// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_BIND_INTERNAL_H_ #define BASE_BIND_INTERNAL_H_ #include #include #include "base/bind_helpers.h" #include "base/callback_internal.h" #include "base/memory/raw_scoped_refptr_mismatch_checker.h" #include "base/memory/weak_ptr.h" #include "base/template_util.h" #include "base/tuple.h" #include "build/build_config.h" #if defined(OS_WIN) #include "base/bind_internal_win.h" #endif namespace base { namespace internal { // See base/callback.h for user documentation. // // // CONCEPTS: // Runnable -- A type (really a type class) that has a single Run() method // and a RunType typedef that corresponds to the type of Run(). // A Runnable can declare that it should treated like a method // call by including a typedef named IsMethod. The value of // this typedef is NOT inspected, only the existence. When a // Runnable declares itself a method, Bind() will enforce special // refcounting + WeakPtr handling semantics for the first // parameter which is expected to be an object. // Functor -- A copyable type representing something that should be called. // All function pointers, Callback<>, and Runnables are functors // even if the invocation syntax differs. // RunType -- A function type (as opposed to function _pointer_ type) for // a Run() function. Usually just a convenience typedef. // (Bound)Args -- A set of types that stores the arguments. // // Types: // RunnableAdapter<> -- Wraps the various "function" pointer types into an // object that adheres to the Runnable interface. // ForceVoidReturn<> -- Helper class for translating function signatures to // equivalent forms with a "void" return type. // FunctorTraits<> -- Type traits used determine the correct RunType and // RunnableType for a Functor. This is where function // signature adapters are applied. // MakeRunnable<> -- Takes a Functor and returns an object in the Runnable // type class that represents the underlying Functor. // InvokeHelper<> -- Take a Runnable + arguments and actully invokes it. // Handle the differing syntaxes needed for WeakPtr<> // support, and for ignoring return values. This is separate // from Invoker to avoid creating multiple version of // Invoker<>. // Invoker<> -- Unwraps the curried parameters and executes the Runnable. // BindState<> -- Stores the curried parameters, and is the main entry point // into the Bind() system, doing most of the type resolution. // There are ARITY BindState types. // HasNonConstReferenceParam selects true_type when any of the parameters in // |Sig| is a non-const reference. // Implementation note: This non-specialized case handles zero-arity case only. // Non-zero-arity cases should be handled by the specialization below. template struct HasNonConstReferenceItem : std::false_type {}; // Implementation note: Select true_type if the first parameter is a non-const // reference. Otherwise, skip the first parameter and check rest of parameters // recursively. template struct HasNonConstReferenceItem> : std::conditional::value, std::true_type, HasNonConstReferenceItem>>::type {}; // HasRefCountedTypeAsRawPtr selects true_type when any of the |Args| is a raw // pointer to a RefCounted type. // Implementation note: This non-specialized case handles zero-arity case only. // Non-zero-arity cases should be handled by the specialization below. template struct HasRefCountedTypeAsRawPtr : std::false_type {}; // Implementation note: Select true_type if the first parameter is a raw pointer // to a RefCounted type. Otherwise, skip the first parameter and check rest of // parameters recursively. template struct HasRefCountedTypeAsRawPtr : std::conditional::value, std::true_type, HasRefCountedTypeAsRawPtr>::type {}; // BindsArrayToFirstArg selects true_type when |is_method| is true and the first // item of |Args| is an array type. // Implementation note: This non-specialized case handles !is_method case and // zero-arity case only. Other cases should be handled by the specialization // below. template struct BindsArrayToFirstArg : std::false_type {}; template struct BindsArrayToFirstArg : std::is_array::type> {}; // HasRefCountedParamAsRawPtr is the same to HasRefCountedTypeAsRawPtr except // when |is_method| is true HasRefCountedParamAsRawPtr skips the first argument. // Implementation note: This non-specialized case handles !is_method case and // zero-arity case only. Other cases should be handled by the specialization // below. template struct HasRefCountedParamAsRawPtr : HasRefCountedTypeAsRawPtr {}; template struct HasRefCountedParamAsRawPtr : HasRefCountedTypeAsRawPtr {}; // RunnableAdapter<> // // The RunnableAdapter<> templates provide a uniform interface for invoking // a function pointer, method pointer, or const method pointer. The adapter // exposes a Run() method with an appropriate signature. Using this wrapper // allows for writing code that supports all three pointer types without // undue repetition. Without it, a lot of code would need to be repeated 3 // times. // // For method pointers and const method pointers the first argument to Run() // is considered to be the received of the method. This is similar to STL's // mem_fun(). // // This class also exposes a RunType typedef that is the function type of the // Run() function. // // If and only if the wrapper contains a method or const method pointer, an // IsMethod typedef is exposed. The existence of this typedef (NOT the value) // marks that the wrapper should be considered a method wrapper. template class RunnableAdapter; // Function. template class RunnableAdapter { public: // MSVC 2013 doesn't support Type Alias of function types. // Revisit this after we update it to newer version. typedef R RunType(Args...); explicit RunnableAdapter(R(*function)(Args...)) : function_(function) { } template R Run(RunArgs&&... args) { return function_(std::forward(args)...); } private: R (*function_)(Args...); }; // Method. template class RunnableAdapter { public: // MSVC 2013 doesn't support Type Alias of function types. // Revisit this after we update it to newer version. typedef R RunType(T*, Args...); using IsMethod = std::true_type; explicit RunnableAdapter(R(T::*method)(Args...)) : method_(method) { } template R Run(T* object, RunArgs&&... args) { return (object->*method_)(std::forward(args)...); } template R Run(const scoped_refptr& object, RunArgs&&... args) { return (object.get()->*method_)(std::forward(args)...); } private: R (T::*method_)(Args...); }; // Const Method. template class RunnableAdapter { public: using RunType = R(const T*, Args...); using IsMethod = std::true_type; explicit RunnableAdapter(R(T::*method)(Args...) const) : method_(method) { } template R Run(const T* object, RunArgs&&... args) { return (object->*method_)(std::forward(args)...); } template R Run(const scoped_refptr& object, RunArgs&&... args) { return (object.get()->*method_)(std::forward(args)...); } private: R (T::*method_)(Args...) const; }; // ForceVoidReturn<> // // Set of templates that support forcing the function return type to void. template struct ForceVoidReturn; template struct ForceVoidReturn { // MSVC 2013 doesn't support Type Alias of function types. // Revisit this after we update it to newer version. typedef void RunType(Args...); }; // FunctorTraits<> // // See description at top of file. template struct FunctorTraits { using RunnableType = RunnableAdapter; using RunType = typename RunnableType::RunType; }; template struct FunctorTraits> { using RunnableType = typename FunctorTraits::RunnableType; using RunType = typename ForceVoidReturn::RunType; }; template struct FunctorTraits> { using RunnableType = Callback ; using RunType = typename Callback::RunType; }; // MakeRunnable<> // // Converts a passed in functor to a RunnableType using type inference. template typename FunctorTraits::RunnableType MakeRunnable(const T& t) { return RunnableAdapter(t); } template typename FunctorTraits::RunnableType MakeRunnable(const IgnoreResultHelper& t) { return MakeRunnable(t.functor_); } template const typename FunctorTraits>::RunnableType& MakeRunnable(const Callback& t) { DCHECK(!t.is_null()); return t; } // InvokeHelper<> // // There are 3 logical InvokeHelper<> specializations: normal, void-return, // WeakCalls. // // The normal type just calls the underlying runnable. // // We need a InvokeHelper to handle void return types in order to support // IgnoreResult(). Normally, if the Runnable's RunType had a void return, // the template system would just accept "return functor.Run()" ignoring // the fact that a void function is being used with return. This piece of // sugar breaks though when the Runnable's RunType is not void. Thus, we // need a partial specialization to change the syntax to drop the "return" // from the invocation call. // // WeakCalls similarly need special syntax that is applied to the first // argument to check if they should no-op themselves. template struct InvokeHelper; template struct InvokeHelper { template static ReturnType MakeItSo(Runnable runnable, RunArgs&&... args) { return runnable.Run(std::forward(args)...); } }; template struct InvokeHelper { template static void MakeItSo(Runnable runnable, RunArgs&&... args) { runnable.Run(std::forward(args)...); } }; template struct InvokeHelper { template static void MakeItSo(Runnable runnable, BoundWeakPtr weak_ptr, RunArgs&&... args) { if (!weak_ptr.get()) { return; } runnable.Run(weak_ptr.get(), std::forward(args)...); } }; #if !defined(_MSC_VER) template struct InvokeHelper { // WeakCalls are only supported for functions with a void return type. // Otherwise, the function result would be undefined if the the WeakPtr<> // is invalidated. static_assert(std::is_void::value, "weak_ptrs can only bind to methods without return values"); }; #endif // Invoker<> // // See description at the top of the file. template struct Invoker; template struct Invoker, StorageType, InvokeHelperType, R(UnboundArgs...)> { static R Run(BindStateBase* base, UnboundArgs&&... unbound_args) { StorageType* storage = static_cast(base); // Local references to make debugger stepping easier. If in a debugger, // you really want to warp ahead and step through the // InvokeHelper<>::MakeItSo() call below. return InvokeHelperType::MakeItSo( storage->runnable_, Unwrap(get(storage->bound_args_))..., std::forward(unbound_args)...); } }; // Used to implement MakeArgsStorage. template struct MakeArgsStorageImpl { using Type = std::tuple; }; template struct MakeArgsStorageImpl { using Type = std::tuple, BoundArgs...>; }; // Constructs a tuple type to store BoundArgs into BindState. // This wraps the first argument into a scoped_refptr if |is_method| is true and // the first argument is a raw pointer. // Other arguments are adjusted for store and packed into a tuple. template using MakeArgsStorage = typename MakeArgsStorageImpl< is_method, typename std::decay::type...>::Type; // BindState<> // // This stores all the state passed into Bind() and is also where most // of the template resolution magic occurs. // // Runnable is the functor we are binding arguments to. // RunType is type of the Run() function that the Invoker<> should use. // Normally, this is the same as the RunType of the Runnable, but it can // be different if an adapter like IgnoreResult() has been used. // // BoundArgs contains the storage type for all the bound arguments. template struct BindState; template struct BindState final : public BindStateBase { private: using StorageType = BindState; using RunnableType = Runnable; enum { is_method = HasIsMethodTag::value }; // true_type if Runnable is a method invocation and the first bound argument // is a WeakPtr. using IsWeakCall = IsWeakMethod::type...>; using BoundIndices = MakeIndexSequence; using InvokeHelperType = InvokeHelper; using UnboundArgs = DropTypeListItem>; public: using UnboundRunType = MakeFunctionType; using InvokerType = Invoker; template BindState(const Runnable& runnable, ForwardArgs&&... bound_args) : BindStateBase(&Destroy), runnable_(runnable), bound_args_(std::forward(bound_args)...) {} RunnableType runnable_; MakeArgsStorage bound_args_; private: ~BindState() {} static void Destroy(BindStateBase* self) { delete static_cast(self); } }; } // namespace internal } // namespace base #endif // BASE_BIND_INTERNAL_H_