diff options
Diffstat (limited to 'third_party/libwebp/dsp/yuv.h')
-rw-r--r-- | third_party/libwebp/dsp/yuv.h | 261 |
1 files changed, 147 insertions, 114 deletions
diff --git a/third_party/libwebp/dsp/yuv.h b/third_party/libwebp/dsp/yuv.h index 3844d8c..dd778f9 100644 --- a/third_party/libwebp/dsp/yuv.h +++ b/third_party/libwebp/dsp/yuv.h @@ -14,7 +14,7 @@ // Y = 0.2569 * R + 0.5044 * G + 0.0979 * B + 16 // U = -0.1483 * R - 0.2911 * G + 0.4394 * B + 128 // V = 0.4394 * R - 0.3679 * G - 0.0715 * B + 128 -// We use 16bit fixed point operations for RGB->YUV conversion. +// We use 16bit fixed point operations for RGB->YUV conversion (YUV_FIX). // // For the Y'CbCr to RGB conversion, the BT.601 specification reads: // R = 1.164 * (Y-16) + 1.596 * (V-128) @@ -23,21 +23,24 @@ // where Y is in the [16,235] range, and U/V in the [16,240] range. // In the table-lookup version (WEBP_YUV_USE_TABLE), the common factor // "1.164 * (Y-16)" can be handled as an offset in the VP8kClip[] table. -// So in this case the formulae should be read as: +// So in this case the formulae should read: // R = 1.164 * [Y + 1.371 * (V-128) ] - 18.624 // G = 1.164 * [Y - 0.698 * (V-128) - 0.336 * (U-128)] - 18.624 // B = 1.164 * [Y + 1.733 * (U-128)] - 18.624 -// once factorized. Here too, 16bit fixed precision is used. +// once factorized. +// For YUV->RGB conversion, only 14bit fixed precision is used (YUV_FIX2). +// That's the maximum possible for a convenient ARM implementation. // // Author: Skal (pascal.massimino@gmail.com) #ifndef WEBP_DSP_YUV_H_ #define WEBP_DSP_YUV_H_ +#include "./dsp.h" #include "../dec/decode_vp8.h" // Define the following to use the LUT-based code: -#define WEBP_YUV_USE_TABLE +// #define WEBP_YUV_USE_TABLE #if defined(WEBP_EXPERIMENTAL_FEATURES) // Do NOT activate this feature for real compression. This is only experimental! @@ -52,53 +55,75 @@ //------------------------------------------------------------------------------ // YUV -> RGB conversion -#if defined(__cplusplus) || defined(c_plusplus) +#ifdef __cplusplus extern "C" { #endif -enum { YUV_FIX = 16, // fixed-point precision - YUV_HALF = 1 << (YUV_FIX - 1), - YUV_MASK = (256 << YUV_FIX) - 1, - YUV_RANGE_MIN = -227, // min value of r/g/b output - YUV_RANGE_MAX = 256 + 226 // max value of r/g/b output +enum { + YUV_FIX = 16, // fixed-point precision for RGB->YUV + YUV_HALF = 1 << (YUV_FIX - 1), + YUV_MASK = (256 << YUV_FIX) - 1, + YUV_RANGE_MIN = -227, // min value of r/g/b output + YUV_RANGE_MAX = 256 + 226, // max value of r/g/b output + + YUV_FIX2 = 14, // fixed-point precision for YUV->RGB + YUV_HALF2 = 1 << (YUV_FIX2 - 1), + YUV_MASK2 = (256 << YUV_FIX2) - 1 }; -#ifdef WEBP_YUV_USE_TABLE +// These constants are 14b fixed-point version of ITU-R BT.601 constants. +#define kYScale 19077 // 1.164 = 255 / 219 +#define kVToR 26149 // 1.596 = 255 / 112 * 0.701 +#define kUToG 6419 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587 +#define kVToG 13320 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587 +#define kUToB 33050 // 2.018 = 255 / 112 * 0.886 +#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF2) +#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF2) +#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF2) -extern int16_t VP8kVToR[256], VP8kUToB[256]; -extern int32_t VP8kVToG[256], VP8kUToG[256]; -extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN]; -extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN]; +//------------------------------------------------------------------------------ + +#if !defined(WEBP_YUV_USE_TABLE) + +// slower on x86 by ~7-8%, but bit-exact with the SSE2 version + +static WEBP_INLINE int VP8Clip8(int v) { + return ((v & ~YUV_MASK2) == 0) ? (v >> YUV_FIX2) : (v < 0) ? 0 : 255; +} + +static WEBP_INLINE int VP8YUVToR(int y, int v) { + return VP8Clip8(kYScale * y + kVToR * v + kRCst); +} + +static WEBP_INLINE int VP8YUVToG(int y, int u, int v) { + return VP8Clip8(kYScale * y - kUToG * u - kVToG * v + kGCst); +} + +static WEBP_INLINE int VP8YUVToB(int y, int u) { + return VP8Clip8(kYScale * y + kUToB * u + kBCst); +} -static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v, +static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, uint8_t* const rgb) { - const int r_off = VP8kVToR[v]; - const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; - const int b_off = VP8kUToB[u]; - rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN]; - rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; - rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN]; + rgb[0] = VP8YUVToR(y, v); + rgb[1] = VP8YUVToG(y, u, v); + rgb[2] = VP8YUVToB(y, u); } -static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v, +static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, uint8_t* const bgr) { - const int r_off = VP8kVToR[v]; - const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; - const int b_off = VP8kUToB[u]; - bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN]; - bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; - bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN]; + bgr[0] = VP8YUVToB(y, u); + bgr[1] = VP8YUVToG(y, u, v); + bgr[2] = VP8YUVToR(y, v); } -static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, +static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, uint8_t* const rgb) { - const int r_off = VP8kVToR[v]; - const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; - const int b_off = VP8kUToB[u]; - const uint8_t rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | - (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); - const uint8_t gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) | - (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3)); + const int r = VP8YUVToR(y, v); // 5 usable bits + const int g = VP8YUVToG(y, u, v); // 6 usable bits + const int b = VP8YUVToB(y, u); // 5 usable bits + const int rg = (r & 0xf8) | (g >> 5); + const int gb = ((g << 3) & 0xe0) | (b >> 3); #ifdef WEBP_SWAP_16BIT_CSP rgb[0] = gb; rgb[1] = rg; @@ -108,14 +133,13 @@ static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, #endif } -static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, +static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, uint8_t* const argb) { - const int r_off = VP8kVToR[v]; - const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; - const int b_off = VP8kUToB[u]; - const uint8_t rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | - VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); - const uint8_t ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f; + const int r = VP8YUVToR(y, v); // 4 usable bits + const int g = VP8YUVToG(y, u, v); // 4 usable bits + const int b = VP8YUVToB(y, u); // 4 usable bits + const int rg = (r & 0xf0) | (g >> 4); + const int ba = (b & 0xf0) | 0x0f; // overwrite the lower 4 bits #ifdef WEBP_SWAP_16BIT_CSP argb[0] = ba; argb[1] = rg; @@ -125,61 +149,45 @@ static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, #endif } -#else // Table-free version (slower on x86) - -// These constants are 16b fixed-point version of ITU-R BT.601 constants -#define kYScale 76309 // 1.164 = 255 / 219 -#define kVToR 104597 // 1.596 = 255 / 112 * 0.701 -#define kUToG 25674 // 0.391 = 255 / 112 * 0.886 * 0.114 / 0.587 -#define kVToG 53278 // 0.813 = 255 / 112 * 0.701 * 0.299 / 0.587 -#define kUToB 132201 // 2.018 = 255 / 112 * 0.886 -#define kRCst (-kYScale * 16 - kVToR * 128 + YUV_HALF) -#define kGCst (-kYScale * 16 + kUToG * 128 + kVToG * 128 + YUV_HALF) -#define kBCst (-kYScale * 16 - kUToB * 128 + YUV_HALF) - -static WEBP_INLINE uint8_t VP8Clip8(int v) { - return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> YUV_FIX) - : (v < 0) ? 0u : 255u; -} - -static WEBP_INLINE uint8_t VP8ClipN(int v, int N) { // clip to N bits - return ((v & ~YUV_MASK) == 0) ? (uint8_t)(v >> (YUV_FIX + (8 - N))) - : (v < 0) ? 0u : (255u >> (8 - N)); -} - -static WEBP_INLINE int VP8YUVToR(int y, int v) { - return kYScale * y + kVToR * v + kRCst; -} +#else -static WEBP_INLINE int VP8YUVToG(int y, int u, int v) { - return kYScale * y - kUToG * u - kVToG * v + kGCst; -} +// Table-based version, not totally equivalent to the SSE2 version. +// Rounding diff is only +/-1 though. -static WEBP_INLINE int VP8YUVToB(int y, int u) { - return kYScale * y + kUToB * u + kBCst; -} +extern int16_t VP8kVToR[256], VP8kUToB[256]; +extern int32_t VP8kVToG[256], VP8kUToG[256]; +extern uint8_t VP8kClip[YUV_RANGE_MAX - YUV_RANGE_MIN]; +extern uint8_t VP8kClip4Bits[YUV_RANGE_MAX - YUV_RANGE_MIN]; -static WEBP_INLINE void VP8YuvToRgb(uint8_t y, uint8_t u, uint8_t v, +static WEBP_INLINE void VP8YuvToRgb(int y, int u, int v, uint8_t* const rgb) { - rgb[0] = VP8Clip8(VP8YUVToR(y, v)); - rgb[1] = VP8Clip8(VP8YUVToG(y, u, v)); - rgb[2] = VP8Clip8(VP8YUVToB(y, u)); + const int r_off = VP8kVToR[v]; + const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; + const int b_off = VP8kUToB[u]; + rgb[0] = VP8kClip[y + r_off - YUV_RANGE_MIN]; + rgb[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; + rgb[2] = VP8kClip[y + b_off - YUV_RANGE_MIN]; } -static WEBP_INLINE void VP8YuvToBgr(uint8_t y, uint8_t u, uint8_t v, +static WEBP_INLINE void VP8YuvToBgr(int y, int u, int v, uint8_t* const bgr) { - bgr[0] = VP8Clip8(VP8YUVToB(y, u)); - bgr[1] = VP8Clip8(VP8YUVToG(y, u, v)); - bgr[2] = VP8Clip8(VP8YUVToR(y, v)); + const int r_off = VP8kVToR[v]; + const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; + const int b_off = VP8kUToB[u]; + bgr[0] = VP8kClip[y + b_off - YUV_RANGE_MIN]; + bgr[1] = VP8kClip[y + g_off - YUV_RANGE_MIN]; + bgr[2] = VP8kClip[y + r_off - YUV_RANGE_MIN]; } -static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, +static WEBP_INLINE void VP8YuvToRgb565(int y, int u, int v, uint8_t* const rgb) { - const int r = VP8Clip8(VP8YUVToR(y, u)); - const int g = VP8ClipN(VP8YUVToG(y, u, v), 6); - const int b = VP8ClipN(VP8YUVToB(y, v), 5); - const uint8_t rg = (r & 0xf8) | (g >> 3); - const uint8_t gb = (g << 5) | b; + const int r_off = VP8kVToR[v]; + const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; + const int b_off = VP8kUToB[u]; + const int rg = ((VP8kClip[y + r_off - YUV_RANGE_MIN] & 0xf8) | + (VP8kClip[y + g_off - YUV_RANGE_MIN] >> 5)); + const int gb = (((VP8kClip[y + g_off - YUV_RANGE_MIN] << 3) & 0xe0) | + (VP8kClip[y + b_off - YUV_RANGE_MIN] >> 3)); #ifdef WEBP_SWAP_16BIT_CSP rgb[0] = gb; rgb[1] = rg; @@ -189,13 +197,14 @@ static WEBP_INLINE void VP8YuvToRgb565(uint8_t y, uint8_t u, uint8_t v, #endif } -static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, +static WEBP_INLINE void VP8YuvToRgba4444(int y, int u, int v, uint8_t* const argb) { - const int r = VP8Clip8(VP8YUVToR(y, u)); - const int g = VP8ClipN(VP8YUVToG(y, u, v), 4); - const int b = VP8Clip8(VP8YUVToB(y, v)); - const uint8_t rg = (r & 0xf0) | g; - const uint8_t ba = b | 0x0f; // overwrite the lower 4 bits + const int r_off = VP8kVToR[v]; + const int g_off = (VP8kVToG[v] + VP8kUToG[u]) >> YUV_FIX; + const int b_off = VP8kUToB[u]; + const int rg = ((VP8kClip4Bits[y + r_off - YUV_RANGE_MIN] << 4) | + VP8kClip4Bits[y + g_off - YUV_RANGE_MIN]); + const int ba = (VP8kClip4Bits[y + b_off - YUV_RANGE_MIN] << 4) | 0x0f; #ifdef WEBP_SWAP_16BIT_CSP argb[0] = ba; argb[1] = rg; @@ -207,6 +216,9 @@ static WEBP_INLINE void VP8YuvToRgba4444(uint8_t y, uint8_t u, uint8_t v, #endif // WEBP_YUV_USE_TABLE +//----------------------------------------------------------------------------- +// Alpha handling variants + static WEBP_INLINE void VP8YuvToArgb(uint8_t y, uint8_t u, uint8_t v, uint8_t* const argb) { argb[0] = 0xff; @@ -228,56 +240,77 @@ static WEBP_INLINE void VP8YuvToRgba(uint8_t y, uint8_t u, uint8_t v, // Must be called before everything, to initialize the tables. void VP8YUVInit(void); +//----------------------------------------------------------------------------- +// SSE2 extra functions (mostly for upsampling_sse2.c) + +#if defined(WEBP_USE_SSE2) + +#if defined(FANCY_UPSAMPLING) +// Process 32 pixels and store the result (24b or 32b per pixel) in *dst. +void VP8YuvToRgba32(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +void VP8YuvToRgb32(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +void VP8YuvToBgra32(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +void VP8YuvToBgr32(const uint8_t* y, const uint8_t* u, const uint8_t* v, + uint8_t* dst); +#endif // FANCY_UPSAMPLING + +// Must be called to initialize tables before using the functions. +void VP8YUVInitSSE2(void); + +#endif // WEBP_USE_SSE2 + //------------------------------------------------------------------------------ // RGB -> YUV conversion -static WEBP_INLINE int VP8ClipUV(int v) { - v = (v + (257 << (YUV_FIX + 2 - 1))) >> (YUV_FIX + 2); - return ((v & ~0xff) == 0) ? v : (v < 0) ? 0 : 255; +// Stub functions that can be called with various rounding values: +static WEBP_INLINE int VP8ClipUV(int uv, int rounding) { + uv = (uv + rounding + (128 << (YUV_FIX + 2))) >> (YUV_FIX + 2); + return ((uv & ~0xff) == 0) ? uv : (uv < 0) ? 0 : 255; } #ifndef USE_YUVj -static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { - const int kRound = (1 << (YUV_FIX - 1)) + (16 << YUV_FIX); +static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { const int luma = 16839 * r + 33059 * g + 6420 * b; - return (luma + kRound) >> YUV_FIX; // no need to clip + return (luma + rounding + (16 << YUV_FIX)) >> YUV_FIX; // no need to clip } -static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { +static WEBP_INLINE int VP8RGBToU(int r, int g, int b, int rounding) { const int u = -9719 * r - 19081 * g + 28800 * b; - return VP8ClipUV(u); + return VP8ClipUV(u, rounding); } -static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { +static WEBP_INLINE int VP8RGBToV(int r, int g, int b, int rounding) { const int v = +28800 * r - 24116 * g - 4684 * b; - return VP8ClipUV(v); + return VP8ClipUV(v, rounding); } #else // This JPEG-YUV colorspace, only for comparison! -// These are also 16-bit precision coefficients from Rec.601, but with full +// These are also 16bit precision coefficients from Rec.601, but with full // [0..255] output range. -static WEBP_INLINE int VP8RGBToY(int r, int g, int b) { - const int kRound = (1 << (YUV_FIX - 1)); +static WEBP_INLINE int VP8RGBToY(int r, int g, int b, int rounding) { const int luma = 19595 * r + 38470 * g + 7471 * b; - return (luma + kRound) >> YUV_FIX; // no need to clip + return (luma + rounding) >> YUV_FIX; // no need to clip } -static WEBP_INLINE int VP8RGBToU(int r, int g, int b) { +static WEBP_INLINE int VP8_RGB_TO_U(int r, int g, int b, int rounding) { const int u = -11058 * r - 21710 * g + 32768 * b; - return VP8ClipUV(u); + return VP8ClipUV(u, rounding); } -static WEBP_INLINE int VP8RGBToV(int r, int g, int b) { +static WEBP_INLINE int VP8_RGB_TO_V(int r, int g, int b, int rounding) { const int v = 32768 * r - 27439 * g - 5329 * b; - return VP8ClipUV(v); + return VP8ClipUV(v, rounding); } #endif // USE_YUVj -#if defined(__cplusplus) || defined(c_plusplus) +#ifdef __cplusplus } // extern "C" #endif |