// Copyright (c) 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ash/display/display_info.h" #include #include #include #include #include "base/logging.h" #include "base/strings/string_number_conversions.h" #include "base/strings/string_split.h" #include "base/strings/string_util.h" #include "base/strings/stringprintf.h" #include "ui/gfx/display.h" #include "ui/gfx/geometry/size_conversions.h" #include "ui/gfx/geometry/size_f.h" #if defined(OS_WIN) #include "ui/aura/window_tree_host.h" #include "ui/gfx/win/dpi.h" #endif namespace ash { namespace { // Use larger than max int to catch overflow early. const int64_t kSynthesizedDisplayIdStart = 2200000000LL; int64_t synthesized_display_id = kSynthesizedDisplayIdStart; const float kDpi96 = 96.0; bool use_125_dsf_for_ui_scaling = true; // Check the content of |spec| and fill |bounds| and |device_scale_factor|. // Returns true when |bounds| is found. bool GetDisplayBounds( const std::string& spec, gfx::Rect* bounds, float* device_scale_factor) { int width = 0; int height = 0; int x = 0; int y = 0; if (sscanf(spec.c_str(), "%dx%d*%f", &width, &height, device_scale_factor) >= 2 || sscanf(spec.c_str(), "%d+%d-%dx%d*%f", &x, &y, &width, &height, device_scale_factor) >= 4) { bounds->SetRect(x, y, width, height); return true; } return false; } // Display mode list is sorted by: // * the area in pixels in ascending order // * refresh rate in descending order struct DisplayModeSorter { explicit DisplayModeSorter(bool is_internal) : is_internal(is_internal) {} bool operator()(const DisplayMode& a, const DisplayMode& b) { gfx::Size size_a_dip = a.GetSizeInDIP(is_internal); gfx::Size size_b_dip = b.GetSizeInDIP(is_internal); if (size_a_dip.GetArea() == size_b_dip.GetArea()) return (a.refresh_rate > b.refresh_rate); return (size_a_dip.GetArea() < size_b_dip.GetArea()); } bool is_internal; }; } // namespace DisplayMode::DisplayMode() : refresh_rate(0.0f), interlaced(false), native(false), ui_scale(1.0f), device_scale_factor(1.0f) {} DisplayMode::DisplayMode(const gfx::Size& size, float refresh_rate, bool interlaced, bool native) : size(size), refresh_rate(refresh_rate), interlaced(interlaced), native(native), ui_scale(1.0f), device_scale_factor(1.0f) {} gfx::Size DisplayMode::GetSizeInDIP(bool is_internal) const { gfx::SizeF size_dip(size); size_dip.Scale(ui_scale); // DSF=1.25 is special on internal display. The screen is drawn with DSF=1.25 // but it doesn't affect the screen size computation. if (use_125_dsf_for_ui_scaling && is_internal && device_scale_factor == 1.25f) return gfx::ToFlooredSize(size_dip); size_dip.Scale(1.0f / device_scale_factor); return gfx::ToFlooredSize(size_dip); } bool DisplayMode::IsEquivalent(const DisplayMode& other) const { const float kEpsilon = 0.0001f; return size == other.size && std::abs(ui_scale - other.ui_scale) < kEpsilon && std::abs(device_scale_factor - other.device_scale_factor) < kEpsilon; } // satic DisplayInfo DisplayInfo::CreateFromSpec(const std::string& spec) { return CreateFromSpecWithID(spec, gfx::Display::kInvalidDisplayID); } // static DisplayInfo DisplayInfo::CreateFromSpecWithID(const std::string& spec, int64_t id) { #if defined(OS_WIN) gfx::Rect bounds_in_native( gfx::Size(GetSystemMetrics(SM_CXSCREEN), GetSystemMetrics(SM_CYSCREEN))); #else // Default bounds for a display. const int kDefaultHostWindowX = 200; const int kDefaultHostWindowY = 200; const int kDefaultHostWindowWidth = 1366; const int kDefaultHostWindowHeight = 768; gfx::Rect bounds_in_native(kDefaultHostWindowX, kDefaultHostWindowY, kDefaultHostWindowWidth, kDefaultHostWindowHeight); #endif std::string main_spec = spec; float ui_scale = 1.0f; std::vector parts = base::SplitString( main_spec, "@", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY); if (parts.size() == 2) { double scale_in_double = 0; if (base::StringToDouble(parts[1], &scale_in_double)) ui_scale = scale_in_double; main_spec = parts[0]; } parts = base::SplitString(main_spec, "/", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY); gfx::Display::Rotation rotation(gfx::Display::ROTATE_0); bool has_overscan = false; if (!parts.empty()) { main_spec = parts[0]; if (parts.size() >= 2) { std::string options = parts[1]; for (size_t i = 0; i < options.size(); ++i) { char c = options[i]; switch (c) { case 'o': has_overscan = true; break; case 'r': // rotate 90 degrees to 'right'. rotation = gfx::Display::ROTATE_90; break; case 'u': // 180 degrees, 'u'pside-down. rotation = gfx::Display::ROTATE_180; break; case 'l': // rotate 90 degrees to 'left'. rotation = gfx::Display::ROTATE_270; break; } } } } float device_scale_factor = 1.0f; if (!GetDisplayBounds(main_spec, &bounds_in_native, &device_scale_factor)) { #if defined(OS_WIN) device_scale_factor = gfx::GetDPIScale(); #endif } std::vector display_modes; parts = base::SplitString(main_spec, "#", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY); if (parts.size() == 2) { size_t native_mode = 0; int largest_area = -1; float highest_refresh_rate = -1.0f; main_spec = parts[0]; std::string resolution_list = parts[1]; parts = base::SplitString(resolution_list, "|", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY); for (size_t i = 0; i < parts.size(); ++i) { DisplayMode mode; gfx::Rect mode_bounds; std::vector resolution = base::SplitString( parts[i], "%", base::KEEP_WHITESPACE, base::SPLIT_WANT_NONEMPTY); if (GetDisplayBounds( resolution[0], &mode_bounds, &mode.device_scale_factor)) { mode.size = mode_bounds.size(); if (resolution.size() > 1) sscanf(resolution[1].c_str(), "%f", &mode.refresh_rate); if (mode.size.GetArea() >= largest_area && mode.refresh_rate > highest_refresh_rate) { // Use mode with largest area and highest refresh rate as native. largest_area = mode.size.GetArea(); highest_refresh_rate = mode.refresh_rate; native_mode = i; } display_modes.push_back(mode); } } display_modes[native_mode].native = true; } if (id == gfx::Display::kInvalidDisplayID) id = synthesized_display_id++; DisplayInfo display_info( id, base::StringPrintf("Display-%d", static_cast(id)), has_overscan); display_info.set_device_scale_factor(device_scale_factor); display_info.SetRotation(rotation, gfx::Display::ROTATION_SOURCE_ACTIVE); display_info.set_configured_ui_scale(ui_scale); display_info.SetBounds(bounds_in_native); display_info.SetDisplayModes(display_modes); // To test the overscan, it creates the default 5% overscan. if (has_overscan) { int width = bounds_in_native.width() / device_scale_factor / 40; int height = bounds_in_native.height() / device_scale_factor / 40; display_info.SetOverscanInsets(gfx::Insets(height, width, height, width)); display_info.UpdateDisplaySize(); } DVLOG(1) << "DisplayInfoFromSpec info=" << display_info.ToString() << ", spec=" << spec; return display_info; } // static void DisplayInfo::SetUse125DSFForUIScalingForTest(bool enable) { use_125_dsf_for_ui_scaling = enable; } DisplayInfo::DisplayInfo() : id_(gfx::Display::kInvalidDisplayID), has_overscan_(false), active_rotation_source_(gfx::Display::ROTATION_SOURCE_UNKNOWN), touch_support_(gfx::Display::TOUCH_SUPPORT_UNKNOWN), device_scale_factor_(1.0f), device_dpi_(kDpi96), overscan_insets_in_dip_(0, 0, 0, 0), configured_ui_scale_(1.0f), native_(false), is_aspect_preserving_scaling_(false), clear_overscan_insets_(false), color_profile_(ui::COLOR_PROFILE_STANDARD) {} DisplayInfo::DisplayInfo(int64_t id, const std::string& name, bool has_overscan) : id_(id), name_(name), has_overscan_(has_overscan), active_rotation_source_(gfx::Display::ROTATION_SOURCE_UNKNOWN), touch_support_(gfx::Display::TOUCH_SUPPORT_UNKNOWN), device_scale_factor_(1.0f), device_dpi_(kDpi96), overscan_insets_in_dip_(0, 0, 0, 0), configured_ui_scale_(1.0f), native_(false), is_aspect_preserving_scaling_(false), clear_overscan_insets_(false), color_profile_(ui::COLOR_PROFILE_STANDARD) {} DisplayInfo::DisplayInfo(const DisplayInfo& other) = default; DisplayInfo::~DisplayInfo() { } void DisplayInfo::SetRotation(gfx::Display::Rotation rotation, gfx::Display::RotationSource source) { rotations_[source] = rotation; rotations_[gfx::Display::ROTATION_SOURCE_ACTIVE] = rotation; active_rotation_source_ = source; } gfx::Display::Rotation DisplayInfo::GetActiveRotation() const { return GetRotation(gfx::Display::ROTATION_SOURCE_ACTIVE); } gfx::Display::Rotation DisplayInfo::GetRotation( gfx::Display::RotationSource source) const { if (rotations_.find(source) == rotations_.end()) return gfx::Display::ROTATE_0; return rotations_.at(source); } void DisplayInfo::Copy(const DisplayInfo& native_info) { DCHECK(id_ == native_info.id_); name_ = native_info.name_; has_overscan_ = native_info.has_overscan_; active_rotation_source_ = native_info.active_rotation_source_; touch_support_ = native_info.touch_support_; input_devices_ = native_info.input_devices_; device_scale_factor_ = native_info.device_scale_factor_; DCHECK(!native_info.bounds_in_native_.IsEmpty()); bounds_in_native_ = native_info.bounds_in_native_; device_dpi_ = native_info.device_dpi_; size_in_pixel_ = native_info.size_in_pixel_; is_aspect_preserving_scaling_ = native_info.is_aspect_preserving_scaling_; display_modes_ = native_info.display_modes_; available_color_profiles_ = native_info.available_color_profiles_; // Rotation, ui_scale, color_profile and overscan are given by preference, // or unit tests. Don't copy if this native_info came from // DisplayChangeObserver. if (!native_info.native()) { // Update the overscan_insets_in_dip_ either if the inset should be // cleared, or has non empty insts. if (native_info.clear_overscan_insets()) overscan_insets_in_dip_.Set(0, 0, 0, 0); else if (!native_info.overscan_insets_in_dip_.IsEmpty()) overscan_insets_in_dip_ = native_info.overscan_insets_in_dip_; rotations_ = native_info.rotations_; configured_ui_scale_ = native_info.configured_ui_scale_; color_profile_ = native_info.color_profile(); } } void DisplayInfo::SetBounds(const gfx::Rect& new_bounds_in_native) { bounds_in_native_ = new_bounds_in_native; size_in_pixel_ = new_bounds_in_native.size(); UpdateDisplaySize(); } float DisplayInfo::GetEffectiveDeviceScaleFactor() const { if (Use125DSFForUIScaling() && device_scale_factor_ == 1.25f) return (configured_ui_scale_ == 0.8f) ? 1.25f : 1.0f; if (device_scale_factor_ == configured_ui_scale_) return 1.0f; return device_scale_factor_; } float DisplayInfo::GetEffectiveUIScale() const { if (Use125DSFForUIScaling() && device_scale_factor_ == 1.25f) return (configured_ui_scale_ == 0.8f) ? 1.0f : configured_ui_scale_; if (device_scale_factor_ == configured_ui_scale_) return 1.0f; return configured_ui_scale_; } void DisplayInfo::UpdateDisplaySize() { size_in_pixel_ = bounds_in_native_.size(); if (!overscan_insets_in_dip_.IsEmpty()) { gfx::Insets insets_in_pixel = overscan_insets_in_dip_.Scale(device_scale_factor_); size_in_pixel_.Enlarge(-insets_in_pixel.width(), -insets_in_pixel.height()); } else { overscan_insets_in_dip_.Set(0, 0, 0, 0); } if (GetActiveRotation() == gfx::Display::ROTATE_90 || GetActiveRotation() == gfx::Display::ROTATE_270) { size_in_pixel_.SetSize(size_in_pixel_.height(), size_in_pixel_.width()); } gfx::SizeF size_f(size_in_pixel_); size_f.Scale(GetEffectiveUIScale()); size_in_pixel_ = gfx::ToFlooredSize(size_f); } void DisplayInfo::SetOverscanInsets(const gfx::Insets& insets_in_dip) { overscan_insets_in_dip_ = insets_in_dip; } gfx::Insets DisplayInfo::GetOverscanInsetsInPixel() const { return overscan_insets_in_dip_.Scale(device_scale_factor_); } void DisplayInfo::SetDisplayModes( const std::vector& display_modes) { display_modes_ = display_modes; std::sort(display_modes_.begin(), display_modes_.end(), DisplayModeSorter(gfx::Display::IsInternalDisplayId(id_))); } gfx::Size DisplayInfo::GetNativeModeSize() const { for (size_t i = 0; i < display_modes_.size(); ++i) { if (display_modes_[i].native) return display_modes_[i].size; } return gfx::Size(); } std::string DisplayInfo::ToString() const { int rotation_degree = static_cast(GetActiveRotation()) * 90; std::string devices_str; for (size_t i = 0; i < input_devices_.size(); ++i) { devices_str += base::IntToString(input_devices_[i]); if (i != input_devices_.size() - 1) devices_str += ", "; } std::string result = base::StringPrintf( "DisplayInfo[%lld] native bounds=%s, size=%s, scale=%f, " "overscan=%s, rotation=%d, ui-scale=%f, touchscreen=%s, " "input_devices=[%s]", static_cast(id_), bounds_in_native_.ToString().c_str(), size_in_pixel_.ToString().c_str(), device_scale_factor_, overscan_insets_in_dip_.ToString().c_str(), rotation_degree, configured_ui_scale_, touch_support_ == gfx::Display::TOUCH_SUPPORT_AVAILABLE ? "yes" : touch_support_ == gfx::Display::TOUCH_SUPPORT_UNAVAILABLE ? "no" : "unknown", devices_str.c_str()); return result; } std::string DisplayInfo::ToFullString() const { std::string display_modes_str; std::vector::const_iterator iter = display_modes_.begin(); for (; iter != display_modes_.end(); ++iter) { if (!display_modes_str.empty()) display_modes_str += ","; base::StringAppendF(&display_modes_str, "(%dx%d@%f%c%s)", iter->size.width(), iter->size.height(), iter->refresh_rate, iter->interlaced ? 'I' : 'P', iter->native ? "(N)" : ""); } return ToString() + ", display_modes==" + display_modes_str; } void DisplayInfo::SetColorProfile(ui::ColorCalibrationProfile profile) { if (IsColorProfileAvailable(profile)) color_profile_ = profile; } bool DisplayInfo::IsColorProfileAvailable( ui::ColorCalibrationProfile profile) const { return std::find(available_color_profiles_.begin(), available_color_profiles_.end(), profile) != available_color_profiles_.end(); } bool DisplayInfo::Use125DSFForUIScaling() const { return use_125_dsf_for_ui_scaling && gfx::Display::IsInternalDisplayId(id_); } void DisplayInfo::AddInputDevice(int id) { input_devices_.push_back(id); } void DisplayInfo::ClearInputDevices() { input_devices_.clear(); } void ResetDisplayIdForTest() { synthesized_display_id = kSynthesizedDisplayIdStart; } } // namespace ash