// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include // This shim make it possible to perform additional checks on allocations // before passing them to the Heap functions. // Heap functions are stripped from libcmt.lib using the prep_libc.py // for each object file stripped, we re-implement them here to allow us to // perform additional checks: // 1. Enforcing the maximum size that can be allocated to 2Gb. // 2. Calling new_handler if malloc fails. extern "C" { // We set this to 1 because part of the CRT uses a check of _crtheap != 0 // to test whether the CRT has been initialized. Once we've ripped out // the allocators from libcmt, we need to provide this definition so that // the rest of the CRT is still usable. // heapinit.c void* _crtheap = reinterpret_cast(1); } namespace base { namespace allocator { bool g_is_win_shim_layer_initialized = false; } // namespace allocator } // namespace base namespace { const size_t kWindowsPageSize = 4096; const size_t kMaxWindowsAllocation = INT_MAX - kWindowsPageSize; int new_mode = 0; // VS2013 crt uses the process heap as its heap, so we do the same here. // See heapinit.c in VS CRT sources. bool win_heap_init() { // Set the _crtheap global here. THis allows us to offload most of the // memory management to the CRT, except the functions we need to shim. _crtheap = GetProcessHeap(); if (_crtheap == NULL) return false; ULONG enable_lfh = 2; // NOTE: Setting LFH may fail. Vista already has it enabled. // And under the debugger, it won't use LFH. So we // ignore any errors. HeapSetInformation(_crtheap, HeapCompatibilityInformation, &enable_lfh, sizeof(enable_lfh)); return true; } void* win_heap_malloc(size_t size) { if (size < kMaxWindowsAllocation) return HeapAlloc(_crtheap, 0, size); return NULL; } void win_heap_free(void* size) { HeapFree(_crtheap, 0, size); } void* win_heap_realloc(void* ptr, size_t size) { if (!ptr) return win_heap_malloc(size); if (!size) { win_heap_free(ptr); return NULL; } if (size < kMaxWindowsAllocation) return HeapReAlloc(_crtheap, 0, ptr, size); return NULL; } void win_heap_term() { _crtheap = NULL; } // Call the new handler, if one has been set. // Returns true on successfully calling the handler, false otherwise. inline bool call_new_handler(bool nothrow, size_t size) { // Get the current new handler. _PNH nh = _query_new_handler(); #if defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS if (!nh) return false; // Since exceptions are disabled, we don't really know if new_handler // failed. Assume it will abort if it fails. return nh(size); #else #error "Exceptions in allocator shim are not supported!" #endif // defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS return false; } // Implement a C++ style allocation, which always calls the new_handler // on failure. inline void* generic_cpp_alloc(size_t size, bool nothrow) { void* ptr; for (;;) { ptr = malloc(size); if (ptr) return ptr; if (!call_new_handler(nothrow, size)) break; } return ptr; } } // namespace // new.cpp void* operator new(size_t size) { return generic_cpp_alloc(size, false); } // delete.cpp void operator delete(void* p) throw() { free(p); } // new2.cpp void* operator new[](size_t size) { return generic_cpp_alloc(size, false); } // delete2.cpp void operator delete[](void* p) throw() { free(p); } // newopnt.cpp void* operator new(size_t size, const std::nothrow_t& nt) { return generic_cpp_alloc(size, true); } // newaopnt.cpp void* operator new[](size_t size, const std::nothrow_t& nt) { return generic_cpp_alloc(size, true); } // This function behaves similarly to MSVC's _set_new_mode. // If flag is 0 (default), calls to malloc will behave normally. // If flag is 1, calls to malloc will behave like calls to new, // and the std_new_handler will be invoked on failure. // Returns the previous mode. // new_mode.cpp int _set_new_mode(int flag) throw() { int old_mode = new_mode; new_mode = flag; return old_mode; } // new_mode.cpp int _query_new_mode() { return new_mode; } extern "C" { // malloc.c void* malloc(size_t size) { void* ptr; for (;;) { ptr = win_heap_malloc(size); if (ptr) return ptr; if (!new_mode || !call_new_handler(true, size)) break; } return ptr; } // Symbol to allow weak linkage to win_heap_malloc from memory_win.cc. void* (*malloc_unchecked)(size_t) = &win_heap_malloc; // free.c void free(void* p) { win_heap_free(p); return; } // realloc.c void* realloc(void* ptr, size_t size) { // Webkit is brittle for allocators that return NULL for malloc(0). The // realloc(0, 0) code path does not guarantee a non-NULL return, so be sure // to call malloc for this case. if (!ptr) return malloc(size); void* new_ptr; for (;;) { new_ptr = win_heap_realloc(ptr, size); // Subtle warning: NULL return does not alwas indicate out-of-memory. If // the requested new size is zero, realloc should free the ptr and return // NULL. if (new_ptr || !size) return new_ptr; if (!new_mode || !call_new_handler(true, size)) break; } return new_ptr; } // heapinit.c intptr_t _get_heap_handle() { return reinterpret_cast(_crtheap); } // heapinit.c int _heap_init() { base::allocator::g_is_win_shim_layer_initialized = true; return win_heap_init() ? 1 : 0; } // heapinit.c void _heap_term() { win_heap_term(); } // calloc.c void* calloc(size_t n, size_t elem_size) { // Overflow check. const size_t size = n * elem_size; if (elem_size != 0 && size / elem_size != n) return NULL; void* result = malloc(size); if (result != NULL) { memset(result, 0, size); } return result; } // recalloc.c void* _recalloc(void* p, size_t n, size_t elem_size) { if (!p) return calloc(n, elem_size); // This API is a bit odd. // Note: recalloc only guarantees zeroed memory when p is NULL. // Generally, calls to malloc() have padding. So a request // to malloc N bytes actually malloc's N+x bytes. Later, if // that buffer is passed to recalloc, we don't know what N // was anymore. We only know what N+x is. As such, there is // no way to know what to zero out. const size_t size = n * elem_size; if (elem_size != 0 && size / elem_size != n) return NULL; return realloc(p, size); } // calloc_impl.c void* _calloc_impl(size_t n, size_t size) { return calloc(n, size); } #ifndef NDEBUG #undef malloc #undef free #undef calloc static int error_handler(int reportType) { switch (reportType) { case 0: // _CRT_WARN __debugbreak(); return 0; case 1: // _CRT_ERROR __debugbreak(); return 0; case 2: // _CRT_ASSERT __debugbreak(); return 0; } char* p = NULL; *p = '\0'; return 0; } int _CrtDbgReport(int reportType, const char*, int, const char*, const char*, ...) { return error_handler(reportType); } int _CrtDbgReportW(int reportType, const wchar_t*, int, const wchar_t*, const wchar_t*, ...) { return error_handler(reportType); } int _CrtSetReportMode(int, int) { return 0; } void* _malloc_dbg(size_t size, int, const char*, int) { return malloc(size); } void* _realloc_dbg(void* ptr, size_t size, int, const char*, int) { return realloc(ptr, size); } void _free_dbg(void* ptr, int) { free(ptr); } void* _calloc_dbg(size_t n, size_t size, int, const char*, int) { return calloc(n, size); } #endif // NDEBUG } // extern C