// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // This defines a set of argument wrappers and related factory methods that // can be used specify the refcounting and reference semantics of arguments // that are bound by the Bind() function in base/bind.h. // // The public functions are base::Unretained() and base::ConstRef(). // Unretained() allows Bind() to bind a non-refcounted class. // ConstRef() allows binding a constant reference to an argument rather // than a copy. // // // EXAMPLE OF Unretained(): // // class Foo { // public: // void func() { cout << "Foo:f" << endl; // }; // // // In some function somewhere. // Foo foo; // Callback foo_callback = // Bind(&Foo::func, Unretained(&foo)); // foo_callback.Run(); // Prints "Foo:f". // // Without the Unretained() wrapper on |&foo|, the above call would fail // to compile because Foo does not support the AddRef() and Release() methods. // // // EXAMPLE OF ConstRef(); // void foo(int arg) { cout << arg << endl } // // int n = 1; // Callback no_ref = Bind(&foo, n); // Callback has_ref = Bind(&foo, ConstRef(n)); // // no_ref.Run(); // Prints "1" // has_ref.Run(); // Prints "1" // // n = 2; // no_ref.Run(); // Prints "1" // has_ref.Run(); // Prints "2" // // Note that because ConstRef() takes a reference on |n|, |n| must outlive all // its bound callbacks. // #ifndef BASE_BIND_HELPERS_H_ #define BASE_BIND_HELPERS_H_ #pragma once #include "base/basictypes.h" #include "base/template_util.h" namespace base { namespace internal { // Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T // for the existence of AddRef() and Release() functions of the correct // signature. // // http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error // http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence // http://stackoverflow.com/questions/4358584/sfinae-approach-comparison // http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions // // The last link in particular show the method used below. // // For SFINAE to work with inherited methods, we need to pull some extra tricks // with multiple inheritance. In the more standard formulation, the overloads // of Check would be: // // template // Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*); // // template // No NotTheCheckWeWant(...); // // static const bool value = sizeof(NotTheCheckWeWant(0)) == sizeof(Yes); // // The problem here is that template resolution will not match // C::TargetFunc if TargetFunc does not exist directly in C. That is, if // TargetFunc in inherited from an ancestor, &C::TargetFunc will not match, // |value| will be false. This formulation only checks for whether or // not TargetFunc exist directly in the class being introspected. // // To get around this, we play a dirty trick with multiple inheritance. // First, We create a class BaseMixin that declares each function that we // want to probe for. Then we create a class Base that inherits from both T // (the class we wish to probe) and BaseMixin. Note that the function // signature in BaseMixin does not need to match the signature of the function // we are probing for; thus it's easiest to just use void(void). // // Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an // ambiguous resolution between BaseMixin and T. This lets us write the // following: // // template // No GoodCheck(Helper<&C::TargetFunc>*); // // template // Yes GoodCheck(...); // // static const bool value = sizeof(GoodCheck(0)) == sizeof(Yes); // // Notice here that the variadic version of GoodCheck() returns Yes here // instead of No like the previous one. Also notice that we calculate |value| // by specializing GoodCheck() on Base instead of T. // // We've reversed the roles of the variadic, and Helper overloads. // GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid // substitution if T::TargetFunc exists. Thus GoodCheck(0) will resolve // to the variadic version if T has TargetFunc. If T::TargetFunc does not // exist, then &C::TargetFunc is not ambiguous, and the overload resolution // will prefer GoodCheck(Helper<&C::TargetFunc>*). // // This method of SFINAE will correctly probe for inherited names, but it cannot // typecheck those names. It's still a good enough sanity check though. // // Works on gcc-4.2, gcc-4.4, and Visual Studio 2008. // // TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted // this works well. template class SupportsAddRefAndRelease { typedef char Yes[1]; typedef char No[2]; struct BaseMixin { void AddRef(); void Release(); }; struct Base : public T, public BaseMixin { }; template struct Helper {}; template static No& Check(Helper<&C::AddRef>*, Helper<&C::Release>*); template static Yes& Check(...); public: static const bool value = sizeof(Check(0,0)) == sizeof(Yes); }; // Helpers to assert that arguments of a recounted type are bound with a // scoped_refptr. template struct UnsafeBindtoRefCountedArgHelper : false_type { }; template struct UnsafeBindtoRefCountedArgHelper : integral_constant::value> { }; template struct UnsafeBindtoRefCountedArg : UnsafeBindtoRefCountedArgHelper::value, T> { }; template class UnretainedWrapper { public: explicit UnretainedWrapper(T* o) : obj_(o) {} T* get() { return obj_; } private: T* obj_; }; template class ConstRefWrapper { public: explicit ConstRefWrapper(const T& o) : ptr_(&o) {} const T& get() { return *ptr_; } private: const T* ptr_; }; // Unwrap the stored parameters for the wrappers above. template T Unwrap(T o) { return o; } template T* Unwrap(UnretainedWrapper unretained) { return unretained.get(); } template const T& Unwrap(ConstRefWrapper const_ref) { return const_ref.get(); } // Utility for handling different refcounting semantics in the Bind() // function. template struct MaybeRefcount; template struct MaybeRefcount { static void AddRef(const T&) {} static void Release(const T&) {} }; template struct MaybeRefcount { static void AddRef(const T*) {} static void Release(const T*) {} }; template struct MaybeRefcount > { static void AddRef(const UnretainedWrapper&) {} static void Release(const UnretainedWrapper&) {} }; template struct MaybeRefcount { static void AddRef(T* o) { o->AddRef(); } static void Release(T* o) { o->Release(); } }; template struct MaybeRefcount { static void AddRef(const T* o) { o->AddRef(); } static void Release(const T* o) { o->Release(); } }; // This is a typetraits object that's used to convert an argument type into a // type suitable for storage. In particular, it strips off references, and // converts arrays to pointers. // // This array type becomes an issue because we are passing bound parameters by // const reference. In this case, we end up passing an actual array type in the // initializer list which C++ does not allow. This will break passing of // C-string literals. template struct BindType { typedef T StorageType; }; // This should almost be impossible to trigger unless someone manually // specifies type of the bind parameters. However, in case they do, // this will guard against us accidentally storing a reference parameter. template struct BindType { typedef T StorageType; }; // Note that for array types, we implicitly add a const in the conversion. This // means that it is not possible to bind array arguments to functions that take // a non-const pointer. Trying to specialize the template based on a "const // T[n]" does not seem to match correctly, so we are stuck with this // restriction. template struct BindType { typedef const T* StorageType; }; template struct BindType { typedef const T* StorageType; }; } // namespace internal template inline internal::UnretainedWrapper Unretained(T* o) { return internal::UnretainedWrapper(o); } template inline internal::ConstRefWrapper ConstRef(const T& o) { return internal::ConstRefWrapper(o); } } // namespace base #endif // BASE_BIND_HELPERS_H_