// This file was GENERATED by command: // pump.py callback.h.pump // DO NOT EDIT BY HAND!!! // Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_CALLBACK_H_ #define BASE_CALLBACK_H_ #pragma once #include "base/callback_internal.h" #include "base/callback_old.h" // New, super-duper, unified Callback system. This will eventually replace // NewRunnableMethod, NewRunnableFunction, CreateFunctor, and CreateCallback // systems currently in the Chromium code base. // // WHAT IS THIS: // // The templated Callback class is a generalized function object. Together // with the Bind() function in bind.h, they provide a type-safe method for // performing currying of arguments, and creating a "closure." // // In programing languages, a closure is a first-class function where all its // parameters have been bound (usually via currying). Closures are well // suited for representing, and passing around a unit of delayed execution. // They are used in Chromium code to schedule tasks on different MessageLoops. // // // MEMORY MANAGEMENT AND PASSING // // The Callback objects themselves should be passed by const-reference, and // stored by copy. They internally store their state via a refcounted class // and thus do not need to be deleted. // // The reason to pass via a const-reference is to avoid unnecessary // AddRef/Release pairs to the internal state. // // // EXAMPLE USAGE: // // /* Binding a normal function. */ // int Return5() { return 5; } // base::Callback func_cb = base::Bind(&Return5); // LOG(INFO) << func_cb.Run(5); // Prints 5. // // void PrintHi() { LOG(INFO) << "hi."; } // base::Closure void_func_cb = base::Bind(&PrintHi); // LOG(INFO) << void_func_cb.Run(); // Prints: hi. // // /* Binding a class method. */ // class Ref : public RefCountedThreadSafe { // public: // int Foo() { return 3; } // void PrintBye() { LOG(INFO) << "bye."; } // }; // scoped_refptr ref = new Ref(); // base::Callback ref_cb = base::Bind(&Ref::Foo, ref.get()); // LOG(INFO) << ref_cb.Run(); // Prints out 3. // // base::Closure void_ref_cb = base::Bind(&Ref::PrintBye, ref.get()); // void_ref_cb.Run(); // Prints: bye. // // /* Binding a class method in a non-refcounted class. // * // * WARNING: You must be sure the referee outlives the callback! // * This is particularly important if you post a closure to a // * MessageLoop because then it becomes hard to know what the // * lifetime of the referee needs to be. // */ // class NoRef { // public: // int Foo() { return 4; } // void PrintWhy() { LOG(INFO) << "why???"; } // }; // NoRef no_ref; // base::Callback base::no_ref_cb = // base::Bind(&NoRef::Foo, base::Unretained(&no_ref)); // LOG(INFO) << ref_cb.Run(); // Prints out 4. // // base::Closure void_no_ref_cb = // base::Bind(&NoRef::PrintWhy, base::Unretained(no_ref)); // void_no_ref_cb.Run(); // Prints: why??? // // /* Binding a reference. */ // int Identity(int n) { return n; } // int value = 1; // base::Callback bound_copy_cb = base::Bind(&Identity, value); // base::Callback bound_ref_cb = // base::Bind(&Identity, base::ConstRef(value)); // LOG(INFO) << bound_copy_cb.Run(); // Prints 1. // LOG(INFO) << bound_ref_cb.Run(); // Prints 1. // value = 2; // LOG(INFO) << bound_copy_cb.Run(); // Prints 1. // LOG(INFO) << bound_ref_cb.Run(); // Prints 2. // // // WHERE IS THIS DESIGN FROM: // // The design Callback and Bind is heavily influenced by C++'s // tr1::function/tr1::bind, and by the "Google Callback" system used inside // Google. // // // HOW THE IMPLEMENTATION WORKS: // // There are three main components to the system: // 1) The Callback classes. // 2) The Bind() functions. // 3) The arguments wrappers (eg., Unretained() and ConstRef()). // // The Callback classes represent a generic function pointer. Internally, // it stores a refcounted piece of state that represents the target function // and all its bound parameters. Each Callback specialization has a templated // constructor that takes an InvokerStorageHolder<> object. In the context of // the constructor, the static type of this InvokerStorageHolder<> object // uniquely identifies the function it is representing, all its bound // parameters, and a DoInvoke() that is capable of invoking the target. // // Callback's constructor is takes the InvokerStorageHolder<> that has the // full static type and erases the target function type, and the bound // parameters. It does this by storing a pointer to the specific DoInvoke() // function, and upcasting the state of InvokerStorageHolder<> to a // InvokerStorageBase. This is safe as long as this InvokerStorageBase pointer // is only used with the stored DoInvoke() pointer. // // To create InvokerStorageHolder<> objects, we use the Bind() functions. // These functions, along with a set of internal templates, are reponsible for // // - Unwrapping the function signature into return type, and parameters // - Determining the number of parameters that are bound // - Creating the storage for the bound parameters // - Performing compile-time asserts to avoid error-prone behavior // - Returning an InvokerStorageHolder<> with an DoInvoke() that has an arity // matching the number of unbound parameters, and knows the correct // refcounting semantics for the target object if we are binding a class // method. // // The Bind functions do the above using type-inference, and template // specializations. // // By default Bind() will store copies of all bound parameters, and attempt // to refcount a target object if the function being bound is a class method. // // To change this behavior, we introduce a set of argument wrappers // (eg. Unretained(), and ConstRef()). These are simple container templates // that are passed by value, and wrap a pointer to argument. See the // file-level comment in base/bind_helpers.h for more info. // // These types are passed to the Unwrap() functions, and the MaybeRefcount() // functions respectively to modify the behavior of Bind(). The Unwrap() // and MaybeRefcount() functions change behavior by doing partial // specialization based on whether or not a parameter is a wrapper type. // // ConstRef() is similar to tr1::cref. Unretained() is specific to Chromium. // // // WHY NOT TR1 FUNCTION/BIND? // // Direct use of tr1::function and tr1::bind was considered, but ultimately // rejected because of the number of copy constructors invocations involved // in the binding of arguments during construction, and the forwarding of // arguments during invocation. These copies will no longer be an issue in // C++0x because C++0x will support rvalue reference allowing for the compiler // to avoid these copies. However, waiting for C++0x is not an option. // // Measured with valgrind on gcc version 4.4.3 (Ubuntu 4.4.3-4ubuntu5), the // tr1::bind call itself will invoke a non-trivial copy constructor three times // for each bound parameter. Also, each when passing a tr1::function, each // bound argument will be copied again. // // In addition to the copies taken at binding and invocation, copying a // tr1::function causes a copy to be made of all the bound parameters and // state. // // Furthermore, in Chromium, it is desirable for the Callback to take a // reference on a target object when representing a class method call. This // is not supported by tr1. // // Lastly, tr1::function and tr1::bind has a more general and flexible API. // This includes things like argument reordering by use of // tr1::bind::placeholder, support for non-const reference parameters, and some // limited amount of subtyping of the tr1::function object (eg., // tr1::function is convertible to tr1::function). // // These are not features that are required in Chromium. Some of them, such as // allowing for reference parameters, and subtyping of functions, may actually // because a source of errors. Removing support for these features actually // allows for a simpler implementation, and a terser Currying API. // // // WHY NOT GOOGLE CALLBACKS? // // The Google callback system also does not support refcounting. Furthermore, // its implementation has a number of strange edge cases with respect to type // conversion of its arguments. In particular, the argument's constness must // at times match exactly the function signature, or the type-inference might // break. Given the above, writing a custom solution was easier. // // // MISSING FUNCTIONALITY // - Invoking the return of Bind. Bind(&foo).Run() does not work; // - Binding arrays to functions that take a non-const pointer. // Example: // void Foo(const char* ptr); // void Bar(char* ptr); // Bind(&Foo, "test"); // Bind(&Bar, "test"); // This fails because ptr is not const. namespace base { // First, we forward declare the Callback class template. This informs the // compiler that the template only has 1 type parameter which is the function // signature that the Callback is representing. // // After this, create template specializations for 0-6 parameters. Note that // even though the template typelist grows, the specialization still // only has one type: the function signature. template class Callback; template class Callback : public internal::CallbackBase { public: typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*); Callback() : CallbackBase(NULL, NULL) { } // We pass InvokerStorageHolder by const ref to avoid incurring an // unnecessary AddRef/Unref pair even though we will modify the object. // We cannot use a normal reference because the compiler will warn // since this is often used on a return value, which is a temporary. // // Note that this constructor CANNOT be explicit, and that Bind() CANNOT // return the exact Callback<> type. See base/bind.h for details. template Callback(const internal::InvokerStorageHolder& invoker_holder) : CallbackBase( reinterpret_cast(&T::Invoker::DoInvoke), &invoker_holder.invoker_storage_) { } R Run() const { PolymorphicInvoke f = reinterpret_cast(polymorphic_invoke_); return f(invoker_storage_.get()); } }; template class Callback : public internal::CallbackBase { public: typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&); Callback() : CallbackBase(NULL, NULL) { } // We pass InvokerStorageHolder by const ref to avoid incurring an // unnecessary AddRef/Unref pair even though we will modify the object. // We cannot use a normal reference because the compiler will warn // since this is often used on a return value, which is a temporary. // // Note that this constructor CANNOT be explicit, and that Bind() CANNOT // return the exact Callback<> type. See base/bind.h for details. template Callback(const internal::InvokerStorageHolder& invoker_holder) : CallbackBase( reinterpret_cast(&T::Invoker::DoInvoke), &invoker_holder.invoker_storage_) { } R Run(const A1& a1) const { PolymorphicInvoke f = reinterpret_cast(polymorphic_invoke_); return f(invoker_storage_.get(), a1); } }; template class Callback : public internal::CallbackBase { public: typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, const A2&); Callback() : CallbackBase(NULL, NULL) { } // We pass InvokerStorageHolder by const ref to avoid incurring an // unnecessary AddRef/Unref pair even though we will modify the object. // We cannot use a normal reference because the compiler will warn // since this is often used on a return value, which is a temporary. // // Note that this constructor CANNOT be explicit, and that Bind() CANNOT // return the exact Callback<> type. See base/bind.h for details. template Callback(const internal::InvokerStorageHolder& invoker_holder) : CallbackBase( reinterpret_cast(&T::Invoker::DoInvoke), &invoker_holder.invoker_storage_) { } R Run(const A1& a1, const A2& a2) const { PolymorphicInvoke f = reinterpret_cast(polymorphic_invoke_); return f(invoker_storage_.get(), a1, a2); } }; template class Callback : public internal::CallbackBase { public: typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, const A2&, const A3&); Callback() : CallbackBase(NULL, NULL) { } // We pass InvokerStorageHolder by const ref to avoid incurring an // unnecessary AddRef/Unref pair even though we will modify the object. // We cannot use a normal reference because the compiler will warn // since this is often used on a return value, which is a temporary. // // Note that this constructor CANNOT be explicit, and that Bind() CANNOT // return the exact Callback<> type. See base/bind.h for details. template Callback(const internal::InvokerStorageHolder& invoker_holder) : CallbackBase( reinterpret_cast(&T::Invoker::DoInvoke), &invoker_holder.invoker_storage_) { } R Run(const A1& a1, const A2& a2, const A3& a3) const { PolymorphicInvoke f = reinterpret_cast(polymorphic_invoke_); return f(invoker_storage_.get(), a1, a2, a3); } }; template class Callback : public internal::CallbackBase { public: typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, const A2&, const A3&, const A4&); Callback() : CallbackBase(NULL, NULL) { } // We pass InvokerStorageHolder by const ref to avoid incurring an // unnecessary AddRef/Unref pair even though we will modify the object. // We cannot use a normal reference because the compiler will warn // since this is often used on a return value, which is a temporary. // // Note that this constructor CANNOT be explicit, and that Bind() CANNOT // return the exact Callback<> type. See base/bind.h for details. template Callback(const internal::InvokerStorageHolder& invoker_holder) : CallbackBase( reinterpret_cast(&T::Invoker::DoInvoke), &invoker_holder.invoker_storage_) { } R Run(const A1& a1, const A2& a2, const A3& a3, const A4& a4) const { PolymorphicInvoke f = reinterpret_cast(polymorphic_invoke_); return f(invoker_storage_.get(), a1, a2, a3, a4); } }; template class Callback : public internal::CallbackBase { public: typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, const A2&, const A3&, const A4&, const A5&); Callback() : CallbackBase(NULL, NULL) { } // We pass InvokerStorageHolder by const ref to avoid incurring an // unnecessary AddRef/Unref pair even though we will modify the object. // We cannot use a normal reference because the compiler will warn // since this is often used on a return value, which is a temporary. // // Note that this constructor CANNOT be explicit, and that Bind() CANNOT // return the exact Callback<> type. See base/bind.h for details. template Callback(const internal::InvokerStorageHolder& invoker_holder) : CallbackBase( reinterpret_cast(&T::Invoker::DoInvoke), &invoker_holder.invoker_storage_) { } R Run(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5) const { PolymorphicInvoke f = reinterpret_cast(polymorphic_invoke_); return f(invoker_storage_.get(), a1, a2, a3, a4, a5); } }; template class Callback : public internal::CallbackBase { public: typedef R(*PolymorphicInvoke)(internal::InvokerStorageBase*, const A1&, const A2&, const A3&, const A4&, const A5&, const A6&); Callback() : CallbackBase(NULL, NULL) { } // We pass InvokerStorageHolder by const ref to avoid incurring an // unnecessary AddRef/Unref pair even though we will modify the object. // We cannot use a normal reference because the compiler will warn // since this is often used on a return value, which is a temporary. // // Note that this constructor CANNOT be explicit, and that Bind() CANNOT // return the exact Callback<> type. See base/bind.h for details. template Callback(const internal::InvokerStorageHolder& invoker_holder) : CallbackBase( reinterpret_cast(&T::Invoker::DoInvoke), &invoker_holder.invoker_storage_) { } R Run(const A1& a1, const A2& a2, const A3& a3, const A4& a4, const A5& a5, const A6& a6) const { PolymorphicInvoke f = reinterpret_cast(polymorphic_invoke_); return f(invoker_storage_.get(), a1, a2, a3, a4, a5, a6); } }; // Syntactic sugar to make Callbacks easier to declare since it // will be used in a lot of APIs with delayed execution. typedef Callback Closure; } // namespace base #endif // BASE_CALLBACK_H