// Copyright (c) 2009 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/crypto/rsa_private_key.h" #include #include #include "base/logging.h" #include "base/scoped_ptr.h" #include "base/string_util.h" namespace { // Helper for error handling during key import. #define READ_ASSERT(truth) \ if (!(truth)) { \ NOTREACHED(); \ return false; \ } } // namespace namespace base { // static RSAPrivateKey* RSAPrivateKey::Create(uint16 num_bits) { scoped_ptr result(new RSAPrivateKey); if (!result->InitProvider()) return NULL; DWORD flags = CRYPT_EXPORTABLE; // The size is encoded as the upper 16 bits of the flags. :: sigh ::. flags |= (num_bits << 16); if (!CryptGenKey(result->provider_, CALG_RSA_SIGN, flags, &result->key_)) return NULL; return result.release(); } // static RSAPrivateKey* RSAPrivateKey::CreateFromPrivateKeyInfo( const std::vector& input) { scoped_ptr result(new RSAPrivateKey); if (!result->InitProvider()) return NULL; PrivateKeyInfoCodec pki(false); // Little-Endian pki.Import(input); int blob_size = sizeof(PUBLICKEYSTRUC) + sizeof(RSAPUBKEY) + pki.modulus()->size() + pki.prime1()->size() + pki.prime2()->size() + pki.exponent1()->size() + pki.exponent2()->size() + pki.coefficient()->size() + pki.private_exponent()->size(); scoped_array blob(new BYTE[blob_size]); uint8* dest = blob.get(); PUBLICKEYSTRUC* public_key_struc = reinterpret_cast(dest); public_key_struc->bType = PRIVATEKEYBLOB; public_key_struc->bVersion = 0x02; public_key_struc->reserved = 0; public_key_struc->aiKeyAlg = CALG_RSA_SIGN; dest += sizeof(PUBLICKEYSTRUC); RSAPUBKEY* rsa_pub_key = reinterpret_cast(dest); rsa_pub_key->magic = 0x32415352; rsa_pub_key->bitlen = pki.modulus()->size() * 8; int public_exponent_int = 0; for (size_t i = pki.public_exponent()->size(); i > 0; --i) { public_exponent_int <<= 8; public_exponent_int |= (*pki.public_exponent())[i - 1]; } rsa_pub_key->pubexp = public_exponent_int; dest += sizeof(RSAPUBKEY); memcpy(dest, &pki.modulus()->front(), pki.modulus()->size()); dest += pki.modulus()->size(); memcpy(dest, &pki.prime1()->front(), pki.prime1()->size()); dest += pki.prime1()->size(); memcpy(dest, &pki.prime2()->front(), pki.prime2()->size()); dest += pki.prime2()->size(); memcpy(dest, &pki.exponent1()->front(), pki.exponent1()->size()); dest += pki.exponent1()->size(); memcpy(dest, &pki.exponent2()->front(), pki.exponent2()->size()); dest += pki.exponent2()->size(); memcpy(dest, &pki.coefficient()->front(), pki.coefficient()->size()); dest += pki.coefficient()->size(); memcpy(dest, &pki.private_exponent()->front(), pki.private_exponent()->size()); dest += pki.private_exponent()->size(); READ_ASSERT(dest == blob.get() + blob_size); if (!CryptImportKey( result->provider_, reinterpret_cast(public_key_struc), blob_size, NULL, CRYPT_EXPORTABLE, &result->key_)) { return NULL; } return result.release(); } RSAPrivateKey::RSAPrivateKey() : provider_(NULL), key_(NULL) {} RSAPrivateKey::~RSAPrivateKey() { if (key_) { if (!CryptDestroyKey(key_)) NOTREACHED(); } if (provider_) { if (!CryptReleaseContext(provider_, 0)) NOTREACHED(); } } bool RSAPrivateKey::InitProvider() { return FALSE != CryptAcquireContext(&provider_, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT); } bool RSAPrivateKey::ExportPrivateKey(std::vector* output) { // Export the key DWORD blob_length = 0; if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, NULL, &blob_length)) { NOTREACHED(); return false; } scoped_array blob(new uint8[blob_length]); if (!CryptExportKey(key_, NULL, PRIVATEKEYBLOB, 0, blob.get(), &blob_length)) { NOTREACHED(); return false; } uint8* pos = blob.get(); PUBLICKEYSTRUC *publickey_struct = reinterpret_cast(pos); pos += sizeof(PUBLICKEYSTRUC); RSAPUBKEY *rsa_pub_key = reinterpret_cast(pos); pos += sizeof(RSAPUBKEY); int mod_size = rsa_pub_key->bitlen / 8; int primes_size = rsa_pub_key->bitlen / 16; PrivateKeyInfoCodec pki(false); // Little-Endian pki.modulus()->assign(pos, pos + mod_size); pos += mod_size; pki.prime1()->assign(pos, pos + primes_size); pos += primes_size; pki.prime2()->assign(pos, pos + primes_size); pos += primes_size; pki.exponent1()->assign(pos, pos + primes_size); pos += primes_size; pki.exponent2()->assign(pos, pos + primes_size); pos += primes_size; pki.coefficient()->assign(pos, pos + primes_size); pos += primes_size; pki.private_exponent()->assign(pos, pos + mod_size); pos += mod_size; pki.public_exponent()->assign(reinterpret_cast(&rsa_pub_key->pubexp), reinterpret_cast(&rsa_pub_key->pubexp) + 4); CHECK_EQ(pos - blob_length, reinterpret_cast(publickey_struct)); return pki.Export(output); } bool RSAPrivateKey::ExportPublicKey(std::vector* output) { DWORD key_info_len; if (!CryptExportPublicKeyInfo( provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, NULL, &key_info_len)) { NOTREACHED(); return false; } scoped_array key_info(new uint8[key_info_len]); if (!CryptExportPublicKeyInfo( provider_, AT_SIGNATURE, X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, reinterpret_cast(key_info.get()), &key_info_len)) { NOTREACHED(); return false; } DWORD encoded_length; if (!CryptEncodeObject( X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO, reinterpret_cast(key_info.get()), NULL, &encoded_length)) { NOTREACHED(); return false; } scoped_array encoded(new BYTE[encoded_length]); if (!CryptEncodeObject( X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, X509_PUBLIC_KEY_INFO, reinterpret_cast(key_info.get()), encoded.get(), &encoded_length)) { NOTREACHED(); return false; } for (size_t i = 0; i < encoded_length; ++i) output->push_back(encoded[i]); return true; } } // namespace base