force_unlock;
+ zone_introspect.statistics = NULL;
+
+ return (&zone);
+}
+
+__attribute__((constructor))
+void
+jemalloc_darwin_init(void)
+{
+ extern unsigned malloc_num_zones;
+ extern malloc_zone_t **malloc_zones;
+
+ if (malloc_init_hard())
+ abort();
+
+ /*
+ * The following code is *not* thread-safe, so it's critical that
+ * initialization be manually triggered.
+ */
+
+ /* Register the custom zones. */
+ malloc_zone_register(create_zone());
+ assert(malloc_zones[malloc_num_zones - 1] == &zone);
+
+ /*
+ * Shift malloc_zones around so that zone is first, which makes it the
+ * default zone.
+ */
+ assert(malloc_num_zones > 1);
+ memmove(&malloc_zones[1], &malloc_zones[0],
+ sizeof(malloc_zone_t *) * (malloc_num_zones - 1));
+ malloc_zones[0] = &zone;
+}
+
+#elif defined(__GLIBC__) && !defined(__UCLIBC__)
+/*
+ * glibc provides the RTLD_DEEPBIND flag for dlopen which can make it possible
+ * to inconsistently reference libc's malloc(3)-compatible functions
+ * (bug 493541).
+ *
+ * These definitions interpose hooks in glibc. The functions are actually
+ * passed an extra argument for the caller return address, which will be
+ * ignored.
+ */
+void (*__free_hook)(void *ptr) = free;
+void *(*__malloc_hook)(size_t size) = malloc;
+void *(*__realloc_hook)(void *ptr, size_t size) = realloc;
+void *(*__memalign_hook)(size_t alignment, size_t size) = memalign;
+
+#elif defined(RTLD_DEEPBIND)
+/*
+ * XXX On systems that support RTLD_GROUP or DF_1_GROUP, do their
+ * implementations permit similar inconsistencies? Should STV_SINGLETON
+ * visibility be used for interposition where available?
+ */
+# error "Interposing malloc is unsafe on this system without libc malloc hooks."
+#endif
+
diff --git a/third_party/jemalloc/chromium/jemalloc.h b/third_party/jemalloc/chromium/jemalloc.h index 4419bd0f..46dc768 100644 --- a/third_party/jemalloc/chromium/jemalloc.h +++ b/third_party/jemalloc/chromium/jemalloc.h @@ -1,221 +1,222 @@ -/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */ -/* vim:set softtabstop=8 shiftwidth=8: */ -/*- - * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice(s), this list of conditions and the following disclaimer as - * the first lines of this file unmodified other than the possible - * addition of one or more copyright notices. - * 2. Redistributions in binary form must reproduce the above copyright - * notice(s), this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR - * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, - * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE - * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, - * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ - -#ifndef _JEMALLOC_H_ -#define _JEMALLOC_H_ - -/* grab size_t */ -#ifdef _MSC_VER -#include <crtdefs.h> -#else -#include <stddef.h> -#endif - -#ifdef __cplusplus -extern "C" { -#endif - -typedef unsigned char jemalloc_bool; - -extern const char *_malloc_options; - -/* - * jemalloc_stats() is not a stable interface. When using jemalloc_stats_t, be - * sure that the compiled results of jemalloc.c are in sync with this header - * file. - */ -typedef struct { - /* - * Run-time configuration settings. - */ - jemalloc_bool opt_abort; /* abort(3) on error? */ - jemalloc_bool opt_junk; /* Fill allocated/free memory with 0xa5/0x5a? */ - jemalloc_bool opt_utrace; /* Trace all allocation events? */ - jemalloc_bool opt_sysv; /* SysV semantics? */ - jemalloc_bool opt_xmalloc; /* abort(3) on OOM? */ - jemalloc_bool opt_zero; /* Fill allocated memory with 0x0? */ - size_t narenas; /* Number of arenas. */ - size_t balance_threshold; /* Arena contention rebalance threshold. */ - size_t quantum; /* Allocation quantum. */ - size_t small_max; /* Max quantum-spaced allocation size. */ - size_t large_max; /* Max sub-chunksize allocation size. */ - size_t chunksize; /* Size of each virtual memory mapping. */ - size_t dirty_max; /* Max dirty pages per arena. */ - size_t reserve_min; /* reserve_low callback threshold. */ - size_t reserve_max; /* Maximum reserve size before unmapping. */ - - /* - * Current memory usage statistics. - */ - size_t mapped; /* Bytes mapped (not necessarily committed). */ - size_t committed; /* Bytes committed (readable/writable). */ - size_t allocated; /* Bytes allocted (in use by application). */ - size_t dirty; /* Bytes dirty (committed unused pages). */ - size_t reserve_cur; /* Current memory reserve. */ -} jemalloc_stats_t; - -#ifndef MOZ_MEMORY_DARWIN -void *malloc(size_t size); -void *valloc(size_t size); -void *calloc(size_t num, size_t size); -void *realloc(void *ptr, size_t size); -void free(void *ptr); -#endif - -int posix_memalign(void **memptr, size_t alignment, size_t size); -void *memalign(size_t alignment, size_t size); -size_t malloc_usable_size(const void *ptr); -void jemalloc_stats(jemalloc_stats_t *stats); - -/* The x*() functions never return NULL. */ -void *xmalloc(size_t size); -void *xcalloc(size_t num, size_t size); -void *xrealloc(void *ptr, size_t size); -void *xmemalign(size_t alignment, size_t size); - -/* - * The allocator maintains a memory reserve that is used to satisfy allocation - * requests when no additional memory can be acquired from the operating - * system. Under normal operating conditions, the reserve size is at least - * reserve_min bytes. If the reserve is depleted or insufficient to satisfy an - * allocation request, then condition notifications are sent to one or more of - * the registered callback functions: - * - * RESERVE_CND_LOW: The reserve had to be used to satisfy an allocation - * request, which dropped the reserve size below the - * minimum. The callee should try to free memory in order - * to restore the reserve. - * - * RESERVE_CND_CRIT: The reserve was not large enough to satisfy a pending - * allocation request. Some callee must free adequate - * memory in order to prevent application failure (unless - * the condition spontaneously desists due to concurrent - * deallocation). - * - * RESERVE_CND_FAIL: An allocation request could not be satisfied, despite all - * attempts. The allocator is about to terminate the - * application. - * - * The order in which the callback functions are called is only loosely - * specified: in the absence of interposing callback - * registrations/unregistrations, enabled callbacks will be called in an - * arbitrary round-robin order. - * - * Condition notifications are sent to callbacks only while conditions exist. - * For example, just before the allocator sends a RESERVE_CND_LOW condition - * notification to a callback, the reserve is in fact depleted. However, due - * to allocator concurrency, the reserve may have been restored by the time the - * callback function executes. Furthermore, if the reserve is restored at some - * point during the delivery of condition notifications to callbacks, no - * further deliveries will occur, since the condition no longer exists. - * - * Callback functions can freely call back into the allocator (i.e. the - * allocator releases all internal resources before calling each callback - * function), though allocation is discouraged, since recursive callbacks are - * likely to result, which places extra burden on the application to avoid - * deadlock. - * - * Callback functions must be thread-safe, since it is possible that multiple - * threads will call into the same callback function concurrently. - */ - -/* Memory reserve condition types. */ -typedef enum { - RESERVE_CND_LOW, - RESERVE_CND_CRIT, - RESERVE_CND_FAIL -} reserve_cnd_t; - -/* - * Reserve condition notification callback function type definition. - * - * Inputs: - * ctx: Opaque application data, as passed to reserve_cb_register(). - * cnd: Condition type being delivered. - * size: Allocation request size for the allocation that caused the condition. - */ -typedef void reserve_cb_t(void *ctx, reserve_cnd_t cnd, size_t size); - -/* - * Register a callback function. - * - * Inputs: - * cb: Callback function pointer. - * ctx: Opaque application data, passed to cb(). - * - * Output: - * ret: If true, failure due to OOM; success otherwise. - */ -jemalloc_bool reserve_cb_register(reserve_cb_t *cb, void *ctx); - -/* - * Unregister a callback function. - * - * Inputs: - * cb: Callback function pointer. - * ctx: Opaque application data, same as that passed to reserve_cb_register(). - * - * Output: - * ret: False upon success, true if the {cb,ctx} registration could not be - * found. - */ -jemalloc_bool reserve_cb_unregister(reserve_cb_t *cb, void *ctx); - -/* - * Get the current reserve size. - * - * ret: Current reserve size. - */ -size_t reserve_cur_get(void); - -/* - * Get the minimum acceptable reserve size. If the reserve drops below this - * value, the RESERVE_CND_LOW condition notification is sent to the callbacks. - * - * ret: Minimum acceptable reserve size. - */ -size_t reserve_min_get(void); - -/* - * Set the minimum acceptable reserve size. - * - * min: Reserve threshold. This value may be internally rounded up. - * ret: False if the reserve was successfully resized; true otherwise. Note - * that failure to resize the reserve also results in a RESERVE_CND_LOW - * condition. - */ -jemalloc_bool reserve_min_set(size_t min); - -#ifdef __cplusplus -} /* extern "C" */ -#endif - -#endif /* _JEMALLOC_H_ */ +/* -*- Mode: C; tab-width: 8; c-basic-offset: 8 -*- */
+/* vim:set softtabstop=8 shiftwidth=8: */
+/*-
+ * Copyright (C) 2006-2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer as
+ * the first lines of this file unmodified other than the possible
+ * addition of one or more copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef _JEMALLOC_H_
+#define _JEMALLOC_H_
+
+/* grab size_t */
+#ifdef _MSC_VER
+#include <crtdefs.h>
+#else
+#include <stddef.h>
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+typedef unsigned char jemalloc_bool;
+
+extern const char *_malloc_options;
+
+/*
+ * jemalloc_stats() is not a stable interface. When using jemalloc_stats_t, be
+ * sure that the compiled results of jemalloc.c are in sync with this header
+ * file.
+ */
+typedef struct {
+ /*
+ * Run-time configuration settings.
+ */
+ jemalloc_bool opt_abort; /* abort(3) on error? */
+ jemalloc_bool opt_junk; /* Fill allocated/free memory with 0xa5/0x5a? */
+ jemalloc_bool opt_utrace; /* Trace all allocation events? */
+ jemalloc_bool opt_sysv; /* SysV semantics? */
+ jemalloc_bool opt_xmalloc; /* abort(3) on OOM? */
+ jemalloc_bool opt_zero; /* Fill allocated memory with 0x0? */
+ size_t narenas; /* Number of arenas. */
+ size_t balance_threshold; /* Arena contention rebalance threshold. */
+ size_t quantum; /* Allocation quantum. */
+ size_t small_max; /* Max quantum-spaced allocation size. */
+ size_t large_max; /* Max sub-chunksize allocation size. */
+ size_t chunksize; /* Size of each virtual memory mapping. */
+ size_t dirty_max; /* Max dirty pages per arena. */
+ size_t reserve_min; /* reserve_low callback threshold. */
+ size_t reserve_max; /* Maximum reserve size before unmapping. */
+
+ /*
+ * Current memory usage statistics.
+ */
+ size_t mapped; /* Bytes mapped (not necessarily committed). */
+ size_t committed; /* Bytes committed (readable/writable). */
+ size_t allocated; /* Bytes allocted (in use by application). */
+ size_t dirty; /* Bytes dirty (committed unused pages). */
+ size_t reserve_cur; /* Current memory reserve. */
+} jemalloc_stats_t;
+
+#ifndef MOZ_MEMORY_DARWIN
+void *malloc(size_t size);
+void *valloc(size_t size);
+void *calloc(size_t num, size_t size);
+void *realloc(void *ptr, size_t size);
+void free(void *ptr);
+#endif
+
+int posix_memalign(void **memptr, size_t alignment, size_t size);
+void *memalign(size_t alignment, size_t size);
+size_t malloc_usable_size(const void *ptr);
+void jemalloc_stats(jemalloc_stats_t *stats);
+
+/* The x*() functions never return NULL. */
+void *xmalloc(size_t size);
+void *xcalloc(size_t num, size_t size);
+void *xrealloc(void *ptr, size_t size);
+void *xmemalign(size_t alignment, size_t size);
+
+/*
+ * The allocator maintains a memory reserve that is used to satisfy allocation
+ * requests when no additional memory can be acquired from the operating
+ * system. Under normal operating conditions, the reserve size is at least
+ * reserve_min bytes. If the reserve is depleted or insufficient to satisfy an
+ * allocation request, then condition notifications are sent to one or more of
+ * the registered callback functions:
+ *
+ * RESERVE_CND_LOW: The reserve had to be used to satisfy an allocation
+ * request, which dropped the reserve size below the
+ * minimum. The callee should try to free memory in order
+ * to restore the reserve.
+ *
+ * RESERVE_CND_CRIT: The reserve was not large enough to satisfy a pending
+ * allocation request. Some callee must free adequate
+ * memory in order to prevent application failure (unless
+ * the condition spontaneously desists due to concurrent
+ * deallocation).
+ *
+ * RESERVE_CND_FAIL: An allocation request could not be satisfied, despite all
+ * attempts. The allocator is about to terminate the
+ * application.
+ *
+ * The order in which the callback functions are called is only loosely
+ * specified: in the absence of interposing callback
+ * registrations/unregistrations, enabled callbacks will be called in an
+ * arbitrary round-robin order.
+ *
+ * Condition notifications are sent to callbacks only while conditions exist.
+ * For example, just before the allocator sends a RESERVE_CND_LOW condition
+ * notification to a callback, the reserve is in fact depleted. However, due
+ * to allocator concurrency, the reserve may have been restored by the time the
+ * callback function executes. Furthermore, if the reserve is restored at some
+ * point during the delivery of condition notifications to callbacks, no
+ * further deliveries will occur, since the condition no longer exists.
+ *
+ * Callback functions can freely call back into the allocator (i.e. the
+ * allocator releases all internal resources before calling each callback
+ * function), though allocation is discouraged, since recursive callbacks are
+ * likely to result, which places extra burden on the application to avoid
+ * deadlock.
+ *
+ * Callback functions must be thread-safe, since it is possible that multiple
+ * threads will call into the same callback function concurrently.
+ */
+
+/* Memory reserve condition types. */
+typedef enum {
+ RESERVE_CND_LOW,
+ RESERVE_CND_CRIT,
+ RESERVE_CND_FAIL
+} reserve_cnd_t;
+
+/*
+ * Reserve condition notification callback function type definition.
+ *
+ * Inputs:
+ * ctx: Opaque application data, as passed to reserve_cb_register().
+ * cnd: Condition type being delivered.
+ * size: Allocation request size for the allocation that caused the condition.
+ */
+typedef void reserve_cb_t(void *ctx, reserve_cnd_t cnd, size_t size);
+
+/*
+ * Register a callback function.
+ *
+ * Inputs:
+ * cb: Callback function pointer.
+ * ctx: Opaque application data, passed to cb().
+ *
+ * Output:
+ * ret: If true, failure due to OOM; success otherwise.
+ */
+jemalloc_bool reserve_cb_register(reserve_cb_t *cb, void *ctx);
+
+/*
+ * Unregister a callback function.
+ *
+ * Inputs:
+ * cb: Callback function pointer.
+ * ctx: Opaque application data, same as that passed to reserve_cb_register().
+ *
+ * Output:
+ * ret: False upon success, true if the {cb,ctx} registration could not be
+ * found.
+ */
+jemalloc_bool reserve_cb_unregister(reserve_cb_t *cb, void *ctx);
+
+/*
+ * Get the current reserve size.
+ *
+ * ret: Current reserve size.
+ */
+size_t reserve_cur_get(void);
+
+/*
+ * Get the minimum acceptable reserve size. If the reserve drops below this
+ * value, the RESERVE_CND_LOW condition notification is sent to the callbacks.
+ *
+ * ret: Minimum acceptable reserve size.
+ */
+size_t reserve_min_get(void);
+
+/*
+ * Set the minimum acceptable reserve size.
+ *
+ * min: Reserve threshold. This value may be internally rounded up.
+ * ret: False if the reserve was successfully resized; true otherwise. Note
+ * that failure to resize the reserve also results in a RESERVE_CND_LOW
+ * condition.
+ */
+jemalloc_bool reserve_min_set(size_t min);
+
+#ifdef __cplusplus
+} /* extern "C" */
+#endif
+
+#endif /* _JEMALLOC_H_ */
+
diff --git a/third_party/jemalloc/chromium/ql.h b/third_party/jemalloc/chromium/ql.h index 000cd23..593438c 100644 --- a/third_party/jemalloc/chromium/ql.h +++ b/third_party/jemalloc/chromium/ql.h @@ -1,114 +1,115 @@ -/****************************************************************************** - * - * Copyright (C) 2002 Jason Evans <jasone@canonware.com>. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice(s), this list of conditions and the following disclaimer - * unmodified other than the allowable addition of one or more - * copyright notices. - * 2. Redistributions in binary form must reproduce the above copyright - * notice(s), this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR - * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, - * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE - * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, - * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - ******************************************************************************/ - -/* - * List definitions. - */ -#define ql_head(a_type) \ -struct { \ - a_type *qlh_first; \ -} - -#define ql_head_initializer(a_head) {NULL} - -#define ql_elm(a_type) qr(a_type) - -/* List functions. */ -#define ql_new(a_head) do { \ - (a_head)->qlh_first = NULL; \ -} while (0) - -#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field) - -#define ql_first(a_head) ((a_head)->qlh_first) - -#define ql_last(a_head, a_field) \ - ((ql_first(a_head) != NULL) \ - ? qr_prev(ql_first(a_head), a_field) : NULL) - -#define ql_next(a_head, a_elm, a_field) \ - ((ql_last(a_head, a_field) != (a_elm)) \ - ? qr_next((a_elm), a_field) : NULL) - -#define ql_prev(a_head, a_elm, a_field) \ - ((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \ - : NULL) - -#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \ - qr_before_insert((a_qlelm), (a_elm), a_field); \ - if (ql_first(a_head) == (a_qlelm)) { \ - ql_first(a_head) = (a_elm); \ - } \ -} while (0) - -#define ql_after_insert(a_qlelm, a_elm, a_field) \ - qr_after_insert((a_qlelm), (a_elm), a_field) - -#define ql_head_insert(a_head, a_elm, a_field) do { \ - if (ql_first(a_head) != NULL) { \ - qr_before_insert(ql_first(a_head), (a_elm), a_field); \ - } \ - ql_first(a_head) = (a_elm); \ -} while (0) - -#define ql_tail_insert(a_head, a_elm, a_field) do { \ - if (ql_first(a_head) != NULL) { \ - qr_before_insert(ql_first(a_head), (a_elm), a_field); \ - } \ - ql_first(a_head) = qr_next((a_elm), a_field); \ -} while (0) - -#define ql_remove(a_head, a_elm, a_field) do { \ - if (ql_first(a_head) == (a_elm)) { \ - ql_first(a_head) = qr_next(ql_first(a_head), a_field); \ - } \ - if (ql_first(a_head) != (a_elm)) { \ - qr_remove((a_elm), a_field); \ - } else { \ - ql_first(a_head) = NULL; \ - } \ -} while (0) - -#define ql_head_remove(a_head, a_type, a_field) do { \ - a_type *t = ql_first(a_head); \ - ql_remove((a_head), t, a_field); \ -} while (0) - -#define ql_tail_remove(a_head, a_type, a_field) do { \ - a_type *t = ql_last(a_head, a_field); \ - ql_remove((a_head), t, a_field); \ -} while (0) - -#define ql_foreach(a_var, a_head, a_field) \ - qr_foreach((a_var), ql_first(a_head), a_field) - -#define ql_reverse_foreach(a_var, a_head, a_field) \ - qr_reverse_foreach((a_var), ql_first(a_head), a_field) +/******************************************************************************
+ *
+ * Copyright (C) 2002 Jason Evans <jasone@canonware.com>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************/
+
+/*
+ * List definitions.
+ */
+#define ql_head(a_type) \
+struct { \
+ a_type *qlh_first; \
+}
+
+#define ql_head_initializer(a_head) {NULL}
+
+#define ql_elm(a_type) qr(a_type)
+
+/* List functions. */
+#define ql_new(a_head) do { \
+ (a_head)->qlh_first = NULL; \
+} while (0)
+
+#define ql_elm_new(a_elm, a_field) qr_new((a_elm), a_field)
+
+#define ql_first(a_head) ((a_head)->qlh_first)
+
+#define ql_last(a_head, a_field) \
+ ((ql_first(a_head) != NULL) \
+ ? qr_prev(ql_first(a_head), a_field) : NULL)
+
+#define ql_next(a_head, a_elm, a_field) \
+ ((ql_last(a_head, a_field) != (a_elm)) \
+ ? qr_next((a_elm), a_field) : NULL)
+
+#define ql_prev(a_head, a_elm, a_field) \
+ ((ql_first(a_head) != (a_elm)) ? qr_prev((a_elm), a_field) \
+ : NULL)
+
+#define ql_before_insert(a_head, a_qlelm, a_elm, a_field) do { \
+ qr_before_insert((a_qlelm), (a_elm), a_field); \
+ if (ql_first(a_head) == (a_qlelm)) { \
+ ql_first(a_head) = (a_elm); \
+ } \
+} while (0)
+
+#define ql_after_insert(a_qlelm, a_elm, a_field) \
+ qr_after_insert((a_qlelm), (a_elm), a_field)
+
+#define ql_head_insert(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) != NULL) { \
+ qr_before_insert(ql_first(a_head), (a_elm), a_field); \
+ } \
+ ql_first(a_head) = (a_elm); \
+} while (0)
+
+#define ql_tail_insert(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) != NULL) { \
+ qr_before_insert(ql_first(a_head), (a_elm), a_field); \
+ } \
+ ql_first(a_head) = qr_next((a_elm), a_field); \
+} while (0)
+
+#define ql_remove(a_head, a_elm, a_field) do { \
+ if (ql_first(a_head) == (a_elm)) { \
+ ql_first(a_head) = qr_next(ql_first(a_head), a_field); \
+ } \
+ if (ql_first(a_head) != (a_elm)) { \
+ qr_remove((a_elm), a_field); \
+ } else { \
+ ql_first(a_head) = NULL; \
+ } \
+} while (0)
+
+#define ql_head_remove(a_head, a_type, a_field) do { \
+ a_type *t = ql_first(a_head); \
+ ql_remove((a_head), t, a_field); \
+} while (0)
+
+#define ql_tail_remove(a_head, a_type, a_field) do { \
+ a_type *t = ql_last(a_head, a_field); \
+ ql_remove((a_head), t, a_field); \
+} while (0)
+
+#define ql_foreach(a_var, a_head, a_field) \
+ qr_foreach((a_var), ql_first(a_head), a_field)
+
+#define ql_reverse_foreach(a_var, a_head, a_field) \
+ qr_reverse_foreach((a_var), ql_first(a_head), a_field)
+
diff --git a/third_party/jemalloc/chromium/qr.h b/third_party/jemalloc/chromium/qr.h index ee60491..5f2bc0a 100644 --- a/third_party/jemalloc/chromium/qr.h +++ b/third_party/jemalloc/chromium/qr.h @@ -1,98 +1,99 @@ -/****************************************************************************** - * - * Copyright (C) 2002 Jason Evans <jasone@canonware.com>. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice(s), this list of conditions and the following disclaimer - * unmodified other than the allowable addition of one or more - * copyright notices. - * 2. Redistributions in binary form must reproduce the above copyright - * notice(s), this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR - * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, - * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE - * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, - * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - ******************************************************************************/ - -/* Ring definitions. */ -#define qr(a_type) \ -struct { \ - a_type *qre_next; \ - a_type *qre_prev; \ -} - -/* Ring functions. */ -#define qr_new(a_qr, a_field) do { \ - (a_qr)->a_field.qre_next = (a_qr); \ - (a_qr)->a_field.qre_prev = (a_qr); \ -} while (0) - -#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next) - -#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev) - -#define qr_before_insert(a_qrelm, a_qr, a_field) do { \ - (a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \ - (a_qr)->a_field.qre_next = (a_qrelm); \ - (a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \ - (a_qrelm)->a_field.qre_prev = (a_qr); \ -} while (0) - -#define qr_after_insert(a_qrelm, a_qr, a_field) \ - do \ - { \ - (a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \ - (a_qr)->a_field.qre_prev = (a_qrelm); \ - (a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \ - (a_qrelm)->a_field.qre_next = (a_qr); \ - } while (0) - -#define qr_meld(a_qr_a, a_qr_b, a_field) do { \ - void *t; \ - (a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \ - (a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \ - t = (a_qr_a)->a_field.qre_prev; \ - (a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \ - (a_qr_b)->a_field.qre_prev = t; \ -} while (0) - -/* qr_meld() and qr_split() are functionally equivalent, so there's no need to - * have two copies of the code. */ -#define qr_split(a_qr_a, a_qr_b, a_field) \ - qr_meld((a_qr_a), (a_qr_b), a_field) - -#define qr_remove(a_qr, a_field) do { \ - (a_qr)->a_field.qre_prev->a_field.qre_next \ - = (a_qr)->a_field.qre_next; \ - (a_qr)->a_field.qre_next->a_field.qre_prev \ - = (a_qr)->a_field.qre_prev; \ - (a_qr)->a_field.qre_next = (a_qr); \ - (a_qr)->a_field.qre_prev = (a_qr); \ -} while (0) - -#define qr_foreach(var, a_qr, a_field) \ - for ((var) = (a_qr); \ - (var) != NULL; \ - (var) = (((var)->a_field.qre_next != (a_qr)) \ - ? (var)->a_field.qre_next : NULL)) - -#define qr_reverse_foreach(var, a_qr, a_field) \ - for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \ - (var) != NULL; \ - (var) = (((var) != (a_qr)) \ - ? (var)->a_field.qre_prev : NULL)) +/******************************************************************************
+ *
+ * Copyright (C) 2002 Jason Evans <jasone@canonware.com>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************/
+
+/* Ring definitions. */
+#define qr(a_type) \
+struct { \
+ a_type *qre_next; \
+ a_type *qre_prev; \
+}
+
+/* Ring functions. */
+#define qr_new(a_qr, a_field) do { \
+ (a_qr)->a_field.qre_next = (a_qr); \
+ (a_qr)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+#define qr_next(a_qr, a_field) ((a_qr)->a_field.qre_next)
+
+#define qr_prev(a_qr, a_field) ((a_qr)->a_field.qre_prev)
+
+#define qr_before_insert(a_qrelm, a_qr, a_field) do { \
+ (a_qr)->a_field.qre_prev = (a_qrelm)->a_field.qre_prev; \
+ (a_qr)->a_field.qre_next = (a_qrelm); \
+ (a_qr)->a_field.qre_prev->a_field.qre_next = (a_qr); \
+ (a_qrelm)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+#define qr_after_insert(a_qrelm, a_qr, a_field) \
+ do \
+ { \
+ (a_qr)->a_field.qre_next = (a_qrelm)->a_field.qre_next; \
+ (a_qr)->a_field.qre_prev = (a_qrelm); \
+ (a_qr)->a_field.qre_next->a_field.qre_prev = (a_qr); \
+ (a_qrelm)->a_field.qre_next = (a_qr); \
+ } while (0)
+
+#define qr_meld(a_qr_a, a_qr_b, a_field) do { \
+ void *t; \
+ (a_qr_a)->a_field.qre_prev->a_field.qre_next = (a_qr_b); \
+ (a_qr_b)->a_field.qre_prev->a_field.qre_next = (a_qr_a); \
+ t = (a_qr_a)->a_field.qre_prev; \
+ (a_qr_a)->a_field.qre_prev = (a_qr_b)->a_field.qre_prev; \
+ (a_qr_b)->a_field.qre_prev = t; \
+} while (0)
+
+/* qr_meld() and qr_split() are functionally equivalent, so there's no need to
+ * have two copies of the code. */
+#define qr_split(a_qr_a, a_qr_b, a_field) \
+ qr_meld((a_qr_a), (a_qr_b), a_field)
+
+#define qr_remove(a_qr, a_field) do { \
+ (a_qr)->a_field.qre_prev->a_field.qre_next \
+ = (a_qr)->a_field.qre_next; \
+ (a_qr)->a_field.qre_next->a_field.qre_prev \
+ = (a_qr)->a_field.qre_prev; \
+ (a_qr)->a_field.qre_next = (a_qr); \
+ (a_qr)->a_field.qre_prev = (a_qr); \
+} while (0)
+
+#define qr_foreach(var, a_qr, a_field) \
+ for ((var) = (a_qr); \
+ (var) != NULL; \
+ (var) = (((var)->a_field.qre_next != (a_qr)) \
+ ? (var)->a_field.qre_next : NULL))
+
+#define qr_reverse_foreach(var, a_qr, a_field) \
+ for ((var) = ((a_qr) != NULL) ? qr_prev(a_qr, a_field) : NULL; \
+ (var) != NULL; \
+ (var) = (((var) != (a_qr)) \
+ ? (var)->a_field.qre_prev : NULL))
+
diff --git a/third_party/jemalloc/chromium/rb.h b/third_party/jemalloc/chromium/rb.h index 43d8569..05fb4fe 100644 --- a/third_party/jemalloc/chromium/rb.h +++ b/third_party/jemalloc/chromium/rb.h @@ -1,982 +1,983 @@ -/****************************************************************************** - * - * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>. - * All rights reserved. - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice(s), this list of conditions and the following disclaimer - * unmodified other than the allowable addition of one or more - * copyright notices. - * 2. Redistributions in binary form must reproduce the above copyright - * notice(s), this list of conditions and the following disclaimer in - * the documentation and/or other materials provided with the - * distribution. - * - * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE - * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR - * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF - * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR - * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, - * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE - * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, - * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - * - ****************************************************************************** - * - * cpp macro implementation of left-leaning red-black trees. - * - * Usage: - * - * (Optional.) - * #define SIZEOF_PTR ... - * #define SIZEOF_PTR_2POW ... - * #define RB_NO_C99_VARARRAYS - * - * (Optional, see assert(3).) - * #define NDEBUG - * - * (Required.) - * #include <assert.h> - * #include <rb.h> - * ... - * - * All operations are done non-recursively. Parent pointers are not used, and - * color bits are stored in the least significant bit of right-child pointers, - * thus making node linkage as compact as is possible for red-black trees. - * - * Some macros use a comparison function pointer, which is expected to have the - * following prototype: - * - * int (a_cmp *)(a_type *a_node, a_type *a_other); - * ^^^^^^ - * or a_key - * - * Interpretation of comparision function return values: - * - * -1 : a_node < a_other - * 0 : a_node == a_other - * 1 : a_node > a_other - * - * In all cases, the a_node or a_key macro argument is the first argument to the - * comparison function, which makes it possible to write comparison functions - * that treat the first argument specially. - * - ******************************************************************************/ - -#ifndef RB_H_ -#define RB_H_ - -#if 0 -#include <sys/cdefs.h> -__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $"); -#endif - -/* Node structure. */ -#define rb_node(a_type) \ -struct { \ - a_type *rbn_left; \ - a_type *rbn_right_red; \ -} - -/* Root structure. */ -#define rb_tree(a_type) \ -struct { \ - a_type *rbt_root; \ - a_type rbt_nil; \ -} - -/* Left accessors. */ -#define rbp_left_get(a_type, a_field, a_node) \ - ((a_node)->a_field.rbn_left) -#define rbp_left_set(a_type, a_field, a_node, a_left) do { \ - (a_node)->a_field.rbn_left = a_left; \ -} while (0) - -/* Right accessors. */ -#define rbp_right_get(a_type, a_field, a_node) \ - ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \ - & ((ssize_t)-2))) -#define rbp_right_set(a_type, a_field, a_node, a_right) do { \ - (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \ - | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \ -} while (0) - -/* Color accessors. */ -#define rbp_red_get(a_type, a_field, a_node) \ - ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \ - & ((size_t)1))) -#define rbp_color_set(a_type, a_field, a_node, a_red) do { \ - (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \ - (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \ - | ((ssize_t)a_red)); \ -} while (0) -#define rbp_red_set(a_type, a_field, a_node) do { \ - (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \ - (a_node)->a_field.rbn_right_red) | ((size_t)1)); \ -} while (0) -#define rbp_black_set(a_type, a_field, a_node) do { \ - (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \ - (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \ -} while (0) - -/* Node initializer. */ -#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \ - rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \ - rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \ - rbp_red_set(a_type, a_field, (a_node)); \ -} while (0) - -/* Tree initializer. */ -#define rb_new(a_type, a_field, a_tree) do { \ - (a_tree)->rbt_root = &(a_tree)->rbt_nil; \ - rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \ - rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \ -} while (0) - -/* Tree operations. */ -#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \ - a_type *rbp_bh_t; \ - for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \ - rbp_bh_t != &(a_tree)->rbt_nil; \ - rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \ - if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \ - (r_height)++; \ - } \ - } \ -} while (0) - -#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \ - for ((r_node) = (a_root); \ - rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \ - (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \ - } \ -} while (0) - -#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \ - for ((r_node) = (a_root); \ - rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \ - (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \ - } \ -} while (0) - -#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ - if (rbp_right_get(a_type, a_field, (a_node)) \ - != &(a_tree)->rbt_nil) { \ - rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \ - a_field, (a_node)), (r_node)); \ - } else { \ - a_type *rbp_n_t = (a_tree)->rbt_root; \ - assert(rbp_n_t != &(a_tree)->rbt_nil); \ - (r_node) = &(a_tree)->rbt_nil; \ - while (true) { \ - int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \ - if (rbp_n_cmp < 0) { \ - (r_node) = rbp_n_t; \ - rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \ - } else if (rbp_n_cmp > 0) { \ - rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \ - } else { \ - break; \ - } \ - assert(rbp_n_t != &(a_tree)->rbt_nil); \ - } \ - } \ -} while (0) - -#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ - if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\ - rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \ - a_field, (a_node)), (r_node)); \ - } else { \ - a_type *rbp_p_t = (a_tree)->rbt_root; \ - assert(rbp_p_t != &(a_tree)->rbt_nil); \ - (r_node) = &(a_tree)->rbt_nil; \ - while (true) { \ - int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \ - if (rbp_p_cmp < 0) { \ - rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \ - } else if (rbp_p_cmp > 0) { \ - (r_node) = rbp_p_t; \ - rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \ - } else { \ - break; \ - } \ - assert(rbp_p_t != &(a_tree)->rbt_nil); \ - } \ - } \ -} while (0) - -#define rb_first(a_type, a_field, a_tree, r_node) do { \ - rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ - } \ -} while (0) - -#define rb_last(a_type, a_field, a_tree, r_node) do { \ - rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ - } \ -} while (0) - -#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ - rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ - } \ -} while (0) - -#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \ - rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ - } \ -} while (0) - -#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ - int rbp_se_cmp; \ - (r_node) = (a_tree)->rbt_root; \ - while ((r_node) != &(a_tree)->rbt_nil \ - && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \ - if (rbp_se_cmp < 0) { \ - (r_node) = rbp_left_get(a_type, a_field, (r_node)); \ - } else { \ - (r_node) = rbp_right_get(a_type, a_field, (r_node)); \ - } \ - } \ - if ((r_node) == &(a_tree)->rbt_nil) { \ - (r_node) = NULL; \ - } \ -} while (0) - -/* - * Find a match if it exists. Otherwise, find the next greater node, if one - * exists. - */ -#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ - a_type *rbp_ns_t = (a_tree)->rbt_root; \ - (r_node) = NULL; \ - while (rbp_ns_t != &(a_tree)->rbt_nil) { \ - int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \ - if (rbp_ns_cmp < 0) { \ - (r_node) = rbp_ns_t; \ - rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \ - } else if (rbp_ns_cmp > 0) { \ - rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \ - } else { \ - (r_node) = rbp_ns_t; \ - break; \ - } \ - } \ -} while (0) - -/* - * Find a match if it exists. Otherwise, find the previous lesser node, if one - * exists. - */ -#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \ - a_type *rbp_ps_t = (a_tree)->rbt_root; \ - (r_node) = NULL; \ - while (rbp_ps_t != &(a_tree)->rbt_nil) { \ - int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \ - if (rbp_ps_cmp < 0) { \ - rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \ - } else if (rbp_ps_cmp > 0) { \ - (r_node) = rbp_ps_t; \ - rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \ - } else { \ - (r_node) = rbp_ps_t; \ - break; \ - } \ - } \ -} while (0) - -#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \ - (r_node) = rbp_right_get(a_type, a_field, (a_node)); \ - rbp_right_set(a_type, a_field, (a_node), \ - rbp_left_get(a_type, a_field, (r_node))); \ - rbp_left_set(a_type, a_field, (r_node), (a_node)); \ -} while (0) - -#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \ - (r_node) = rbp_left_get(a_type, a_field, (a_node)); \ - rbp_left_set(a_type, a_field, (a_node), \ - rbp_right_get(a_type, a_field, (r_node))); \ - rbp_right_set(a_type, a_field, (r_node), (a_node)); \ -} while (0) - -#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \ - bool rbp_ll_red; \ - rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ - rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \ - rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \ - rbp_red_set(a_type, a_field, (a_node)); \ -} while (0) - -#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \ - bool rbp_lr_red; \ - rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ - rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \ - rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \ - rbp_red_set(a_type, a_field, (a_node)); \ -} while (0) - -#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \ - a_type *rbp_mrl_t, *rbp_mrl_u; \ - rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \ - rbp_red_set(a_type, a_field, rbp_mrl_t); \ - rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \ - rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \ - if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \ - rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \ - rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \ - rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ - rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \ - if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \ - rbp_black_set(a_type, a_field, rbp_mrl_t); \ - rbp_red_set(a_type, a_field, (a_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \ - rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \ - } else { \ - rbp_black_set(a_type, a_field, (a_node)); \ - } \ - } else { \ - rbp_red_set(a_type, a_field, (a_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ - } \ -} while (0) - -#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \ - a_type *rbp_mrr_t; \ - rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \ - if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \ - a_type *rbp_mrr_u, *rbp_mrr_v; \ - rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \ - rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \ - if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \ - rbp_color_set(a_type, a_field, rbp_mrr_u, \ - rbp_red_get(a_type, a_field, (a_node))); \ - rbp_black_set(a_type, a_field, rbp_mrr_v); \ - rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \ - rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \ - rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ - rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ - } else { \ - rbp_color_set(a_type, a_field, rbp_mrr_t, \ - rbp_red_get(a_type, a_field, (a_node))); \ - rbp_red_set(a_type, a_field, rbp_mrr_u); \ - rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ - rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ - } \ - rbp_red_set(a_type, a_field, (a_node)); \ - } else { \ - rbp_red_set(a_type, a_field, rbp_mrr_t); \ - rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \ - if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \ - rbp_black_set(a_type, a_field, rbp_mrr_t); \ - rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \ - rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \ - rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \ - } else { \ - rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \ - } \ - } \ -} while (0) - -#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \ - a_type rbp_i_s; \ - a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \ - int rbp_i_cmp = 0; \ - rbp_i_g = &(a_tree)->rbt_nil; \ - rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \ - rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \ - rbp_black_set(a_type, a_field, &rbp_i_s); \ - rbp_i_p = &rbp_i_s; \ - rbp_i_c = (a_tree)->rbt_root; \ - /* Iteratively search down the tree for the insertion point, */\ - /* splitting 4-nodes as they are encountered. At the end of each */\ - /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\ - /* the tree, assuming a sufficiently deep tree. */\ - while (rbp_i_c != &(a_tree)->rbt_nil) { \ - rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \ - rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \ - if (rbp_red_get(a_type, a_field, rbp_i_t) \ - && rbp_red_get(a_type, a_field, rbp_i_u)) { \ - /* rbp_i_c is the top of a logical 4-node, so split it. */\ - /* This iteration does not move down the tree, due to the */\ - /* disruptiveness of node splitting. */\ - /* */\ - /* Rotate right. */\ - rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \ - /* Pass red links up one level. */\ - rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \ - rbp_black_set(a_type, a_field, rbp_i_u); \ - if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \ - rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \ - rbp_i_c = rbp_i_t; \ - } else { \ - /* rbp_i_c was the right child of rbp_i_p, so rotate */\ - /* left in order to maintain the left-leaning */\ - /* invariant. */\ - assert(rbp_right_get(a_type, a_field, rbp_i_p) \ - == rbp_i_c); \ - rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \ - rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \ - if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\ - rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \ - } else { \ - assert(rbp_right_get(a_type, a_field, rbp_i_g) \ - == rbp_i_p); \ - rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \ - } \ - rbp_i_p = rbp_i_u; \ - rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \ - if (rbp_i_cmp < 0) { \ - rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \ - } else { \ - assert(rbp_i_cmp > 0); \ - rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \ - } \ - continue; \ - } \ - } \ - rbp_i_g = rbp_i_p; \ - rbp_i_p = rbp_i_c; \ - rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \ - if (rbp_i_cmp < 0) { \ - rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \ - } else { \ - assert(rbp_i_cmp > 0); \ - rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \ - } \ - } \ - /* rbp_i_p now refers to the node under which to insert. */\ - rbp_node_new(a_type, a_field, a_tree, (a_node)); \ - if (rbp_i_cmp > 0) { \ - rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \ - rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \ - if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \ - rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \ - } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\ - rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \ - } \ - } else { \ - rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \ - } \ - /* Update the root and make sure that it is black. */\ - (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \ - rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \ -} while (0) - -#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \ - a_type rbp_r_s; \ - a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \ - int rbp_r_cmp; \ - rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \ - rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \ - rbp_black_set(a_type, a_field, &rbp_r_s); \ - rbp_r_p = &rbp_r_s; \ - rbp_r_c = (a_tree)->rbt_root; \ - rbp_r_xp = &(a_tree)->rbt_nil; \ - /* Iterate down the tree, but always transform 2-nodes to 3- or */\ - /* 4-nodes in order to maintain the invariant that the current */\ - /* node is not a 2-node. This allows simple deletion once a leaf */\ - /* is reached. Handle the root specially though, since there may */\ - /* be no way to convert it from a 2-node to a 3-node. */\ - rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \ - if (rbp_r_cmp < 0) { \ - rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ - rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ - if (rbp_red_get(a_type, a_field, rbp_r_t) == false \ - && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ - /* Apply standard transform to prepare for left move. */\ - rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \ - rbp_black_set(a_type, a_field, rbp_r_t); \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ - rbp_r_c = rbp_r_t; \ - } else { \ - /* Move left. */\ - rbp_r_p = rbp_r_c; \ - rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \ - } \ - } else { \ - if (rbp_r_cmp == 0) { \ - assert((a_node) == rbp_r_c); \ - if (rbp_right_get(a_type, a_field, rbp_r_c) \ - == &(a_tree)->rbt_nil) { \ - /* Delete root node (which is also a leaf node). */\ - if (rbp_left_get(a_type, a_field, rbp_r_c) \ - != &(a_tree)->rbt_nil) { \ - rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \ - rbp_right_set(a_type, a_field, rbp_r_t, \ - &(a_tree)->rbt_nil); \ - } else { \ - rbp_r_t = &(a_tree)->rbt_nil; \ - } \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ - } else { \ - /* This is the node we want to delete, but we will */\ - /* instead swap it with its successor and delete the */\ - /* successor. Record enough information to do the */\ - /* swap later. rbp_r_xp is the a_node's parent. */\ - rbp_r_xp = rbp_r_p; \ - rbp_r_cmp = 1; /* Note that deletion is incomplete. */\ - } \ - } \ - if (rbp_r_cmp == 1) { \ - if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \ - a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \ - == false) { \ - rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ - if (rbp_red_get(a_type, a_field, rbp_r_t)) { \ - /* Standard transform. */\ - rbp_move_red_right(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - } else { \ - /* Root-specific transform. */\ - rbp_red_set(a_type, a_field, rbp_r_c); \ - rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ - if (rbp_red_get(a_type, a_field, rbp_r_u)) { \ - rbp_black_set(a_type, a_field, rbp_r_u); \ - rbp_rotate_right(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - rbp_rotate_left(a_type, a_field, rbp_r_c, \ - rbp_r_u); \ - rbp_right_set(a_type, a_field, rbp_r_t, \ - rbp_r_u); \ - } else { \ - rbp_red_set(a_type, a_field, rbp_r_t); \ - rbp_rotate_left(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - } \ - } \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \ - rbp_r_c = rbp_r_t; \ - } else { \ - /* Move right. */\ - rbp_r_p = rbp_r_c; \ - rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \ - } \ - } \ - } \ - if (rbp_r_cmp != 0) { \ - while (true) { \ - assert(rbp_r_p != &(a_tree)->rbt_nil); \ - rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \ - if (rbp_r_cmp < 0) { \ - rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \ - if (rbp_r_t == &(a_tree)->rbt_nil) { \ - /* rbp_r_c now refers to the successor node to */\ - /* relocate, and rbp_r_xp/a_node refer to the */\ - /* context for the relocation. */\ - if (rbp_left_get(a_type, a_field, rbp_r_xp) \ - == (a_node)) { \ - rbp_left_set(a_type, a_field, rbp_r_xp, \ - rbp_r_c); \ - } else { \ - assert(rbp_right_get(a_type, a_field, \ - rbp_r_xp) == (a_node)); \ - rbp_right_set(a_type, a_field, rbp_r_xp, \ - rbp_r_c); \ - } \ - rbp_left_set(a_type, a_field, rbp_r_c, \ - rbp_left_get(a_type, a_field, (a_node))); \ - rbp_right_set(a_type, a_field, rbp_r_c, \ - rbp_right_get(a_type, a_field, (a_node))); \ - rbp_color_set(a_type, a_field, rbp_r_c, \ - rbp_red_get(a_type, a_field, (a_node))); \ - if (rbp_left_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c) { \ - rbp_left_set(a_type, a_field, rbp_r_p, \ - &(a_tree)->rbt_nil); \ - } else { \ - assert(rbp_right_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c); \ - rbp_right_set(a_type, a_field, rbp_r_p, \ - &(a_tree)->rbt_nil); \ - } \ - break; \ - } \ - rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ - if (rbp_red_get(a_type, a_field, rbp_r_t) == false \ - && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ - rbp_move_red_left(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - if (rbp_left_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c) { \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\ - } else { \ - rbp_right_set(a_type, a_field, rbp_r_p, \ - rbp_r_t); \ - } \ - rbp_r_c = rbp_r_t; \ - } else { \ - rbp_r_p = rbp_r_c; \ - rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \ - } \ - } else { \ - /* Check whether to delete this node (it has to be */\ - /* the correct node and a leaf node). */\ - if (rbp_r_cmp == 0) { \ - assert((a_node) == rbp_r_c); \ - if (rbp_right_get(a_type, a_field, rbp_r_c) \ - == &(a_tree)->rbt_nil) { \ - /* Delete leaf node. */\ - if (rbp_left_get(a_type, a_field, rbp_r_c) \ - != &(a_tree)->rbt_nil) { \ - rbp_lean_right(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - rbp_right_set(a_type, a_field, rbp_r_t, \ - &(a_tree)->rbt_nil); \ - } else { \ - rbp_r_t = &(a_tree)->rbt_nil; \ - } \ - if (rbp_left_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c) { \ - rbp_left_set(a_type, a_field, rbp_r_p, \ - rbp_r_t); \ - } else { \ - rbp_right_set(a_type, a_field, rbp_r_p, \ - rbp_r_t); \ - } \ - break; \ - } else { \ - /* This is the node we want to delete, but we */\ - /* will instead swap it with its successor */\ - /* and delete the successor. Record enough */\ - /* information to do the swap later. */\ - /* rbp_r_xp is a_node's parent. */\ - rbp_r_xp = rbp_r_p; \ - } \ - } \ - rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \ - rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \ - if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \ - rbp_move_red_right(a_type, a_field, rbp_r_c, \ - rbp_r_t); \ - if (rbp_left_get(a_type, a_field, rbp_r_p) \ - == rbp_r_c) { \ - rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\ - } else { \ - rbp_right_set(a_type, a_field, rbp_r_p, \ - rbp_r_t); \ - } \ - rbp_r_c = rbp_r_t; \ - } else { \ - rbp_r_p = rbp_r_c; \ - rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \ - } \ - } \ - } \ - } \ - /* Update root. */\ - (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \ -} while (0) - -/* - * The rb_wrap() macro provides a convenient way to wrap functions around the - * cpp macros. The main benefits of wrapping are that 1) repeated macro - * expansion can cause code bloat, especially for rb_{insert,remove)(), and - * 2) type, linkage, comparison functions, etc. need not be specified at every - * call point. - */ - -#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \ -a_attr void \ -a_prefix##new(a_tree_type *tree) { \ - rb_new(a_type, a_field, tree); \ -} \ -a_attr a_type * \ -a_prefix##first(a_tree_type *tree) { \ - a_type *ret; \ - rb_first(a_type, a_field, tree, ret); \ - return (ret); \ -} \ -a_attr a_type * \ -a_prefix##last(a_tree_type *tree) { \ - a_type *ret; \ - rb_last(a_type, a_field, tree, ret); \ - return (ret); \ -} \ -a_attr a_type * \ -a_prefix##next(a_tree_type *tree, a_type *node) { \ - a_type *ret; \ - rb_next(a_type, a_field, a_cmp, tree, node, ret); \ - return (ret); \ -} \ -a_attr a_type * \ -a_prefix##prev(a_tree_type *tree, a_type *node) { \ - a_type *ret; \ - rb_prev(a_type, a_field, a_cmp, tree, node, ret); \ - return (ret); \ -} \ -a_attr a_type * \ -a_prefix##search(a_tree_type *tree, a_type *key) { \ - a_type *ret; \ - rb_search(a_type, a_field, a_cmp, tree, key, ret); \ - return (ret); \ -} \ -a_attr a_type * \ -a_prefix##nsearch(a_tree_type *tree, a_type *key) { \ - a_type *ret; \ - rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \ - return (ret); \ -} \ -a_attr a_type * \ -a_prefix##psearch(a_tree_type *tree, a_type *key) { \ - a_type *ret; \ - rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \ - return (ret); \ -} \ -a_attr void \ -a_prefix##insert(a_tree_type *tree, a_type *node) { \ - rb_insert(a_type, a_field, a_cmp, tree, node); \ -} \ -a_attr void \ -a_prefix##remove(a_tree_type *tree, a_type *node) { \ - rb_remove(a_type, a_field, a_cmp, tree, node); \ -} - -/* - * The iterators simulate recursion via an array of pointers that store the - * current path. This is critical to performance, since a series of calls to - * rb_{next,prev}() would require time proportional to (n lg n), whereas this - * implementation only requires time proportional to (n). - * - * Since the iterators cache a path down the tree, any tree modification may - * cause the cached path to become invalid. In order to continue iteration, - * use something like the following sequence: - * - * { - * a_type *node, *tnode; - * - * rb_foreach_begin(a_type, a_field, a_tree, node) { - * ... - * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode); - * rb_remove(a_type, a_field, a_cmp, a_tree, node); - * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode); - * ... - * } rb_foreach_end(a_type, a_field, a_tree, node) - * } - * - * Note that this idiom is not advised if every iteration modifies the tree, - * since in that case there is no algorithmic complexity improvement over a - * series of rb_{next,prev}() calls, thus making the setup overhead wasted - * effort. - */ - -#ifdef RB_NO_C99_VARARRAYS - /* - * Avoid using variable-length arrays, at the cost of using more stack space. - * Size the path arrays such that they are always large enough, even if a - * tree consumes all of memory. Since each node must contain a minimum of - * two pointers, there can never be more nodes than: - * - * 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)) - * - * Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth - * is: - * - * (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))) - * - * This works out to a maximum depth of 87 and 180 for 32- and 64-bit - * systems, respectively (approximatly 348 and 1440 bytes, respectively). - */ -# define rbp_compute_f_height(a_type, a_field, a_tree) -# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))) -# define rbp_compute_fr_height(a_type, a_field, a_tree) -# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))) -#else -# define rbp_compute_f_height(a_type, a_field, a_tree) \ - /* Compute the maximum possible tree depth (3X the black height). */\ - unsigned rbp_f_height; \ - rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \ - rbp_f_height *= 3; -# define rbp_compute_fr_height(a_type, a_field, a_tree) \ - /* Compute the maximum possible tree depth (3X the black height). */\ - unsigned rbp_fr_height; \ - rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \ - rbp_fr_height *= 3; -#endif - -#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \ - rbp_compute_f_height(a_type, a_field, a_tree) \ - { \ - /* Initialize the path to contain the left spine. */\ - a_type *rbp_f_path[rbp_f_height]; \ - a_type *rbp_f_node; \ - bool rbp_f_synced = false; \ - unsigned rbp_f_depth = 0; \ - if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ - rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \ - rbp_f_depth++; \ - while ((rbp_f_node = rbp_left_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ - rbp_f_path[rbp_f_depth] = rbp_f_node; \ - rbp_f_depth++; \ - } \ - } \ - /* While the path is non-empty, iterate. */\ - while (rbp_f_depth > 0) { \ - (a_var) = rbp_f_path[rbp_f_depth-1]; - -/* Only use if modifying the tree during iteration. */ -#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \ - /* Re-initialize the path to contain the path to a_node. */\ - rbp_f_depth = 0; \ - if (a_node != NULL) { \ - if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ - rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \ - rbp_f_depth++; \ - rbp_f_node = rbp_f_path[0]; \ - while (true) { \ - int rbp_f_cmp = (a_cmp)((a_node), \ - rbp_f_path[rbp_f_depth-1]); \ - if (rbp_f_cmp < 0) { \ - rbp_f_node = rbp_left_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1]); \ - } else if (rbp_f_cmp > 0) { \ - rbp_f_node = rbp_right_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1]); \ - } else { \ - break; \ - } \ - assert(rbp_f_node != &(a_tree)->rbt_nil); \ - rbp_f_path[rbp_f_depth] = rbp_f_node; \ - rbp_f_depth++; \ - } \ - } \ - } \ - rbp_f_synced = true; - -#define rb_foreach_end(a_type, a_field, a_tree, a_var) \ - if (rbp_f_synced) { \ - rbp_f_synced = false; \ - continue; \ - } \ - /* Find the successor. */\ - if ((rbp_f_node = rbp_right_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ - /* The successor is the left-most node in the right */\ - /* subtree. */\ - rbp_f_path[rbp_f_depth] = rbp_f_node; \ - rbp_f_depth++; \ - while ((rbp_f_node = rbp_left_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \ - rbp_f_path[rbp_f_depth] = rbp_f_node; \ - rbp_f_depth++; \ - } \ - } else { \ - /* The successor is above the current node. Unwind */\ - /* until a left-leaning edge is removed from the */\ - /* path, or the path is empty. */\ - for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \ - if (rbp_left_get(a_type, a_field, \ - rbp_f_path[rbp_f_depth-1]) \ - == rbp_f_path[rbp_f_depth]) { \ - break; \ - } \ - } \ - } \ - } \ - } \ -} - -#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \ - rbp_compute_fr_height(a_type, a_field, a_tree) \ - { \ - /* Initialize the path to contain the right spine. */\ - a_type *rbp_fr_path[rbp_fr_height]; \ - a_type *rbp_fr_node; \ - bool rbp_fr_synced = false; \ - unsigned rbp_fr_depth = 0; \ - if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ - rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \ - rbp_fr_depth++; \ - while ((rbp_fr_node = rbp_right_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \ - rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ - rbp_fr_depth++; \ - } \ - } \ - /* While the path is non-empty, iterate. */\ - while (rbp_fr_depth > 0) { \ - (a_var) = rbp_fr_path[rbp_fr_depth-1]; - -/* Only use if modifying the tree during iteration. */ -#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \ - /* Re-initialize the path to contain the path to a_node. */\ - rbp_fr_depth = 0; \ - if (a_node != NULL) { \ - if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \ - rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \ - rbp_fr_depth++; \ - rbp_fr_node = rbp_fr_path[0]; \ - while (true) { \ - int rbp_fr_cmp = (a_cmp)((a_node), \ - rbp_fr_path[rbp_fr_depth-1]); \ - if (rbp_fr_cmp < 0) { \ - rbp_fr_node = rbp_left_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1]); \ - } else if (rbp_fr_cmp > 0) { \ - rbp_fr_node = rbp_right_get(a_type, a_field,\ - rbp_fr_path[rbp_fr_depth-1]); \ - } else { \ - break; \ - } \ - assert(rbp_fr_node != &(a_tree)->rbt_nil); \ - rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ - rbp_fr_depth++; \ - } \ - } \ - } \ - rbp_fr_synced = true; - -#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \ - if (rbp_fr_synced) { \ - rbp_fr_synced = false; \ - continue; \ - } \ - if (rbp_fr_depth == 0) { \ - /* rb_foreach_reverse_sync() was called with a NULL */\ - /* a_node. */\ - break; \ - } \ - /* Find the predecessor. */\ - if ((rbp_fr_node = rbp_left_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \ - /* The predecessor is the right-most node in the left */\ - /* subtree. */\ - rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ - rbp_fr_depth++; \ - while ((rbp_fr_node = rbp_right_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\ - rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \ - rbp_fr_depth++; \ - } \ - } else { \ - /* The predecessor is above the current node. Unwind */\ - /* until a right-leaning edge is removed from the */\ - /* path, or the path is empty. */\ - for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\ - if (rbp_right_get(a_type, a_field, \ - rbp_fr_path[rbp_fr_depth-1]) \ - == rbp_fr_path[rbp_fr_depth]) { \ - break; \ - } \ - } \ - } \ - } \ - } \ -} - -#endif /* RB_H_ */ +/******************************************************************************
+ *
+ * Copyright (C) 2008 Jason Evans <jasone@FreeBSD.org>.
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice(s), this list of conditions and the following disclaimer
+ * unmodified other than the allowable addition of one or more
+ * copyright notices.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice(s), this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) ``AS IS'' AND ANY
+ * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
+ * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
+ * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
+ * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
+ * OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
+ * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ *
+ ******************************************************************************
+ *
+ * cpp macro implementation of left-leaning red-black trees.
+ *
+ * Usage:
+ *
+ * (Optional.)
+ * #define SIZEOF_PTR ...
+ * #define SIZEOF_PTR_2POW ...
+ * #define RB_NO_C99_VARARRAYS
+ *
+ * (Optional, see assert(3).)
+ * #define NDEBUG
+ *
+ * (Required.)
+ * #include <assert.h>
+ * #include <rb.h>
+ * ...
+ *
+ * All operations are done non-recursively. Parent pointers are not used, and
+ * color bits are stored in the least significant bit of right-child pointers,
+ * thus making node linkage as compact as is possible for red-black trees.
+ *
+ * Some macros use a comparison function pointer, which is expected to have the
+ * following prototype:
+ *
+ * int (a_cmp *)(a_type *a_node, a_type *a_other);
+ * ^^^^^^
+ * or a_key
+ *
+ * Interpretation of comparision function return values:
+ *
+ * -1 : a_node < a_other
+ * 0 : a_node == a_other
+ * 1 : a_node > a_other
+ *
+ * In all cases, the a_node or a_key macro argument is the first argument to the
+ * comparison function, which makes it possible to write comparison functions
+ * that treat the first argument specially.
+ *
+ ******************************************************************************/
+
+#ifndef RB_H_
+#define RB_H_
+
+#if 0
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD: head/lib/libc/stdlib/rb.h 178995 2008-05-14 18:33:13Z jasone $");
+#endif
+
+/* Node structure. */
+#define rb_node(a_type) \
+struct { \
+ a_type *rbn_left; \
+ a_type *rbn_right_red; \
+}
+
+/* Root structure. */
+#define rb_tree(a_type) \
+struct { \
+ a_type *rbt_root; \
+ a_type rbt_nil; \
+}
+
+/* Left accessors. */
+#define rbp_left_get(a_type, a_field, a_node) \
+ ((a_node)->a_field.rbn_left)
+#define rbp_left_set(a_type, a_field, a_node, a_left) do { \
+ (a_node)->a_field.rbn_left = a_left; \
+} while (0)
+
+/* Right accessors. */
+#define rbp_right_get(a_type, a_field, a_node) \
+ ((a_type *) (((intptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((ssize_t)-2)))
+#define rbp_right_set(a_type, a_field, a_node, a_right) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) a_right) \
+ | (((uintptr_t) (a_node)->a_field.rbn_right_red) & ((size_t)1))); \
+} while (0)
+
+/* Color accessors. */
+#define rbp_red_get(a_type, a_field, a_node) \
+ ((bool) (((uintptr_t) (a_node)->a_field.rbn_right_red) \
+ & ((size_t)1)))
+#define rbp_color_set(a_type, a_field, a_node, a_red) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) ((((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)) \
+ | ((ssize_t)a_red)); \
+} while (0)
+#define rbp_red_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((uintptr_t) \
+ (a_node)->a_field.rbn_right_red) | ((size_t)1)); \
+} while (0)
+#define rbp_black_set(a_type, a_field, a_node) do { \
+ (a_node)->a_field.rbn_right_red = (a_type *) (((intptr_t) \
+ (a_node)->a_field.rbn_right_red) & ((ssize_t)-2)); \
+} while (0)
+
+/* Node initializer. */
+#define rbp_node_new(a_type, a_field, a_tree, a_node) do { \
+ rbp_left_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
+ rbp_right_set(a_type, a_field, (a_node), &(a_tree)->rbt_nil); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+/* Tree initializer. */
+#define rb_new(a_type, a_field, a_tree) do { \
+ (a_tree)->rbt_root = &(a_tree)->rbt_nil; \
+ rbp_node_new(a_type, a_field, a_tree, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &(a_tree)->rbt_nil); \
+} while (0)
+
+/* Tree operations. */
+#define rbp_black_height(a_type, a_field, a_tree, r_height) do { \
+ a_type *rbp_bh_t; \
+ for (rbp_bh_t = (a_tree)->rbt_root, (r_height) = 0; \
+ rbp_bh_t != &(a_tree)->rbt_nil; \
+ rbp_bh_t = rbp_left_get(a_type, a_field, rbp_bh_t)) { \
+ if (rbp_red_get(a_type, a_field, rbp_bh_t) == false) { \
+ (r_height)++; \
+ } \
+ } \
+} while (0)
+
+#define rbp_first(a_type, a_field, a_tree, a_root, r_node) do { \
+ for ((r_node) = (a_root); \
+ rbp_left_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
+ (r_node) = rbp_left_get(a_type, a_field, (r_node))) { \
+ } \
+} while (0)
+
+#define rbp_last(a_type, a_field, a_tree, a_root, r_node) do { \
+ for ((r_node) = (a_root); \
+ rbp_right_get(a_type, a_field, (r_node)) != &(a_tree)->rbt_nil; \
+ (r_node) = rbp_right_get(a_type, a_field, (r_node))) { \
+ } \
+} while (0)
+
+#define rbp_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ if (rbp_right_get(a_type, a_field, (a_node)) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_first(a_type, a_field, a_tree, rbp_right_get(a_type, \
+ a_field, (a_node)), (r_node)); \
+ } else { \
+ a_type *rbp_n_t = (a_tree)->rbt_root; \
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \
+ (r_node) = &(a_tree)->rbt_nil; \
+ while (true) { \
+ int rbp_n_cmp = (a_cmp)((a_node), rbp_n_t); \
+ if (rbp_n_cmp < 0) { \
+ (r_node) = rbp_n_t; \
+ rbp_n_t = rbp_left_get(a_type, a_field, rbp_n_t); \
+ } else if (rbp_n_cmp > 0) { \
+ rbp_n_t = rbp_right_get(a_type, a_field, rbp_n_t); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_n_t != &(a_tree)->rbt_nil); \
+ } \
+ } \
+} while (0)
+
+#define rbp_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ if (rbp_left_get(a_type, a_field, (a_node)) != &(a_tree)->rbt_nil) {\
+ rbp_last(a_type, a_field, a_tree, rbp_left_get(a_type, \
+ a_field, (a_node)), (r_node)); \
+ } else { \
+ a_type *rbp_p_t = (a_tree)->rbt_root; \
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \
+ (r_node) = &(a_tree)->rbt_nil; \
+ while (true) { \
+ int rbp_p_cmp = (a_cmp)((a_node), rbp_p_t); \
+ if (rbp_p_cmp < 0) { \
+ rbp_p_t = rbp_left_get(a_type, a_field, rbp_p_t); \
+ } else if (rbp_p_cmp > 0) { \
+ (r_node) = rbp_p_t; \
+ rbp_p_t = rbp_right_get(a_type, a_field, rbp_p_t); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_p_t != &(a_tree)->rbt_nil); \
+ } \
+ } \
+} while (0)
+
+#define rb_first(a_type, a_field, a_tree, r_node) do { \
+ rbp_first(a_type, a_field, a_tree, (a_tree)->rbt_root, (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_last(a_type, a_field, a_tree, r_node) do { \
+ rbp_last(a_type, a_field, a_tree, (a_tree)->rbt_root, r_node); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_next(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ rbp_next(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_prev(a_type, a_field, a_cmp, a_tree, a_node, r_node) do { \
+ rbp_prev(a_type, a_field, a_cmp, a_tree, (a_node), (r_node)); \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+#define rb_search(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ int rbp_se_cmp; \
+ (r_node) = (a_tree)->rbt_root; \
+ while ((r_node) != &(a_tree)->rbt_nil \
+ && (rbp_se_cmp = (a_cmp)((a_key), (r_node))) != 0) { \
+ if (rbp_se_cmp < 0) { \
+ (r_node) = rbp_left_get(a_type, a_field, (r_node)); \
+ } else { \
+ (r_node) = rbp_right_get(a_type, a_field, (r_node)); \
+ } \
+ } \
+ if ((r_node) == &(a_tree)->rbt_nil) { \
+ (r_node) = NULL; \
+ } \
+} while (0)
+
+/*
+ * Find a match if it exists. Otherwise, find the next greater node, if one
+ * exists.
+ */
+#define rb_nsearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ a_type *rbp_ns_t = (a_tree)->rbt_root; \
+ (r_node) = NULL; \
+ while (rbp_ns_t != &(a_tree)->rbt_nil) { \
+ int rbp_ns_cmp = (a_cmp)((a_key), rbp_ns_t); \
+ if (rbp_ns_cmp < 0) { \
+ (r_node) = rbp_ns_t; \
+ rbp_ns_t = rbp_left_get(a_type, a_field, rbp_ns_t); \
+ } else if (rbp_ns_cmp > 0) { \
+ rbp_ns_t = rbp_right_get(a_type, a_field, rbp_ns_t); \
+ } else { \
+ (r_node) = rbp_ns_t; \
+ break; \
+ } \
+ } \
+} while (0)
+
+/*
+ * Find a match if it exists. Otherwise, find the previous lesser node, if one
+ * exists.
+ */
+#define rb_psearch(a_type, a_field, a_cmp, a_tree, a_key, r_node) do { \
+ a_type *rbp_ps_t = (a_tree)->rbt_root; \
+ (r_node) = NULL; \
+ while (rbp_ps_t != &(a_tree)->rbt_nil) { \
+ int rbp_ps_cmp = (a_cmp)((a_key), rbp_ps_t); \
+ if (rbp_ps_cmp < 0) { \
+ rbp_ps_t = rbp_left_get(a_type, a_field, rbp_ps_t); \
+ } else if (rbp_ps_cmp > 0) { \
+ (r_node) = rbp_ps_t; \
+ rbp_ps_t = rbp_right_get(a_type, a_field, rbp_ps_t); \
+ } else { \
+ (r_node) = rbp_ps_t; \
+ break; \
+ } \
+ } \
+} while (0)
+
+#define rbp_rotate_left(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbp_right_get(a_type, a_field, (a_node)); \
+ rbp_right_set(a_type, a_field, (a_node), \
+ rbp_left_get(a_type, a_field, (r_node))); \
+ rbp_left_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rbp_rotate_right(a_type, a_field, a_node, r_node) do { \
+ (r_node) = rbp_left_get(a_type, a_field, (a_node)); \
+ rbp_left_set(a_type, a_field, (a_node), \
+ rbp_right_get(a_type, a_field, (r_node))); \
+ rbp_right_set(a_type, a_field, (r_node), (a_node)); \
+} while (0)
+
+#define rbp_lean_left(a_type, a_field, a_node, r_node) do { \
+ bool rbp_ll_red; \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ rbp_ll_red = rbp_red_get(a_type, a_field, (a_node)); \
+ rbp_color_set(a_type, a_field, (r_node), rbp_ll_red); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+#define rbp_lean_right(a_type, a_field, a_node, r_node) do { \
+ bool rbp_lr_red; \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_lr_red = rbp_red_get(a_type, a_field, (a_node)); \
+ rbp_color_set(a_type, a_field, (r_node), rbp_lr_red); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+} while (0)
+
+#define rbp_move_red_left(a_type, a_field, a_node, r_node) do { \
+ a_type *rbp_mrl_t, *rbp_mrl_u; \
+ rbp_mrl_t = rbp_left_get(a_type, a_field, (a_node)); \
+ rbp_red_set(a_type, a_field, rbp_mrl_t); \
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
+ rbp_mrl_u = rbp_left_get(a_type, a_field, rbp_mrl_t); \
+ if (rbp_red_get(a_type, a_field, rbp_mrl_u)) { \
+ rbp_rotate_right(a_type, a_field, rbp_mrl_t, rbp_mrl_u); \
+ rbp_right_set(a_type, a_field, (a_node), rbp_mrl_u); \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ rbp_mrl_t = rbp_right_get(a_type, a_field, (a_node)); \
+ if (rbp_red_get(a_type, a_field, rbp_mrl_t)) { \
+ rbp_black_set(a_type, a_field, rbp_mrl_t); \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrl_t); \
+ rbp_left_set(a_type, a_field, (r_node), rbp_mrl_t); \
+ } else { \
+ rbp_black_set(a_type, a_field, (a_node)); \
+ } \
+ } else { \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ } \
+} while (0)
+
+#define rbp_move_red_right(a_type, a_field, a_node, r_node) do { \
+ a_type *rbp_mrr_t; \
+ rbp_mrr_t = rbp_left_get(a_type, a_field, (a_node)); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
+ a_type *rbp_mrr_u, *rbp_mrr_v; \
+ rbp_mrr_u = rbp_right_get(a_type, a_field, rbp_mrr_t); \
+ rbp_mrr_v = rbp_left_get(a_type, a_field, rbp_mrr_u); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_v)) { \
+ rbp_color_set(a_type, a_field, rbp_mrr_u, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ rbp_black_set(a_type, a_field, rbp_mrr_v); \
+ rbp_rotate_left(a_type, a_field, rbp_mrr_t, rbp_mrr_u); \
+ rbp_left_set(a_type, a_field, (a_node), rbp_mrr_u); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } else { \
+ rbp_color_set(a_type, a_field, rbp_mrr_t, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ rbp_red_set(a_type, a_field, rbp_mrr_u); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } \
+ rbp_red_set(a_type, a_field, (a_node)); \
+ } else { \
+ rbp_red_set(a_type, a_field, rbp_mrr_t); \
+ rbp_mrr_t = rbp_left_get(a_type, a_field, rbp_mrr_t); \
+ if (rbp_red_get(a_type, a_field, rbp_mrr_t)) { \
+ rbp_black_set(a_type, a_field, rbp_mrr_t); \
+ rbp_rotate_right(a_type, a_field, (a_node), (r_node)); \
+ rbp_rotate_left(a_type, a_field, (a_node), rbp_mrr_t); \
+ rbp_right_set(a_type, a_field, (r_node), rbp_mrr_t); \
+ } else { \
+ rbp_rotate_left(a_type, a_field, (a_node), (r_node)); \
+ } \
+ } \
+} while (0)
+
+#define rb_insert(a_type, a_field, a_cmp, a_tree, a_node) do { \
+ a_type rbp_i_s; \
+ a_type *rbp_i_g, *rbp_i_p, *rbp_i_c, *rbp_i_t, *rbp_i_u; \
+ int rbp_i_cmp = 0; \
+ rbp_i_g = &(a_tree)->rbt_nil; \
+ rbp_left_set(a_type, a_field, &rbp_i_s, (a_tree)->rbt_root); \
+ rbp_right_set(a_type, a_field, &rbp_i_s, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &rbp_i_s); \
+ rbp_i_p = &rbp_i_s; \
+ rbp_i_c = (a_tree)->rbt_root; \
+ /* Iteratively search down the tree for the insertion point, */\
+ /* splitting 4-nodes as they are encountered. At the end of each */\
+ /* iteration, rbp_i_g->rbp_i_p->rbp_i_c is a 3-level path down */\
+ /* the tree, assuming a sufficiently deep tree. */\
+ while (rbp_i_c != &(a_tree)->rbt_nil) { \
+ rbp_i_t = rbp_left_get(a_type, a_field, rbp_i_c); \
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
+ if (rbp_red_get(a_type, a_field, rbp_i_t) \
+ && rbp_red_get(a_type, a_field, rbp_i_u)) { \
+ /* rbp_i_c is the top of a logical 4-node, so split it. */\
+ /* This iteration does not move down the tree, due to the */\
+ /* disruptiveness of node splitting. */\
+ /* */\
+ /* Rotate right. */\
+ rbp_rotate_right(a_type, a_field, rbp_i_c, rbp_i_t); \
+ /* Pass red links up one level. */\
+ rbp_i_u = rbp_left_get(a_type, a_field, rbp_i_t); \
+ rbp_black_set(a_type, a_field, rbp_i_u); \
+ if (rbp_left_get(a_type, a_field, rbp_i_p) == rbp_i_c) { \
+ rbp_left_set(a_type, a_field, rbp_i_p, rbp_i_t); \
+ rbp_i_c = rbp_i_t; \
+ } else { \
+ /* rbp_i_c was the right child of rbp_i_p, so rotate */\
+ /* left in order to maintain the left-leaning */\
+ /* invariant. */\
+ assert(rbp_right_get(a_type, a_field, rbp_i_p) \
+ == rbp_i_c); \
+ rbp_right_set(a_type, a_field, rbp_i_p, rbp_i_t); \
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_u); \
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_u); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, rbp_i_g) \
+ == rbp_i_p); \
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_u); \
+ } \
+ rbp_i_p = rbp_i_u; \
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_p); \
+ if (rbp_i_cmp < 0) { \
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_p); \
+ } else { \
+ assert(rbp_i_cmp > 0); \
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_p); \
+ } \
+ continue; \
+ } \
+ } \
+ rbp_i_g = rbp_i_p; \
+ rbp_i_p = rbp_i_c; \
+ rbp_i_cmp = (a_cmp)((a_node), rbp_i_c); \
+ if (rbp_i_cmp < 0) { \
+ rbp_i_c = rbp_left_get(a_type, a_field, rbp_i_c); \
+ } else { \
+ assert(rbp_i_cmp > 0); \
+ rbp_i_c = rbp_right_get(a_type, a_field, rbp_i_c); \
+ } \
+ } \
+ /* rbp_i_p now refers to the node under which to insert. */\
+ rbp_node_new(a_type, a_field, a_tree, (a_node)); \
+ if (rbp_i_cmp > 0) { \
+ rbp_right_set(a_type, a_field, rbp_i_p, (a_node)); \
+ rbp_lean_left(a_type, a_field, rbp_i_p, rbp_i_t); \
+ if (rbp_left_get(a_type, a_field, rbp_i_g) == rbp_i_p) { \
+ rbp_left_set(a_type, a_field, rbp_i_g, rbp_i_t); \
+ } else if (rbp_right_get(a_type, a_field, rbp_i_g) == rbp_i_p) {\
+ rbp_right_set(a_type, a_field, rbp_i_g, rbp_i_t); \
+ } \
+ } else { \
+ rbp_left_set(a_type, a_field, rbp_i_p, (a_node)); \
+ } \
+ /* Update the root and make sure that it is black. */\
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_i_s); \
+ rbp_black_set(a_type, a_field, (a_tree)->rbt_root); \
+} while (0)
+
+#define rb_remove(a_type, a_field, a_cmp, a_tree, a_node) do { \
+ a_type rbp_r_s; \
+ a_type *rbp_r_p, *rbp_r_c, *rbp_r_xp, *rbp_r_t, *rbp_r_u; \
+ int rbp_r_cmp; \
+ rbp_left_set(a_type, a_field, &rbp_r_s, (a_tree)->rbt_root); \
+ rbp_right_set(a_type, a_field, &rbp_r_s, &(a_tree)->rbt_nil); \
+ rbp_black_set(a_type, a_field, &rbp_r_s); \
+ rbp_r_p = &rbp_r_s; \
+ rbp_r_c = (a_tree)->rbt_root; \
+ rbp_r_xp = &(a_tree)->rbt_nil; \
+ /* Iterate down the tree, but always transform 2-nodes to 3- or */\
+ /* 4-nodes in order to maintain the invariant that the current */\
+ /* node is not a 2-node. This allows simple deletion once a leaf */\
+ /* is reached. Handle the root specially though, since there may */\
+ /* be no way to convert it from a 2-node to a 3-node. */\
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
+ if (rbp_r_cmp < 0) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ /* Apply standard transform to prepare for left move. */\
+ rbp_move_red_left(a_type, a_field, rbp_r_c, rbp_r_t); \
+ rbp_black_set(a_type, a_field, rbp_r_t); \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ /* Move left. */\
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
+ } \
+ } else { \
+ if (rbp_r_cmp == 0) { \
+ assert((a_node) == rbp_r_c); \
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \
+ == &(a_tree)->rbt_nil) { \
+ /* Delete root node (which is also a leaf node). */\
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_lean_right(a_type, a_field, rbp_r_c, rbp_r_t); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ rbp_r_t = &(a_tree)->rbt_nil; \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ } else { \
+ /* This is the node we want to delete, but we will */\
+ /* instead swap it with its successor and delete the */\
+ /* successor. Record enough information to do the */\
+ /* swap later. rbp_r_xp is the a_node's parent. */\
+ rbp_r_xp = rbp_r_p; \
+ rbp_r_cmp = 1; /* Note that deletion is incomplete. */\
+ } \
+ } \
+ if (rbp_r_cmp == 1) { \
+ if (rbp_red_get(a_type, a_field, rbp_left_get(a_type, \
+ a_field, rbp_right_get(a_type, a_field, rbp_r_c))) \
+ == false) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t)) { \
+ /* Standard transform. */\
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ } else { \
+ /* Root-specific transform. */\
+ rbp_red_set(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_u)) { \
+ rbp_black_set(a_type, a_field, rbp_r_u); \
+ rbp_rotate_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \
+ rbp_r_u); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ rbp_r_u); \
+ } else { \
+ rbp_red_set(a_type, a_field, rbp_r_t); \
+ rbp_rotate_left(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ } \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t); \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ /* Move right. */\
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
+ } \
+ } \
+ } \
+ if (rbp_r_cmp != 0) { \
+ while (true) { \
+ assert(rbp_r_p != &(a_tree)->rbt_nil); \
+ rbp_r_cmp = (a_cmp)((a_node), rbp_r_c); \
+ if (rbp_r_cmp < 0) { \
+ rbp_r_t = rbp_left_get(a_type, a_field, rbp_r_c); \
+ if (rbp_r_t == &(a_tree)->rbt_nil) { \
+ /* rbp_r_c now refers to the successor node to */\
+ /* relocate, and rbp_r_xp/a_node refer to the */\
+ /* context for the relocation. */\
+ if (rbp_left_get(a_type, a_field, rbp_r_xp) \
+ == (a_node)) { \
+ rbp_left_set(a_type, a_field, rbp_r_xp, \
+ rbp_r_c); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, \
+ rbp_r_xp) == (a_node)); \
+ rbp_right_set(a_type, a_field, rbp_r_xp, \
+ rbp_r_c); \
+ } \
+ rbp_left_set(a_type, a_field, rbp_r_c, \
+ rbp_left_get(a_type, a_field, (a_node))); \
+ rbp_right_set(a_type, a_field, rbp_r_c, \
+ rbp_right_get(a_type, a_field, (a_node))); \
+ rbp_color_set(a_type, a_field, rbp_r_c, \
+ rbp_red_get(a_type, a_field, (a_node))); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ assert(rbp_right_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c); \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ &(a_tree)->rbt_nil); \
+ } \
+ break; \
+ } \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_t) == false \
+ && rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ rbp_move_red_left(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_left_get(a_type, a_field, rbp_r_c); \
+ } \
+ } else { \
+ /* Check whether to delete this node (it has to be */\
+ /* the correct node and a leaf node). */\
+ if (rbp_r_cmp == 0) { \
+ assert((a_node) == rbp_r_c); \
+ if (rbp_right_get(a_type, a_field, rbp_r_c) \
+ == &(a_tree)->rbt_nil) { \
+ /* Delete leaf node. */\
+ if (rbp_left_get(a_type, a_field, rbp_r_c) \
+ != &(a_tree)->rbt_nil) { \
+ rbp_lean_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ rbp_right_set(a_type, a_field, rbp_r_t, \
+ &(a_tree)->rbt_nil); \
+ } else { \
+ rbp_r_t = &(a_tree)->rbt_nil; \
+ } \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ break; \
+ } else { \
+ /* This is the node we want to delete, but we */\
+ /* will instead swap it with its successor */\
+ /* and delete the successor. Record enough */\
+ /* information to do the swap later. */\
+ /* rbp_r_xp is a_node's parent. */\
+ rbp_r_xp = rbp_r_p; \
+ } \
+ } \
+ rbp_r_t = rbp_right_get(a_type, a_field, rbp_r_c); \
+ rbp_r_u = rbp_left_get(a_type, a_field, rbp_r_t); \
+ if (rbp_red_get(a_type, a_field, rbp_r_u) == false) { \
+ rbp_move_red_right(a_type, a_field, rbp_r_c, \
+ rbp_r_t); \
+ if (rbp_left_get(a_type, a_field, rbp_r_p) \
+ == rbp_r_c) { \
+ rbp_left_set(a_type, a_field, rbp_r_p, rbp_r_t);\
+ } else { \
+ rbp_right_set(a_type, a_field, rbp_r_p, \
+ rbp_r_t); \
+ } \
+ rbp_r_c = rbp_r_t; \
+ } else { \
+ rbp_r_p = rbp_r_c; \
+ rbp_r_c = rbp_right_get(a_type, a_field, rbp_r_c); \
+ } \
+ } \
+ } \
+ } \
+ /* Update root. */\
+ (a_tree)->rbt_root = rbp_left_get(a_type, a_field, &rbp_r_s); \
+} while (0)
+
+/*
+ * The rb_wrap() macro provides a convenient way to wrap functions around the
+ * cpp macros. The main benefits of wrapping are that 1) repeated macro
+ * expansion can cause code bloat, especially for rb_{insert,remove)(), and
+ * 2) type, linkage, comparison functions, etc. need not be specified at every
+ * call point.
+ */
+
+#define rb_wrap(a_attr, a_prefix, a_tree_type, a_type, a_field, a_cmp) \
+a_attr void \
+a_prefix##new(a_tree_type *tree) { \
+ rb_new(a_type, a_field, tree); \
+} \
+a_attr a_type * \
+a_prefix##first(a_tree_type *tree) { \
+ a_type *ret; \
+ rb_first(a_type, a_field, tree, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##last(a_tree_type *tree) { \
+ a_type *ret; \
+ rb_last(a_type, a_field, tree, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##next(a_tree_type *tree, a_type *node) { \
+ a_type *ret; \
+ rb_next(a_type, a_field, a_cmp, tree, node, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##prev(a_tree_type *tree, a_type *node) { \
+ a_type *ret; \
+ rb_prev(a_type, a_field, a_cmp, tree, node, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##search(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_search(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##nsearch(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_nsearch(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr a_type * \
+a_prefix##psearch(a_tree_type *tree, a_type *key) { \
+ a_type *ret; \
+ rb_psearch(a_type, a_field, a_cmp, tree, key, ret); \
+ return (ret); \
+} \
+a_attr void \
+a_prefix##insert(a_tree_type *tree, a_type *node) { \
+ rb_insert(a_type, a_field, a_cmp, tree, node); \
+} \
+a_attr void \
+a_prefix##remove(a_tree_type *tree, a_type *node) { \
+ rb_remove(a_type, a_field, a_cmp, tree, node); \
+}
+
+/*
+ * The iterators simulate recursion via an array of pointers that store the
+ * current path. This is critical to performance, since a series of calls to
+ * rb_{next,prev}() would require time proportional to (n lg n), whereas this
+ * implementation only requires time proportional to (n).
+ *
+ * Since the iterators cache a path down the tree, any tree modification may
+ * cause the cached path to become invalid. In order to continue iteration,
+ * use something like the following sequence:
+ *
+ * {
+ * a_type *node, *tnode;
+ *
+ * rb_foreach_begin(a_type, a_field, a_tree, node) {
+ * ...
+ * rb_next(a_type, a_field, a_cmp, a_tree, node, tnode);
+ * rb_remove(a_type, a_field, a_cmp, a_tree, node);
+ * rb_foreach_next(a_type, a_field, a_cmp, a_tree, tnode);
+ * ...
+ * } rb_foreach_end(a_type, a_field, a_tree, node)
+ * }
+ *
+ * Note that this idiom is not advised if every iteration modifies the tree,
+ * since in that case there is no algorithmic complexity improvement over a
+ * series of rb_{next,prev}() calls, thus making the setup overhead wasted
+ * effort.
+ */
+
+#ifdef RB_NO_C99_VARARRAYS
+ /*
+ * Avoid using variable-length arrays, at the cost of using more stack space.
+ * Size the path arrays such that they are always large enough, even if a
+ * tree consumes all of memory. Since each node must contain a minimum of
+ * two pointers, there can never be more nodes than:
+ *
+ * 1 << ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1))
+ *
+ * Since the depth of a tree is limited to 3*lg(#nodes), the maximum depth
+ * is:
+ *
+ * (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
+ *
+ * This works out to a maximum depth of 87 and 180 for 32- and 64-bit
+ * systems, respectively (approximatly 348 and 1440 bytes, respectively).
+ */
+# define rbp_compute_f_height(a_type, a_field, a_tree)
+# define rbp_f_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
+# define rbp_compute_fr_height(a_type, a_field, a_tree)
+# define rbp_fr_height (3 * ((SIZEOF_PTR<<3) - (SIZEOF_PTR_2POW+1)))
+#else
+# define rbp_compute_f_height(a_type, a_field, a_tree) \
+ /* Compute the maximum possible tree depth (3X the black height). */\
+ unsigned rbp_f_height; \
+ rbp_black_height(a_type, a_field, a_tree, rbp_f_height); \
+ rbp_f_height *= 3;
+# define rbp_compute_fr_height(a_type, a_field, a_tree) \
+ /* Compute the maximum possible tree depth (3X the black height). */\
+ unsigned rbp_fr_height; \
+ rbp_black_height(a_type, a_field, a_tree, rbp_fr_height); \
+ rbp_fr_height *= 3;
+#endif
+
+#define rb_foreach_begin(a_type, a_field, a_tree, a_var) { \
+ rbp_compute_f_height(a_type, a_field, a_tree) \
+ { \
+ /* Initialize the path to contain the left spine. */\
+ a_type *rbp_f_path[rbp_f_height]; \
+ a_type *rbp_f_node; \
+ bool rbp_f_synced = false; \
+ unsigned rbp_f_depth = 0; \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
+ rbp_f_depth++; \
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } \
+ /* While the path is non-empty, iterate. */\
+ while (rbp_f_depth > 0) { \
+ (a_var) = rbp_f_path[rbp_f_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define rb_foreach_next(a_type, a_field, a_cmp, a_tree, a_node) \
+ /* Re-initialize the path to contain the path to a_node. */\
+ rbp_f_depth = 0; \
+ if (a_node != NULL) { \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = (a_tree)->rbt_root; \
+ rbp_f_depth++; \
+ rbp_f_node = rbp_f_path[0]; \
+ while (true) { \
+ int rbp_f_cmp = (a_cmp)((a_node), \
+ rbp_f_path[rbp_f_depth-1]); \
+ if (rbp_f_cmp < 0) { \
+ rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]); \
+ } else if (rbp_f_cmp > 0) { \
+ rbp_f_node = rbp_right_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_f_node != &(a_tree)->rbt_nil); \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } \
+ } \
+ rbp_f_synced = true;
+
+#define rb_foreach_end(a_type, a_field, a_tree, a_var) \
+ if (rbp_f_synced) { \
+ rbp_f_synced = false; \
+ continue; \
+ } \
+ /* Find the successor. */\
+ if ((rbp_f_node = rbp_right_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ /* The successor is the left-most node in the right */\
+ /* subtree. */\
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ while ((rbp_f_node = rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_f_path[rbp_f_depth] = rbp_f_node; \
+ rbp_f_depth++; \
+ } \
+ } else { \
+ /* The successor is above the current node. Unwind */\
+ /* until a left-leaning edge is removed from the */\
+ /* path, or the path is empty. */\
+ for (rbp_f_depth--; rbp_f_depth > 0; rbp_f_depth--) { \
+ if (rbp_left_get(a_type, a_field, \
+ rbp_f_path[rbp_f_depth-1]) \
+ == rbp_f_path[rbp_f_depth]) { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ } \
+}
+
+#define rb_foreach_reverse_begin(a_type, a_field, a_tree, a_var) { \
+ rbp_compute_fr_height(a_type, a_field, a_tree) \
+ { \
+ /* Initialize the path to contain the right spine. */\
+ a_type *rbp_fr_path[rbp_fr_height]; \
+ a_type *rbp_fr_node; \
+ bool rbp_fr_synced = false; \
+ unsigned rbp_fr_depth = 0; \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
+ rbp_fr_depth++; \
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } \
+ /* While the path is non-empty, iterate. */\
+ while (rbp_fr_depth > 0) { \
+ (a_var) = rbp_fr_path[rbp_fr_depth-1];
+
+/* Only use if modifying the tree during iteration. */
+#define rb_foreach_reverse_prev(a_type, a_field, a_cmp, a_tree, a_node) \
+ /* Re-initialize the path to contain the path to a_node. */\
+ rbp_fr_depth = 0; \
+ if (a_node != NULL) { \
+ if ((a_tree)->rbt_root != &(a_tree)->rbt_nil) { \
+ rbp_fr_path[rbp_fr_depth] = (a_tree)->rbt_root; \
+ rbp_fr_depth++; \
+ rbp_fr_node = rbp_fr_path[0]; \
+ while (true) { \
+ int rbp_fr_cmp = (a_cmp)((a_node), \
+ rbp_fr_path[rbp_fr_depth-1]); \
+ if (rbp_fr_cmp < 0) { \
+ rbp_fr_node = rbp_left_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1]); \
+ } else if (rbp_fr_cmp > 0) { \
+ rbp_fr_node = rbp_right_get(a_type, a_field,\
+ rbp_fr_path[rbp_fr_depth-1]); \
+ } else { \
+ break; \
+ } \
+ assert(rbp_fr_node != &(a_tree)->rbt_nil); \
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } \
+ } \
+ rbp_fr_synced = true;
+
+#define rb_foreach_reverse_end(a_type, a_field, a_tree, a_var) \
+ if (rbp_fr_synced) { \
+ rbp_fr_synced = false; \
+ continue; \
+ } \
+ if (rbp_fr_depth == 0) { \
+ /* rb_foreach_reverse_sync() was called with a NULL */\
+ /* a_node. */\
+ break; \
+ } \
+ /* Find the predecessor. */\
+ if ((rbp_fr_node = rbp_left_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) { \
+ /* The predecessor is the right-most node in the left */\
+ /* subtree. */\
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ while ((rbp_fr_node = rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1])) != &(a_tree)->rbt_nil) {\
+ rbp_fr_path[rbp_fr_depth] = rbp_fr_node; \
+ rbp_fr_depth++; \
+ } \
+ } else { \
+ /* The predecessor is above the current node. Unwind */\
+ /* until a right-leaning edge is removed from the */\
+ /* path, or the path is empty. */\
+ for (rbp_fr_depth--; rbp_fr_depth > 0; rbp_fr_depth--) {\
+ if (rbp_right_get(a_type, a_field, \
+ rbp_fr_path[rbp_fr_depth-1]) \
+ == rbp_fr_path[rbp_fr_depth]) { \
+ break; \
+ } \
+ } \
+ } \
+ } \
+ } \
+}
+
+#endif /* RB_H_ */
+
|