// Copyright 2014 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "ash/display/display_util.h" #include #include "ash/display/display_info.h" #include "ash/display/display_manager.h" #include "ash/host/ash_window_tree_host.h" #include "ash/shell.h" #include "ui/aura/env.h" #include "ui/aura/window_tree_host.h" #include "ui/gfx/geometry/point.h" #include "ui/gfx/geometry/rect.h" #include "ui/wm/core/coordinate_conversion.h" #if defined(OS_CHROMEOS) #include "base/sys_info.h" #endif namespace ash { namespace { // List of value UI Scale values. Scales for 2x are equivalent to 640, // 800, 1024, 1280, 1440, 1600 and 1920 pixel width respectively on // 2560 pixel width 2x density display. Please see crbug.com/233375 // for the full list of resolutions. const float kUIScalesFor2x[] = {0.5f, 0.625f, 0.8f, 1.0f, 1.125f, 1.25f, 1.5f, 2.0f}; const float kUIScalesFor1_25x[] = {0.5f, 0.625f, 0.8f, 1.0f, 1.25f }; const float kUIScalesFor1280[] = {0.5f, 0.625f, 0.8f, 1.0f, 1.125f }; const float kUIScalesFor1366[] = {0.5f, 0.6f, 0.75f, 1.0f, 1.125f }; std::vector GetScalesForDisplay(const DisplayMode& native_mode) { #define ASSIGN_ARRAY(v, a) v.assign(a, a + arraysize(a)) std::vector ret; if (native_mode.device_scale_factor == 2.0f) { ASSIGN_ARRAY(ret, kUIScalesFor2x); return ret; } else if (native_mode.device_scale_factor == 1.25f) { ASSIGN_ARRAY(ret, kUIScalesFor1_25x); return ret; } switch (native_mode.size.width()) { case 1280: ASSIGN_ARRAY(ret, kUIScalesFor1280); break; case 1366: ASSIGN_ARRAY(ret, kUIScalesFor1366); break; default: ASSIGN_ARRAY(ret, kUIScalesFor1280); #if defined(OS_CHROMEOS) if (base::SysInfo::IsRunningOnChromeOS()) NOTREACHED() << "Unknown resolution:" << native_mode.size.ToString(); #endif } return ret; } struct ScaleComparator { explicit ScaleComparator(float s) : scale(s) {} bool operator()(const DisplayMode& mode) const { const float kEpsilon = 0.0001f; return std::abs(scale - mode.ui_scale) < kEpsilon; } float scale; }; void ConvertPointFromScreenToNative(aura::WindowTreeHost* host, gfx::Point* point) { ::wm::ConvertPointFromScreen(host->window(), point); host->ConvertPointToNativeScreen(point); } } // namespace std::vector CreateInternalDisplayModeList( const DisplayMode& native_mode) { std::vector display_mode_list; float native_ui_scale = (native_mode.device_scale_factor == 1.25f) ? 1.0f : native_mode.device_scale_factor; for (float ui_scale : GetScalesForDisplay(native_mode)) { DisplayMode mode = native_mode; mode.ui_scale = ui_scale; mode.native = (ui_scale == native_ui_scale); display_mode_list.push_back(mode); } return display_mode_list; } // static float GetNextUIScale(const DisplayInfo& info, bool up) { ScaleComparator comparator(info.configured_ui_scale()); const std::vector& modes = info.display_modes(); for (auto iter = modes.begin(); iter != modes.end(); ++iter) { if (comparator(*iter)) { if (up && (iter + 1) != modes.end()) return (iter + 1)->ui_scale; if (!up && iter != modes.begin()) return (iter - 1)->ui_scale; return info.configured_ui_scale(); } } // Fallback to 1.0f if the |scale| wasn't in the list. return 1.0f; } bool HasDisplayModeForUIScale(const DisplayInfo& info, float ui_scale) { ScaleComparator comparator(ui_scale); const std::vector& modes = info.display_modes(); return std::find_if(modes.begin(), modes.end(), comparator) != modes.end(); } void ComputeBoundary(const gfx::Display& primary_display, const gfx::Display& secondary_display, DisplayLayout::Position position, gfx::Rect* primary_edge_in_screen, gfx::Rect* secondary_edge_in_screen) { const gfx::Rect& primary = primary_display.bounds(); const gfx::Rect& secondary = secondary_display.bounds(); switch (position) { case DisplayLayout::TOP: case DisplayLayout::BOTTOM: { int left = std::max(primary.x(), secondary.x()); int right = std::min(primary.right(), secondary.right()); if (position == DisplayLayout::TOP) { primary_edge_in_screen->SetRect(left, primary.y(), right - left, 1); secondary_edge_in_screen->SetRect(left, secondary.bottom() - 1, right - left, 1); } else { primary_edge_in_screen->SetRect(left, primary.bottom() - 1, right - left, 1); secondary_edge_in_screen->SetRect(left, secondary.y(), right - left, 1); } break; } case DisplayLayout::LEFT: case DisplayLayout::RIGHT: { int top = std::max(primary.y(), secondary.y()); int bottom = std::min(primary.bottom(), secondary.bottom()); if (position == DisplayLayout::LEFT) { primary_edge_in_screen->SetRect(primary.x(), top, 1, bottom - top); secondary_edge_in_screen->SetRect(secondary.right() - 1, top, 1, bottom - top); } else { primary_edge_in_screen->SetRect(primary.right() - 1, top, 1, bottom - top); secondary_edge_in_screen->SetRect(secondary.y(), top, 1, bottom - top); } break; } } } gfx::Rect GetNativeEdgeBounds(AshWindowTreeHost* ash_host, const gfx::Rect& bounds_in_screen) { aura::WindowTreeHost* host = ash_host->AsWindowTreeHost(); gfx::Rect native_bounds = host->GetBounds(); native_bounds.Inset(ash_host->GetHostInsets()); bool vertical = bounds_in_screen.width() < bounds_in_screen.height(); gfx::Point start_in_native; gfx::Point end_in_native; if (vertical) { start_in_native = bounds_in_screen.origin(); end_in_native = start_in_native; end_in_native.set_y(bounds_in_screen.bottom()); } else { start_in_native = bounds_in_screen.origin(); end_in_native = start_in_native; end_in_native.set_x(bounds_in_screen.right()); } ConvertPointFromScreenToNative(host, &start_in_native); ConvertPointFromScreenToNative(host, &end_in_native); if (vertical) { // vertical in native int x = std::abs(native_bounds.x() - start_in_native.x()) < std::abs(native_bounds.right() - start_in_native.x()) ? native_bounds.x() : native_bounds.right() - 1; return gfx::Rect(x, std::min(start_in_native.y(), end_in_native.y()), 1, end_in_native.y() - start_in_native.y()); } else { // horizontal in native int y = std::abs(native_bounds.y() - start_in_native.y()) < std::abs(native_bounds.bottom() - start_in_native.y()) ? native_bounds.y() : native_bounds.bottom() - 1; return gfx::Rect(std::min(start_in_native.x(), end_in_native.x()), y, end_in_native.x() - start_in_native.x(), 1); } } // Moves the cursor to the point inside the root that is closest to // the point_in_screen, which is outside of the root window. void MoveCursorTo(AshWindowTreeHost* ash_host, const gfx::Point& point_in_screen, bool update_last_location_now) { aura::WindowTreeHost* host = ash_host->AsWindowTreeHost(); gfx::Point point_in_native = point_in_screen; ::wm::ConvertPointFromScreen(host->window(), &point_in_native); host->ConvertPointToNativeScreen(&point_in_native); // now fit the point inside the native bounds. gfx::Rect native_bounds = host->GetBounds(); gfx::Point native_origin = native_bounds.origin(); native_bounds.Inset(ash_host->GetHostInsets()); // Shrink further so that the mouse doesn't warp on the // edge. The right/bottom needs to be shrink by 2 to subtract // the 1 px from width/height value. native_bounds.Inset(1, 1, 2, 2); // Ensure that |point_in_native| is inside the |native_bounds|. point_in_native.SetToMax(native_bounds.origin()); point_in_native.SetToMin(native_bounds.bottom_right()); gfx::Point point_in_host = point_in_native; point_in_host.Offset(-native_origin.x(), -native_origin.y()); host->MoveCursorToHostLocation(point_in_host); if (update_last_location_now) { gfx::Point new_point_in_screen = point_in_native; if (Shell::GetInstance()->display_manager()->IsInUnifiedMode()) { // TODO(oshima): Do not use ConvertPointFromNativeScreen because // the mirroring display has a transform that should not be applied here. gfx::Point origin = host->GetBounds().origin(); new_point_in_screen.Offset(-origin.x(), -origin.y()); } else { host->ConvertPointFromNativeScreen(&new_point_in_screen); } ::wm::ConvertPointToScreen(host->window(), &new_point_in_screen); aura::Env::GetInstance()->set_last_mouse_location(new_point_in_screen); } } int FindDisplayIndexContainingPoint(const std::vector& displays, const gfx::Point& point_in_screen) { auto iter = std::find_if(displays.begin(), displays.end(), [point_in_screen](const gfx::Display& display) { return display.bounds().Contains(point_in_screen); }); return iter == displays.end() ? -1 : (iter - displays.begin()); } } // namespace ash