// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/crypto/rsa_private_key.h" #include #include "base/logging.h" #include "base/scoped_ptr.h" #include "base/string_util.h" // This file manually encodes and decodes RSA private keys using PrivateKeyInfo // from PKCS #8 and RSAPrivateKey from PKCS #1. These structures are: // // PrivateKeyInfo ::= SEQUENCE { // version Version, // privateKeyAlgorithm PrivateKeyAlgorithmIdentifier, // privateKey PrivateKey, // attributes [0] IMPLICIT Attributes OPTIONAL // } // // RSAPrivateKey ::= SEQUENCE { // version Version, // modulus INTEGER, // publicExponent INTEGER, // privateExponent INTEGER, // prime1 INTEGER, // prime2 INTEGER, // exponent1 INTEGER, // exponent2 INTEGER, // coefficient INTEGER // } namespace { // Helper for error handling during key import. #define READ_ASSERT(truth) \ if (!(truth)) { \ NOTREACHED(); \ return false; \ } } // namespace namespace base { const uint8 PrivateKeyInfoCodec::kRsaAlgorithmIdentifier[] = { 0x30, 0x0D, 0x06, 0x09, 0x2A, 0x86, 0x48, 0x86, 0xF7, 0x0D, 0x01, 0x01, 0x01, 0x05, 0x00 }; void PrivateKeyInfoCodec::PrependBytes(uint8* val, int start, int num_bytes, std::list* data) { while (num_bytes > 0) { --num_bytes; data->push_front(val[start + num_bytes]); } } void PrivateKeyInfoCodec::PrependLength(size_t size, std::list* data) { // The high bit is used to indicate whether additional octets are needed to // represent the length. if (size < 0x80) { data->push_front(static_cast(size)); } else { uint8 num_bytes = 0; while (size > 0) { data->push_front(static_cast(size & 0xFF)); size >>= 8; num_bytes++; } CHECK_LE(num_bytes, 4); data->push_front(0x80 | num_bytes); } } void PrivateKeyInfoCodec::PrependTypeHeaderAndLength(uint8 type, uint32 length, std::list* output) { PrependLength(length, output); output->push_front(type); } void PrivateKeyInfoCodec::PrependBitString(uint8* val, int num_bytes, std::list* output) { // Start with the data. PrependBytes(val, 0, num_bytes, output); // Zero unused bits. output->push_front(0); // Add the length. PrependLength(num_bytes + 1, output); // Finally, add the bit string tag. output->push_front((uint8) kBitStringTag); } bool PrivateKeyInfoCodec::ReadLength(uint8** pos, uint8* end, uint32* result) { READ_ASSERT(*pos < end); int length = 0; // If the MSB is not set, the length is just the byte itself. if (!(**pos & 0x80)) { length = **pos; (*pos)++; } else { // Otherwise, the lower 7 indicate the length of the length. int length_of_length = **pos & 0x7F; READ_ASSERT(length_of_length <= 4); (*pos)++; READ_ASSERT(*pos + length_of_length < end); length = 0; for (int i = 0; i < length_of_length; ++i) { length <<= 8; length |= **pos; (*pos)++; } } READ_ASSERT(*pos + length <= end); if (result) *result = length; return true; } bool PrivateKeyInfoCodec::ReadTypeHeaderAndLength(uint8** pos, uint8* end, uint8 expected_tag, uint32* length) { READ_ASSERT(*pos < end); READ_ASSERT(**pos == expected_tag); (*pos)++; return ReadLength(pos, end, length); } bool PrivateKeyInfoCodec::ReadSequence(uint8** pos, uint8* end) { return ReadTypeHeaderAndLength(pos, end, kSequenceTag, NULL); } bool PrivateKeyInfoCodec::ReadAlgorithmIdentifier(uint8** pos, uint8* end) { READ_ASSERT(*pos + sizeof(kRsaAlgorithmIdentifier) < end); READ_ASSERT(memcmp(*pos, kRsaAlgorithmIdentifier, sizeof(kRsaAlgorithmIdentifier)) == 0); (*pos) += sizeof(kRsaAlgorithmIdentifier); return true; } bool PrivateKeyInfoCodec::ReadVersion(uint8** pos, uint8* end) { uint32 length = 0; if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length)) return false; // The version should be zero. for (uint32 i = 0; i < length; ++i) { READ_ASSERT(**pos == 0x00); (*pos)++; } return true; } bool PrivateKeyInfoCodec::Export(std::vector* output) { std::list content; // Version (always zero) uint8 version = 0; PrependInteger(coefficient_, &content); PrependInteger(exponent2_, &content); PrependInteger(exponent1_, &content); PrependInteger(prime2_, &content); PrependInteger(prime1_, &content); PrependInteger(private_exponent_, &content); PrependInteger(public_exponent_, &content); PrependInteger(modulus_, &content); PrependInteger(&version, 1, &content); PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); PrependTypeHeaderAndLength(kOctetStringTag, content.size(), &content); // RSA algorithm OID for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) content.push_front(kRsaAlgorithmIdentifier[i - 1]); PrependInteger(&version, 1, &content); PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); // Copy everying into the output. output->reserve(content.size()); for (std::list::iterator i = content.begin(); i != content.end(); ++i) output->push_back(*i); return true; } bool PrivateKeyInfoCodec::ExportPublicKeyInfo(std::vector* output) { // Create a sequence with the modulus (n) and public exponent (e). std::list content; PrependInteger(&public_exponent_[0], static_cast(public_exponent_.size()), &content); PrependInteger(&modulus_[0], static_cast(modulus_.size()), &content); PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); // Copy the sequence with n and e into a buffer. std::vector bit_string; for (std::list::iterator i = content.begin(); i != content.end(); ++i) bit_string.push_back(*i); content.clear(); // Add the sequence as the contents of a bit string. PrependBitString(&bit_string[0], static_cast(bit_string.size()), &content); // Add the RSA algorithm OID. for (size_t i = sizeof(kRsaAlgorithmIdentifier); i > 0; --i) content.push_front(kRsaAlgorithmIdentifier[i - 1]); // Finally, wrap everything in a sequence. PrependTypeHeaderAndLength(kSequenceTag, content.size(), &content); // Copy everything into the output. output->reserve(content.size()); for (std::list::iterator i = content.begin(); i != content.end(); ++i) output->push_back(*i); return true; } bool PrivateKeyInfoCodec::Import(const std::vector& input) { if (input.empty()) { return false; } // Parse the private key info up to the public key values, ignoring // the subsequent private key values. uint8* src = const_cast(&input.front()); uint8* end = src + input.size(); if (!ReadSequence(&src, end) || !ReadVersion(&src, end) || !ReadAlgorithmIdentifier(&src, end) || !ReadTypeHeaderAndLength(&src, end, kOctetStringTag, NULL) || !ReadSequence(&src, end) || !ReadVersion(&src, end) || !ReadInteger(&src, end, &modulus_)) return false; int mod_size = modulus_.size(); READ_ASSERT(mod_size % 2 == 0); int primes_size = mod_size / 2; if (!ReadIntegerWithExpectedSize(&src, end, 4, &public_exponent_) || !ReadIntegerWithExpectedSize(&src, end, mod_size, &private_exponent_) || !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime1_) || !ReadIntegerWithExpectedSize(&src, end, primes_size, &prime2_) || !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent1_) || !ReadIntegerWithExpectedSize(&src, end, primes_size, &exponent2_) || !ReadIntegerWithExpectedSize(&src, end, primes_size, &coefficient_)) return false; READ_ASSERT(src == end); return true; } void PrivateKeyInfoCodec::PrependInteger(const std::vector& in, std::list* out) { uint8* ptr = const_cast(&in.front()); PrependIntegerImpl(ptr, in.size(), out, big_endian_); } // Helper to prepend an ASN.1 integer. void PrivateKeyInfoCodec::PrependInteger(uint8* val, int num_bytes, std::list* data) { PrependIntegerImpl(val, num_bytes, data, big_endian_); } void PrivateKeyInfoCodec::PrependIntegerImpl(uint8* val, int num_bytes, std::list* data, bool big_endian) { // Reverse input if little-endian. std::vector tmp; if (!big_endian) { tmp.assign(val, val + num_bytes); reverse(tmp.begin(), tmp.end()); val = &tmp.front(); } // ASN.1 integers are unpadded byte arrays, so skip any null padding bytes // from the most-significant end of the integer. int start = 0; while (start < (num_bytes - 1) && val[start] == 0x00) { start++; num_bytes--; } PrependBytes(val, start, num_bytes, data); // ASN.1 integers are signed. To encode a positive integer whose sign bit // (the most significant bit) would otherwise be set and make the number // negative, ASN.1 requires a leading null byte to force the integer to be // positive. uint8 front = data->front(); if ((front & 0x80) != 0) { data->push_front(0x00); num_bytes++; } PrependTypeHeaderAndLength(kIntegerTag, num_bytes, data); } bool PrivateKeyInfoCodec::ReadInteger(uint8** pos, uint8* end, std::vector* out) { return ReadIntegerImpl(pos, end, out, big_endian_); } bool PrivateKeyInfoCodec::ReadIntegerImpl(uint8** pos, uint8* end, std::vector* out, bool big_endian) { uint32 length = 0; if (!ReadTypeHeaderAndLength(pos, end, kIntegerTag, &length) || !length) return false; // The first byte can be zero to force positiveness. We can ignore this. if (**pos == 0x00) { ++(*pos); --length; } if (length) out->insert(out->end(), *pos, (*pos) + length); (*pos) += length; // Reverse output if little-endian. if (!big_endian) reverse(out->begin(), out->end()); return true; } bool PrivateKeyInfoCodec::ReadIntegerWithExpectedSize(uint8** pos, uint8* end, size_t expected_size, std::vector* out) { std::vector temp; if (!ReadIntegerImpl(pos, end, &temp, true)) // Big-Endian return false; int pad = expected_size - temp.size(); int index = 0; if (out->size() == expected_size + 1) { READ_ASSERT(out->front() == 0x00); pad++; index++; } else { READ_ASSERT(out->size() <= expected_size); } while (pad) { out->push_back(0x00); pad--; } out->insert(out->end(), temp.begin(), temp.end()); // Reverse output if little-endian. if (!big_endian_) reverse(out->begin(), out->end()); return true; } } // namespace base