$$ This is a pump file for generating file templates. Pump is a python $$ script that is part of the Google Test suite of utilities. Description $$ can be found here: $$ $$ http://code.google.com/p/googletest/wiki/PumpManual $$ $$ See comment for MAX_ARITY in base/bind.h.pump. $var MAX_ARITY = 7 $range ARITY 0..MAX_ARITY // Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_BIND_INTERNAL_H_ #define BASE_BIND_INTERNAL_H_ #include "base/bind_helpers.h" #include "base/callback_internal.h" #include "base/memory/raw_scoped_refptr_mismatch_checker.h" #include "base/memory/weak_ptr.h" #include "base/template_util.h" #include "build/build_config.h" #if defined(OS_WIN) #include "base/bind_internal_win.h" #endif namespace base { namespace internal { // See base/callback.h for user documentation. // // // CONCEPTS: // Runnable -- A type (really a type class) that has a single Run() method // and a RunType typedef that corresponds to the type of Run(). // A Runnable can declare that it should treated like a method // call by including a typedef named IsMethod. The value of // this typedef is NOT inspected, only the existence. When a // Runnable declares itself a method, Bind() will enforce special // refcounting + WeakPtr handling semantics for the first // parameter which is expected to be an object. // Functor -- A copyable type representing something that should be called. // All function pointers, Callback<>, and Runnables are functors // even if the invocation syntax differs. // RunType -- A function type (as opposed to function _pointer_ type) for // a Run() function. Usually just a convenience typedef. // (Bound)ArgsType -- A function type that is being (ab)used to store the // types of set of arguments. The "return" type is always // void here. We use this hack so that we do not need // a new type name for each arity of type. (eg., // BindState1, BindState2). This makes forward // declarations and friending much much easier. // // Types: // RunnableAdapter<> -- Wraps the various "function" pointer types into an // object that adheres to the Runnable interface. // FunctionTraits<> -- Type traits that unwrap a function signature into a // a set of easier to use typedefs. Used mainly for // compile time asserts. // There are |ARITY| FunctionTraits types. // ForceVoidReturn<> -- Helper class for translating function signatures to // equivalent forms with a "void" return type. // FunctorTraits<> -- Type traits used determine the correct RunType and // RunnableType for a Functor. This is where function // signature adapters are applied. // MakeRunnable<> -- Takes a Functor and returns an object in the Runnable // type class that represents the underlying Functor. // There are |O(1)| MakeRunnable types. // InvokeHelper<> -- Take a Runnable + arguments and actully invokes it. // Handle the differing syntaxes needed for WeakPtr<> support, // and for ignoring return values. This is separate from // Invoker to avoid creating multiple version of Invoker<> // which grows at O(n^2) with the arity. // Invoker<> -- Unwraps the curried parameters and executes the Runnable. // There are |(ARITY^2 + ARITY)/2| Invoketypes. // BindState<> -- Stores the curried parameters, and is the main entry point // into the Bind() system, doing most of the type resolution. // There are ARITY BindState types. // HasNonConstReferenceParam selects true_type when any of the parameters in // |Sig| is a non-const reference. // Implementation note: This non-specialized case handles zero-arity case only. // Non-zero-arity cases should be handled by the specialization below. template struct HasNonConstReferenceParam : false_type {}; // Implementation note: Select true_type if the first parameter is a non-const // reference. Otherwise, skip the first parameter and check rest of parameters // recursively. template struct HasNonConstReferenceParam : SelectType::value, true_type, HasNonConstReferenceParam>::Type {}; // HasRefCountedTypeAsRawPtr selects true_type when any of the |Args| is a raw // pointer to a RefCounted type. // Implementation note: This non-specialized case handles zero-arity case only. // Non-zero-arity cases should be handled by the specialization below. template struct HasRefCountedTypeAsRawPtr : false_type {}; // Implementation note: Select true_type if the first parameter is a raw pointer // to a RefCounted type. Otherwise, skip the first parameter and check rest of // parameters recursively. template struct HasRefCountedTypeAsRawPtr : SelectType::value, true_type, HasRefCountedTypeAsRawPtr>::Type {}; // BindsArrayToFirstArg selects true_type when |is_method| is true and the first // item of |Args| is an array type. // Implementation note: This non-specialized case handles !is_method case and // zero-arity case only. Other cases should be handled by the specialization // below. template struct BindsArrayToFirstArg : false_type {}; template struct BindsArrayToFirstArg : is_array {}; // HasRefCountedParamAsRawPtr is the same to HasRefCountedTypeAsRawPtr except // when |is_method| is true HasRefCountedParamAsRawPtr skips the first argument. // Implementation note: This non-specialized case handles !is_method case and // zero-arity case only. Other cases should be handled by the specialization // below. template struct HasRefCountedParamAsRawPtr : HasRefCountedTypeAsRawPtr {}; template struct HasRefCountedParamAsRawPtr : HasRefCountedTypeAsRawPtr {}; // RunnableAdapter<> // // The RunnableAdapter<> templates provide a uniform interface for invoking // a function pointer, method pointer, or const method pointer. The adapter // exposes a Run() method with an appropriate signature. Using this wrapper // allows for writing code that supports all three pointer types without // undue repetition. Without it, a lot of code would need to be repeated 3 // times. // // For method pointers and const method pointers the first argument to Run() // is considered to be the received of the method. This is similar to STL's // mem_fun(). // // This class also exposes a RunType typedef that is the function type of the // Run() function. // // If and only if the wrapper contains a method or const method pointer, an // IsMethod typedef is exposed. The existence of this typedef (NOT the value) // marks that the wrapper should be considered a method wrapper. template class RunnableAdapter; // Function. template class RunnableAdapter { public: typedef R (RunType)(Args...); explicit RunnableAdapter(R(*function)(Args...)) : function_(function) { } R Run(typename CallbackParamTraits::ForwardType... args) { return function_(CallbackForward(args)...); } private: R (*function_)(Args...); }; // Method. template class RunnableAdapter { public: typedef R (RunType)(T*, Args...); typedef true_type IsMethod; explicit RunnableAdapter(R(T::*method)(Args...)) : method_(method) { } R Run(T* object, typename CallbackParamTraits::ForwardType... args) { return (object->*method_)(CallbackForward(args)...); } private: R (T::*method_)(Args...); }; // Const Method. template class RunnableAdapter { public: typedef R (RunType)(const T*, Args...); typedef true_type IsMethod; explicit RunnableAdapter(R(T::*method)(Args...) const) : method_(method) { } R Run(const T* object, typename CallbackParamTraits::ForwardType... args) { return (object->*method_)(CallbackForward(args)...); } private: R (T::*method_)(Args...) const; }; // TODO(tzik): Remove FunctionTraits after we finish removing bind.pump. // FunctionTraits<> // // Breaks a function signature apart into typedefs for easier introspection. template struct FunctionTraits; $for ARITY [[ $range ARG 1..ARITY template 0[[, ]] $for ARG , [[typename A$(ARG)]]> struct FunctionTraits { typedef R ReturnType; $for ARG [[ typedef A$(ARG) A$(ARG)Type; ]] }; ]] // ForceVoidReturn<> // // Set of templates that support forcing the function return type to void. template struct ForceVoidReturn; template struct ForceVoidReturn { typedef void(RunType)(Args...); }; // FunctorTraits<> // // See description at top of file. template struct FunctorTraits { typedef RunnableAdapter RunnableType; typedef typename RunnableType::RunType RunType; }; template struct FunctorTraits > { typedef typename FunctorTraits::RunnableType RunnableType; typedef typename ForceVoidReturn< typename RunnableType::RunType>::RunType RunType; }; template struct FunctorTraits > { typedef Callback RunnableType; typedef typename Callback::RunType RunType; }; // MakeRunnable<> // // Converts a passed in functor to a RunnableType using type inference. template typename FunctorTraits::RunnableType MakeRunnable(const T& t) { return RunnableAdapter(t); } template typename FunctorTraits::RunnableType MakeRunnable(const IgnoreResultHelper& t) { return MakeRunnable(t.functor_); } template const typename FunctorTraits >::RunnableType& MakeRunnable(const Callback& t) { DCHECK(!t.is_null()); return t; } // InvokeHelper<> // // There are 3 logical InvokeHelper<> specializations: normal, void-return, // WeakCalls. // // The normal type just calls the underlying runnable. // // We need a InvokeHelper to handle void return types in order to support // IgnoreResult(). Normally, if the Runnable's RunType had a void return, // the template system would just accept "return functor.Run()" ignoring // the fact that a void function is being used with return. This piece of // sugar breaks though when the Runnable's RunType is not void. Thus, we // need a partial specialization to change the syntax to drop the "return" // from the invocation call. // // WeakCalls similarly need special syntax that is applied to the first // argument to check if they should no-op themselves. template struct InvokeHelper; template struct InvokeHelper { static ReturnType MakeItSo(Runnable runnable, Args... args) { return runnable.Run(CallbackForward(args)...); } }; template struct InvokeHelper { static void MakeItSo(Runnable runnable, Args... args) { runnable.Run(CallbackForward(args)...); } }; template struct InvokeHelper { static void MakeItSo(Runnable runnable, BoundWeakPtr weak_ptr, Args... args) { if (!weak_ptr.get()) { return; } runnable.Run(weak_ptr.get(), CallbackForward(args)...); } }; #if !defined(_MSC_VER) template struct InvokeHelper { // WeakCalls are only supported for functions with a void return type. // Otherwise, the function result would be undefined if the the WeakPtr<> // is invalidated. COMPILE_ASSERT(is_void::value, weak_ptrs_can_only_bind_to_methods_without_return_values); }; #endif // Invoker<> // // See description at the top of the file. template struct Invoker; $for ARITY [[ $$ Number of bound arguments. $range BOUND 0..ARITY $for BOUND [[ $var UNBOUND = ARITY - BOUND $range ARG 1..ARITY $range BOUND_ARG 1..BOUND $range UNBOUND_ARG (ARITY - UNBOUND + 1)..ARITY // Arity $(ARITY) -> $(UNBOUND). template 0 [[,]][[]] $for ARG , [[typename X$(ARG)]]> struct Invoker<$(BOUND), StorageType, R($for ARG , [[X$(ARG)]])> { typedef R(RunType)(BindStateBase*[[]] $if UNBOUND != 0 [[, ]] $for UNBOUND_ARG , [[typename CallbackParamTraits::ForwardType]]); typedef R(UnboundRunType)($for UNBOUND_ARG , [[X$(UNBOUND_ARG)]]); static R Run(BindStateBase* base[[]] $if UNBOUND != 0 [[, ]][[]] $for UNBOUND_ARG , [[ typename CallbackParamTraits::ForwardType x$(UNBOUND_ARG) ]][[]] ) { StorageType* storage = static_cast(base); // Local references to make debugger stepping easier. If in a debugger, // you really want to warp ahead and step through the // InvokeHelper<>::MakeItSo() call below. $for BOUND_ARG [[ typedef typename StorageType::Bound$(BOUND_ARG)UnwrapTraits Bound$(BOUND_ARG)UnwrapTraits; ]] $for BOUND_ARG [[ typename Bound$(BOUND_ARG)UnwrapTraits::ForwardType x$(BOUND_ARG) = Bound$(BOUND_ARG)UnwrapTraits::Unwrap(storage->p$(BOUND_ARG)_); ]] return InvokeHelper 0 [[$if BOUND > 0 [[, ]]]][[]] $for UNBOUND_ARG , [[ typename CallbackParamTraits::ForwardType x$(UNBOUND_ARG) ]] )> ::MakeItSo(storage->runnable_ $if ARITY > 0[[, ]] $for ARG , [[CallbackForward(x$(ARG))]]); } }; ]] $$ for BOUND ]] $$ for ARITY // BindState<> // // This stores all the state passed into Bind() and is also where most // of the template resolution magic occurs. // // Runnable is the functor we are binding arguments to. // RunType is type of the Run() function that the Invoker<> should use. // Normally, this is the same as the RunType of the Runnable, but it can // be different if an adapter like IgnoreResult() has been used. // // BoundArgsType contains the storage type for all the bound arguments by // (ab)using a function type. template struct BindState; $for ARITY [[ $range ARG 1..ARITY template 0[[, ]] $for ARG , [[typename P$(ARG)]]> struct BindState : public BindStateBase { typedef Runnable RunnableType; $if ARITY > 0 [[ typedef IsWeakMethod::value, P1> IsWeakCall; ]] $else [[ typedef false_type IsWeakCall; ]] typedef Invoker<$(ARITY), BindState, RunType> InvokerType; typedef typename InvokerType::UnboundRunType UnboundRunType; $if ARITY > 0 [[ // Convenience typedefs for bound argument types. $for ARG [[ typedef UnwrapTraits Bound$(ARG)UnwrapTraits; ]] $$ for ARG ]] $$ if ARITY > 0 $$ The extra [[ ]] is needed to massage spacing. Silly pump.py. [[ ]]$if ARITY == 0 [[explicit ]]BindState(const Runnable& runnable $if ARITY > 0 [[, ]] $for ARG , [[const P$(ARG)& p$(ARG)]]) : runnable_(runnable)[[]] $if ARITY == 0 [[ { ]] $else [[ , $for ARG , [[ p$(ARG)_(p$(ARG)) ]] { MaybeRefcount::value, P1>::AddRef(p1_); ]] } virtual ~BindState() { $if ARITY > 0 [[ MaybeRefcount::value, P1>::Release(p1_); ]] } RunnableType runnable_; $for ARG [[ P$(ARG) p$(ARG)_; ]] }; ]] $$ for ARITY } // namespace internal } // namespace base #endif // BASE_BIND_INTERNAL_H_