// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "app/gfx/skbitmap_operations.h" #include "testing/gtest/include/gtest/gtest.h" #include "third_party/skia/include/core/SkBitmap.h" #include "third_party/skia/include/core/SkColorPriv.h" #include "third_party/skia/include/core/SkUnPreMultiply.h" namespace { // Returns true if each channel of the given two colors are "close." This is // used for comparing colors where rounding errors may cause off-by-one. bool ColorsClose(uint32_t a, uint32_t b) { return abs(static_cast(SkColorGetB(a) - SkColorGetB(b))) < 2 && abs(static_cast(SkColorGetG(a) - SkColorGetG(b))) < 2 && abs(static_cast(SkColorGetR(a) - SkColorGetR(b))) < 2 && abs(static_cast(SkColorGetA(a) - SkColorGetA(b))) < 2; } void FillDataToBitmap(int w, int h, SkBitmap* bmp) { bmp->setConfig(SkBitmap::kARGB_8888_Config, w, h); bmp->allocPixels(); unsigned char* src_data = reinterpret_cast(bmp->getAddr32(0, 0)); for (int i = 0; i < w * h; i++) { src_data[i * 4 + 0] = static_cast(i % 255); src_data[i * 4 + 1] = static_cast(i % 255); src_data[i * 4 + 2] = static_cast(i % 255); src_data[i * 4 + 3] = static_cast(i % 255); } } } // namespace // Invert bitmap and verify the each pixel is inverted and the alpha value is // not changed. TEST(SkBitmapOperationsTest, CreateInvertedBitmap) { int src_w = 16, src_h = 16; SkBitmap src; src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); src.allocPixels(); for (int y = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { int i = y * src_w + x; *src.getAddr32(x, y) = SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0); } } SkBitmap inverted = SkBitmapOperations::CreateInvertedBitmap(src); SkAutoLockPixels src_lock(src); SkAutoLockPixels inverted_lock(inverted); for (int y = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { int i = y * src_w + x; EXPECT_EQ(static_cast((255 - i) % 255), SkColorGetA(*inverted.getAddr32(x, y))); EXPECT_EQ(static_cast(255 - (i % 255)), SkColorGetR(*inverted.getAddr32(x, y))); EXPECT_EQ(static_cast(255 - (i * 4 % 255)), SkColorGetG(*inverted.getAddr32(x, y))); EXPECT_EQ(static_cast(255), SkColorGetB(*inverted.getAddr32(x, y))); } } } // Blend two bitmaps together at 50% alpha and verify that the result // is the middle-blend of the two. TEST(SkBitmapOperationsTest, CreateBlendedBitmap) { int src_w = 16, src_h = 16; SkBitmap src_a; src_a.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); src_a.allocPixels(); SkBitmap src_b; src_b.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); src_b.allocPixels(); for (int y = 0, i = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { *src_a.getAddr32(x, y) = SkColorSetARGB(255, 0, i * 2 % 255, i % 255); *src_b.getAddr32(x, y) = SkColorSetARGB((255 - i) % 255, i % 255, i * 4 % 255, 0); i++; } } // Shift to red. SkBitmap blended = SkBitmapOperations::CreateBlendedBitmap( src_a, src_b, 0.5); SkAutoLockPixels srca_lock(src_a); SkAutoLockPixels srcb_lock(src_b); SkAutoLockPixels blended_lock(blended); for (int y = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { int i = y * src_w + x; EXPECT_EQ(static_cast((255 + ((255 - i) % 255)) / 2), SkColorGetA(*blended.getAddr32(x, y))); EXPECT_EQ(static_cast(i % 255 / 2), SkColorGetR(*blended.getAddr32(x, y))); EXPECT_EQ((static_cast((i * 2) % 255 + (i * 4) % 255) / 2), SkColorGetG(*blended.getAddr32(x, y))); EXPECT_EQ(static_cast(i % 255 / 2), SkColorGetB(*blended.getAddr32(x, y))); } } } // Test our masking functions. TEST(SkBitmapOperationsTest, CreateMaskedBitmap) { int src_w = 16, src_h = 16; SkBitmap src; FillDataToBitmap(src_w, src_h, &src); // Generate alpha mask SkBitmap alpha; alpha.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); alpha.allocPixels(); for (int y = 0, i = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { *alpha.getAddr32(x, y) = SkColorSetARGB((i + 128) % 255, (i + 128) % 255, (i + 64) % 255, (i + 0) % 255); i++; } } SkBitmap masked = SkBitmapOperations::CreateMaskedBitmap(src, alpha); SkAutoLockPixels src_lock(src); SkAutoLockPixels alpha_lock(alpha); SkAutoLockPixels masked_lock(masked); for (int y = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { // Test that the alpha is equal. SkColor src_pixel = SkUnPreMultiply::PMColorToColor(*src.getAddr32(x, y)); SkColor alpha_pixel = SkUnPreMultiply::PMColorToColor(*alpha.getAddr32(x, y)); SkColor masked_pixel = *masked.getAddr32(x, y); int alpha_value = SkAlphaMul(SkColorGetA(src_pixel), SkColorGetA(alpha_pixel)); SkColor expected_pixel = SkColorSetARGB( alpha_value, SkAlphaMul(SkColorGetR(src_pixel), alpha_value), SkAlphaMul(SkColorGetG(src_pixel), alpha_value), SkAlphaMul(SkColorGetB(src_pixel), alpha_value)); EXPECT_TRUE(ColorsClose(expected_pixel, masked_pixel)); } } } // Make sure that when shifting a bitmap without any shift parameters, // the end result is close enough to the original (rounding errors // notwithstanding). TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapToSame) { int src_w = 4, src_h = 4; SkBitmap src; src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); src.allocPixels(); for (int y = 0, i = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { *src.getAddr32(x, y) = SkColorSetARGB(i + 128 % 255, i + 128 % 255, i + 64 % 255, i + 0 % 255); i++; } } color_utils::HSL hsl = { -1, -1, -1 }; SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl); SkAutoLockPixels src_lock(src); SkAutoLockPixels shifted_lock(shifted); for (int y = 0; y < src_w; y++) { for (int x = 0; x < src_h; x++) { SkColor src_pixel = *src.getAddr32(x, y); SkColor shifted_pixel = *shifted.getAddr32(x, y); EXPECT_TRUE(ColorsClose(src_pixel, shifted_pixel)); } } } // Shift a blue bitmap to red. TEST(SkBitmapOperationsTest, CreateHSLShiftedBitmapHueOnly) { int src_w = 16, src_h = 16; SkBitmap src; src.setConfig(SkBitmap::kARGB_8888_Config, src_w, src_h); src.allocPixels(); for (int y = 0, i = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { *src.getAddr32(x, y) = SkColorSetARGB(255, 0, 0, i % 255); i++; } } // Shift to red. color_utils::HSL hsl = { 0, -1, -1 }; SkBitmap shifted = SkBitmapOperations::CreateHSLShiftedBitmap(src, hsl); SkAutoLockPixels src_lock(src); SkAutoLockPixels shifted_lock(shifted); for (int y = 0, i = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { EXPECT_TRUE(ColorsClose(*shifted.getAddr32(x, y), SkColorSetARGB(255, i % 255, 0, 0))); i++; } } } // Test our cropping. TEST(SkBitmapOperationsTest, CreateCroppedBitmap) { int src_w = 16, src_h = 16; SkBitmap src; FillDataToBitmap(src_w, src_h, &src); SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap(src, 4, 4, 8, 8); ASSERT_EQ(8, cropped.width()); ASSERT_EQ(8, cropped.height()); SkAutoLockPixels src_lock(src); SkAutoLockPixels cropped_lock(cropped); for (int y = 4; y < 12; y++) { for (int x = 4; x < 12; x++) { EXPECT_EQ(*src.getAddr32(x, y), *cropped.getAddr32(x - 4, y - 4)); } } } // Test whether our cropping correctly wraps across image boundaries. TEST(SkBitmapOperationsTest, CreateCroppedBitmapWrapping) { int src_w = 16, src_h = 16; SkBitmap src; FillDataToBitmap(src_w, src_h, &src); SkBitmap cropped = SkBitmapOperations::CreateTiledBitmap( src, src_w / 2, src_h / 2, src_w, src_h); ASSERT_EQ(src_w, cropped.width()); ASSERT_EQ(src_h, cropped.height()); SkAutoLockPixels src_lock(src); SkAutoLockPixels cropped_lock(cropped); for (int y = 0; y < src_h; y++) { for (int x = 0; x < src_w; x++) { EXPECT_EQ(*src.getAddr32(x, y), *cropped.getAddr32((x + src_w / 2) % src_w, (y + src_h / 2) % src_h)); } } } TEST(SkBitmapOperationsTest, DownsampleByTwo) { // Use an odd-sized bitmap to make sure the edge cases where there isn't a // 2x2 block of pixels is handled correctly. // Here's the ARGB example // // 50% transparent green opaque 50% blue white // 80008000 FF000080 FFFFFFFF // // 50% transparent red opaque 50% gray black // 80800000 80808080 FF000000 // // black white 50% gray // FF000000 FFFFFFFF FF808080 // // The result of this computation should be: // A0404040 FF808080 // FF808080 FF808080 SkBitmap input; input.setConfig(SkBitmap::kARGB_8888_Config, 3, 3); input.allocPixels(); // The color order may be different, but we don't care (the channels are // trated the same). *input.getAddr32(0, 0) = 0x80008000; *input.getAddr32(1, 0) = 0xFF000080; *input.getAddr32(2, 0) = 0xFFFFFFFF; *input.getAddr32(0, 1) = 0x80800000; *input.getAddr32(1, 1) = 0x80808080; *input.getAddr32(2, 1) = 0xFF000000; *input.getAddr32(0, 2) = 0xFF000000; *input.getAddr32(1, 2) = 0xFFFFFFFF; *input.getAddr32(2, 2) = 0xFF808080; SkBitmap result = SkBitmapOperations::DownsampleByTwo(input); EXPECT_EQ(2, result.width()); EXPECT_EQ(2, result.height()); // Some of the values are off-by-one due to rounding. SkAutoLockPixels lock(result); EXPECT_EQ(0x9f404040, *result.getAddr32(0, 0)); EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(1, 0)); EXPECT_EQ(0xFF7f7f7f, *result.getAddr32(0, 1)); EXPECT_EQ(0xFF808080, *result.getAddr32(1, 1)); } // Test edge cases for DownsampleByTwo. TEST(SkBitmapOperationsTest, DownsampleByTwoSmall) { SkPMColor reference = 0xFF4080FF; // Test a 1x1 bitmap. SkBitmap one_by_one; one_by_one.setConfig(SkBitmap::kARGB_8888_Config, 1, 1); one_by_one.allocPixels(); *one_by_one.getAddr32(0, 0) = reference; SkBitmap result = SkBitmapOperations::DownsampleByTwo(one_by_one); SkAutoLockPixels lock1(result); EXPECT_EQ(1, result.width()); EXPECT_EQ(1, result.height()); EXPECT_EQ(reference, *result.getAddr32(0, 0)); // Test an n by 1 bitmap. SkBitmap one_by_n; one_by_n.setConfig(SkBitmap::kARGB_8888_Config, 300, 1); one_by_n.allocPixels(); result = SkBitmapOperations::DownsampleByTwo(one_by_n); SkAutoLockPixels lock2(result); EXPECT_EQ(300, result.width()); EXPECT_EQ(1, result.height()); // Test a 1 by n bitmap. SkBitmap n_by_one; n_by_one.setConfig(SkBitmap::kARGB_8888_Config, 1, 300); n_by_one.allocPixels(); result = SkBitmapOperations::DownsampleByTwo(n_by_one); SkAutoLockPixels lock3(result); EXPECT_EQ(1, result.width()); EXPECT_EQ(300, result.height()); // Test an empty bitmap SkBitmap empty; result = SkBitmapOperations::DownsampleByTwo(empty); EXPECT_TRUE(result.isNull()); EXPECT_EQ(0, result.width()); EXPECT_EQ(0, result.height()); } // Here we assume DownsampleByTwo works correctly (it's tested above) and // just make sure that the wrapper function does the right thing. TEST(SkBitmapOperationsTest, DownsampleByTwoUntilSize) { // First make sure a "too small" bitmap doesn't get modified at all. SkBitmap too_small; too_small.setConfig(SkBitmap::kARGB_8888_Config, 10, 10); too_small.allocPixels(); SkBitmap result = SkBitmapOperations::DownsampleByTwoUntilSize( too_small, 16, 16); EXPECT_EQ(10, result.width()); EXPECT_EQ(10, result.height()); // Now make sure giving it a 0x0 target returns something reasonable. result = SkBitmapOperations::DownsampleByTwoUntilSize(too_small, 0, 0); EXPECT_EQ(1, result.width()); EXPECT_EQ(1, result.height()); // Test multiple steps of downsampling. SkBitmap large; large.setConfig(SkBitmap::kARGB_8888_Config, 100, 43); large.allocPixels(); result = SkBitmapOperations::DownsampleByTwoUntilSize(large, 6, 6); // The result should be divided in half 100x43 -> 50x22 -> 25x11 EXPECT_EQ(25, result.width()); EXPECT_EQ(11, result.height()); }