// Copyright 2008, Google Inc. // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // For atomic operations on reference counts, see atomic_refcount.h. // For atomic operations on sequence numbers, see atomic_sequence_num.h. // The routines exported by this module are subtle. If you use them, even if // you get the code right, it will depend on careful reasoning about atomicity // and memory ordering; it will be less readable, and harder to maintain. If // you plan to use these routines, you should have a good reason, such as solid // evidence that performance would otherwise suffer, or there being no // alternative. You should assume only properties explicitly guaranteed by the // specifications in this file. You are almost certainly _not_ writing code // just for the x86; if you assume x86 semantics, x86 hardware bugs and // implementations on other archtectures will cause your code to break. If you // do not know what you are doing, avoid these routines, and use a Mutex. // // It is incorrect to make direct assignments to/from an atomic variable. // You should use one of the Load or Store routines. The NoBarrier // versions are provided when no barriers are needed: // NoBarrier_Store() // NoBarrier_Load() // Although there are currently no compiler enforcement, you are encouraged // to use these. // #ifndef BASE_ATOMICOPS_H_ #define BASE_ATOMICOPS_H_ #include "base/basictypes.h" #include "base/port.h" namespace base { namespace subtle { // Bug 1308991. We need this for /Wp64, to mark it safe for AtomicWord casting. #ifndef OS_WIN #define __w64 #endif typedef __w64 int32 Atomic32; #ifdef CPU_ARCH_64_BITS typedef int64 Atomic64; #endif // Use AtomicWord for a machine-sized pointer. It will use the Atomic32 or // Atomic64 routines below, depending on your architecture. typedef intptr_t AtomicWord; // Atomically execute: // result = *ptr; // if (*ptr == old_value) // *ptr = new_value; // return result; // // I.e., replace "*ptr" with "new_value" if "*ptr" used to be "old_value". // Always return the old value of "*ptr" // // This routine implies no memory barriers. Atomic32 NoBarrier_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value); // Atomically store new_value into *ptr, returning the previous value held in // *ptr. This routine implies no memory barriers. Atomic32 NoBarrier_AtomicExchange(volatile Atomic32* ptr, Atomic32 new_value); // Atomically increment *ptr by "increment". Returns the new value of // *ptr with the increment applied. This routine implies no memory barriers. Atomic32 NoBarrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment); Atomic32 Barrier_AtomicIncrement(volatile Atomic32* ptr, Atomic32 increment); // These following lower-level operations are typically useful only to people // implementing higher-level synchronization operations like spinlocks, // mutexes, and condition-variables. They combine CompareAndSwap(), a load, or // a store with appropriate memory-ordering instructions. "Acquire" operations // ensure that no later memory access can be reordered ahead of the operation. // "Release" operations ensure that no previous memory access can be reordered // after the operation. "Barrier" operations have both "Acquire" and "Release" // semantics. A MemoryBarrier() has "Barrier" semantics, but does no memory // access. Atomic32 Acquire_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value); Atomic32 Release_CompareAndSwap(volatile Atomic32* ptr, Atomic32 old_value, Atomic32 new_value); void MemoryBarrier(); void NoBarrier_Store(volatile Atomic32* ptr, Atomic32 value); void Acquire_Store(volatile Atomic32* ptr, Atomic32 value); void Release_Store(volatile Atomic32* ptr, Atomic32 value); Atomic32 NoBarrier_Load(volatile const Atomic32* ptr); Atomic32 Acquire_Load(volatile const Atomic32* ptr); Atomic32 Release_Load(volatile const Atomic32* ptr); // 64-bit atomic operations (only available on 64-bit processors). #ifdef CPU_ARCH_64_BITS Atomic64 NoBarrier_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value); Atomic64 NoBarrier_AtomicExchange(volatile Atomic64* ptr, Atomic64 new_value); Atomic64 NoBarrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment); Atomic64 Barrier_AtomicIncrement(volatile Atomic64* ptr, Atomic64 increment); Atomic64 Acquire_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value); Atomic64 Release_CompareAndSwap(volatile Atomic64* ptr, Atomic64 old_value, Atomic64 new_value); void NoBarrier_Store(volatile Atomic64* ptr, Atomic64 value); void Acquire_Store(volatile Atomic64* ptr, Atomic64 value); void Release_Store(volatile Atomic64* ptr, Atomic64 value); Atomic64 NoBarrier_Load(volatile const Atomic64* ptr); Atomic64 Acquire_Load(volatile const Atomic64* ptr); Atomic64 Release_Load(volatile const Atomic64* ptr); #endif // CPU_ARCH_64_BITS } // namespace base::subtle } // namespace base // Include our platform specific implementation. #if defined(OS_WIN) && defined(COMPILER_MSVC) && defined(ARCH_CPU_X86_FAMILY) #include "base/atomicops_internals_x86_msvc.h" #elif defined(OS_MACOSX) && defined(ARCH_CPU_X86_FAMILY) #include "base/atomicops_internals_x86_macosx.h" #elif defined(COMPILER_GCC) && defined(ARCH_CPU_X86_FAMILY) #include "base/atomicops_internals_x86_gcc.h" #else #error "Atomic operations are not supported on your platform" #endif #endif // BASE_ATOMICOPS_H_