// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/file_util.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "base/basictypes.h" #include "base/eintr_wrapper.h" #include "base/file_path.h" #include "base/logging.h" #include "base/string_util.h" #include "base/time.h" #include "base/zygote_manager.h" namespace file_util { #if defined(GOOGLE_CHROME_BUILD) static const char* kTempFileName = "com.google.chrome.XXXXXX"; #else static const char* kTempFileName = "org.chromium.XXXXXX"; #endif std::wstring GetDirectoryFromPath(const std::wstring& path) { if (EndsWithSeparator(path)) { std::wstring dir = path; TrimTrailingSeparator(&dir); return dir; } else { char full_path[PATH_MAX]; base::strlcpy(full_path, WideToUTF8(path).c_str(), arraysize(full_path)); return UTF8ToWide(dirname(full_path)); } } bool AbsolutePath(FilePath* path) { char full_path[PATH_MAX]; if (realpath(path->value().c_str(), full_path) == NULL) return false; *path = FilePath(full_path); return true; } int CountFilesCreatedAfter(const FilePath& path, const base::Time& comparison_time) { int file_count = 0; DIR* dir = opendir(path.value().c_str()); if (dir) { struct dirent ent_buf; struct dirent* ent; while (readdir_r(dir, &ent_buf, &ent) == 0 && ent) { if ((strcmp(ent->d_name, ".") == 0) || (strcmp(ent->d_name, "..") == 0)) continue; struct stat64 st; int test = stat64(path.Append(ent->d_name).value().c_str(), &st); if (test != 0) { LOG(ERROR) << "stat64 failed: " << strerror(errno); continue; } // Here, we use Time::TimeT(), which discards microseconds. This // means that files which are newer than |comparison_time| may // be considered older. If we don't discard microseconds, it // introduces another issue. Suppose the following case: // // 1. Get |comparison_time| by Time::Now() and the value is 10.1 (secs). // 2. Create a file and the current time is 10.3 (secs). // // As POSIX doesn't have microsecond precision for |st_ctime|, // the creation time of the file created in the step 2 is 10 and // the file is considered older than |comparison_time|. After // all, we may have to accept either of the two issues: 1. files // which are older than |comparison_time| are considered newer // (current implementation) 2. files newer than // |comparison_time| are considered older. if (st.st_ctime >= comparison_time.ToTimeT()) ++file_count; } closedir(dir); } return file_count; } // TODO(erikkay): The Windows version of this accepts paths like "foo/bar/*" // which works both with and without the recursive flag. I'm not sure we need // that functionality. If not, remove from file_util_win.cc, otherwise add it // here. bool Delete(const FilePath& path, bool recursive) { const char* path_str = path.value().c_str(); struct stat64 file_info; int test = stat64(path_str, &file_info); if (test != 0) { // The Windows version defines this condition as success. bool ret = (errno == ENOENT || errno == ENOTDIR); return ret; } if (!S_ISDIR(file_info.st_mode)) return (unlink(path_str) == 0); if (!recursive) return (rmdir(path_str) == 0); bool success = true; int ftsflags = FTS_PHYSICAL | FTS_NOSTAT; char top_dir[PATH_MAX]; if (base::strlcpy(top_dir, path_str, arraysize(top_dir)) >= arraysize(top_dir)) { return false; } char* dir_list[2] = { top_dir, NULL }; FTS* fts = fts_open(dir_list, ftsflags, NULL); if (fts) { FTSENT* fts_ent = fts_read(fts); while (success && fts_ent != NULL) { switch (fts_ent->fts_info) { case FTS_DNR: case FTS_ERR: // log error success = false; continue; break; case FTS_DP: success = (rmdir(fts_ent->fts_accpath) == 0); break; case FTS_D: break; case FTS_NSOK: case FTS_F: case FTS_SL: case FTS_SLNONE: success = (unlink(fts_ent->fts_accpath) == 0); break; default: DCHECK(false); break; } fts_ent = fts_read(fts); } fts_close(fts); } return success; } bool Move(const FilePath& from_path, const FilePath& to_path) { if (rename(from_path.value().c_str(), to_path.value().c_str()) == 0) return true; if (!CopyDirectory(from_path, to_path, true)) return false; Delete(from_path, true); return true; } bool ReplaceFile(const FilePath& from_path, const FilePath& to_path) { return (rename(from_path.value().c_str(), to_path.value().c_str()) == 0); } bool CopyDirectory(const FilePath& from_path, const FilePath& to_path, bool recursive) { // Some old callers of CopyDirectory want it to support wildcards. // After some discussion, we decided to fix those callers. // Break loudly here if anyone tries to do this. // TODO(evanm): remove this once we're sure it's ok. DCHECK(to_path.value().find('*') == std::string::npos); DCHECK(from_path.value().find('*') == std::string::npos); char top_dir[PATH_MAX]; if (base::strlcpy(top_dir, from_path.value().c_str(), arraysize(top_dir)) >= arraysize(top_dir)) { return false; } char* dir_list[] = { top_dir, NULL }; FTS* fts = fts_open(dir_list, FTS_PHYSICAL | FTS_NOSTAT, NULL); if (!fts) { LOG(ERROR) << "fts_open failed: " << strerror(errno); return false; } int error = 0; FTSENT* ent; while (!error && (ent = fts_read(fts)) != NULL) { // ent->fts_path is the source path, including from_path, so paste // the suffix after from_path onto to_path to create the target_path. std::string suffix(&ent->fts_path[from_path.value().size()]); // Strip the leading '/' (if any). if (!suffix.empty()) { DCHECK_EQ('/', suffix[0]); suffix.erase(0, 1); } const FilePath target_path = to_path.Append(suffix); switch (ent->fts_info) { case FTS_D: // Preorder directory. // If we encounter a subdirectory in a non-recursive copy, prune it // from the traversal. if (!recursive && ent->fts_level > 0) { if (fts_set(fts, ent, FTS_SKIP) != 0) error = errno; continue; } // Try creating the target dir, continuing on it if it exists already. if (mkdir(target_path.value().c_str(), 0700) != 0) { if (errno != EEXIST) error = errno; } break; case FTS_F: // Regular file. case FTS_NSOK: // File, no stat info requested. errno = 0; if (!CopyFile(FilePath(ent->fts_path), target_path)) error = errno ? errno : EINVAL; break; case FTS_DP: // Postorder directory. case FTS_DOT: // "." or ".." // Skip it. continue; case FTS_DC: // Directory causing a cycle. // Skip this branch. if (fts_set(fts, ent, FTS_SKIP) != 0) error = errno; break; case FTS_DNR: // Directory cannot be read. case FTS_ERR: // Error. case FTS_NS: // Stat failed. // Abort with the error. error = ent->fts_errno; break; case FTS_SL: // Symlink. case FTS_SLNONE: // Symlink with broken target. LOG(WARNING) << "CopyDirectory() skipping symbolic link: " << ent->fts_path; continue; case FTS_DEFAULT: // Some other sort of file. LOG(WARNING) << "CopyDirectory() skipping file of unknown type: " << ent->fts_path; continue; default: NOTREACHED(); continue; // Hope for the best! } } // fts_read may have returned NULL and set errno to indicate an error. if (!error && errno != 0) error = errno; if (!fts_close(fts)) { // If we already have an error, let's use that error instead of the error // fts_close set. if (!error) error = errno; } if (error) { LOG(ERROR) << "CopyDirectory(): " << strerror(error); return false; } return true; } bool PathExists(const FilePath& path) { struct stat64 file_info; return (stat64(path.value().c_str(), &file_info) == 0); } bool PathIsWritable(const FilePath& path) { FilePath test_path(path); struct stat64 file_info; if (stat64(test_path.value().c_str(), &file_info) != 0) { // If the path doesn't exist, test the parent dir. test_path = test_path.DirName(); // If the parent dir doesn't exist, then return false (the path is not // directly writable). if (stat64(test_path.value().c_str(), &file_info) != 0) return false; } if (S_IWOTH & file_info.st_mode) return true; if (getegid() == file_info.st_gid && (S_IWGRP & file_info.st_mode)) return true; if (geteuid() == file_info.st_uid && (S_IWUSR & file_info.st_mode)) return true; return false; } bool DirectoryExists(const FilePath& path) { struct stat64 file_info; if (stat64(path.value().c_str(), &file_info) == 0) return S_ISDIR(file_info.st_mode); return false; } // TODO(erikkay): implement #if 0 bool GetFileCreationLocalTimeFromHandle(int fd, LPSYSTEMTIME creation_time) { if (!file_handle) return false; FILETIME utc_filetime; if (!GetFileTime(file_handle, &utc_filetime, NULL, NULL)) return false; FILETIME local_filetime; if (!FileTimeToLocalFileTime(&utc_filetime, &local_filetime)) return false; return !!FileTimeToSystemTime(&local_filetime, creation_time); } bool GetFileCreationLocalTime(const std::string& filename, LPSYSTEMTIME creation_time) { ScopedHandle file_handle( CreateFile(filename.c_str(), GENERIC_READ, FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL)); return GetFileCreationLocalTimeFromHandle(file_handle.Get(), creation_time); } #endif bool ReadFromFD(int fd, char* buffer, size_t bytes) { size_t total_read = 0; while (total_read < bytes) { ssize_t bytes_read = HANDLE_EINTR(read(fd, buffer + total_read, bytes - total_read)); if (bytes_read <= 0) break; total_read += bytes_read; } return total_read == bytes; } // Creates and opens a temporary file in |directory|, returning the // file descriptor. |path| is set to the temporary file path. // Note TODO(erikkay) comment in header for BlahFileName() calls; the // intent is to rename these files BlahFile() (since they create // files, not filenames). This function does NOT unlink() the file. int CreateAndOpenFdForTemporaryFile(FilePath directory, FilePath* path) { *path = directory.Append(kTempFileName); const std::string& tmpdir_string = path->value(); // this should be OK since mkstemp just replaces characters in place char* buffer = const_cast(tmpdir_string.c_str()); return mkstemp(buffer); } bool CreateTemporaryFileName(FilePath* path) { FilePath directory; if (!GetTempDir(&directory)) return false; int fd = CreateAndOpenFdForTemporaryFile(directory, path); if (fd < 0) return false; close(fd); return true; } FILE* CreateAndOpenTemporaryShmemFile(FilePath* path) { FilePath directory; if (!GetShmemTempDir(&directory)) return false; return CreateAndOpenTemporaryFileInDir(directory, path); } FILE* CreateAndOpenTemporaryFileInDir(const FilePath& dir, FilePath* path) { int fd = CreateAndOpenFdForTemporaryFile(dir, path); if (fd < 0) return NULL; return fdopen(fd, "a+"); } bool CreateTemporaryFileNameInDir(const std::wstring& dir, std::wstring* temp_file) { // Not implemented yet. NOTREACHED(); return false; } bool CreateNewTempDirectory(const FilePath::StringType& prefix, FilePath* new_temp_path) { FilePath tmpdir; if (!GetTempDir(&tmpdir)) return false; tmpdir = tmpdir.Append(kTempFileName); std::string tmpdir_string = tmpdir.value(); // this should be OK since mkdtemp just replaces characters in place char* buffer = const_cast(tmpdir_string.c_str()); char* dtemp = mkdtemp(buffer); if (!dtemp) return false; *new_temp_path = FilePath(dtemp); return true; } bool CreateDirectory(const FilePath& full_path) { std::vector subpaths; // Collect a list of all parent directories. FilePath last_path = full_path; subpaths.push_back(full_path); for (FilePath path = full_path.DirName(); path.value() != last_path.value(); path = path.DirName()) { subpaths.push_back(path); last_path = path; } // Iterate through the parents and create the missing ones. for (std::vector::reverse_iterator i = subpaths.rbegin(); i != subpaths.rend(); ++i) { if (!DirectoryExists(*i)) { if (mkdir(i->value().c_str(), 0700) != 0) return false; } } return true; } bool GetFileInfo(const FilePath& file_path, FileInfo* results) { struct stat64 file_info; if (stat64(file_path.value().c_str(), &file_info) != 0) return false; results->is_directory = S_ISDIR(file_info.st_mode); results->size = file_info.st_size; return true; } bool GetInode(const FilePath& path, ino_t* inode) { struct stat buffer; int result = stat(path.value().c_str(), &buffer); if (result < 0) return false; *inode = buffer.st_ino; return true; } FILE* OpenFile(const std::string& filename, const char* mode) { return OpenFile(FilePath(filename), mode); } FILE* OpenFile(const FilePath& filename, const char* mode) { return fopen(filename.value().c_str(), mode); } int ReadFile(const FilePath& filename, char* data, int size) { int fd = open(filename.value().c_str(), O_RDONLY); if (fd < 0) return -1; int ret_value = HANDLE_EINTR(read(fd, data, size)); HANDLE_EINTR(close(fd)); return ret_value; } int WriteFile(const FilePath& filename, const char* data, int size) { int fd = creat(filename.value().c_str(), 0666); if (fd < 0) return -1; // Allow for partial writes ssize_t bytes_written_total = 0; do { ssize_t bytes_written_partial = HANDLE_EINTR(write(fd, data + bytes_written_total, size - bytes_written_total)); if (bytes_written_partial < 0) { HANDLE_EINTR(close(fd)); return -1; } bytes_written_total += bytes_written_partial; } while (bytes_written_total < size); HANDLE_EINTR(close(fd)); return bytes_written_total; } // Gets the current working directory for the process. bool GetCurrentDirectory(FilePath* dir) { char system_buffer[PATH_MAX] = ""; if (!getcwd(system_buffer, sizeof(system_buffer))) { NOTREACHED(); return false; } *dir = FilePath(system_buffer); return true; } // Sets the current working directory for the process. bool SetCurrentDirectory(const FilePath& path) { int ret = chdir(path.value().c_str()); return !ret; } /////////////////////////////////////////////// // FileEnumerator FileEnumerator::FileEnumerator(const FilePath& root_path, bool recursive, FileEnumerator::FILE_TYPE file_type) : recursive_(recursive), file_type_(file_type), is_in_find_op_(false), fts_(NULL) { pending_paths_.push(root_path); } FileEnumerator::FileEnumerator(const FilePath& root_path, bool recursive, FileEnumerator::FILE_TYPE file_type, const FilePath::StringType& pattern) : recursive_(recursive), file_type_(file_type), pattern_(root_path.value()), is_in_find_op_(false), fts_(NULL) { // The Windows version of this code only matches against items in the top-most // directory, and we're comparing fnmatch against full paths, so this is the // easiest way to get the right pattern. pattern_ = pattern_.Append(pattern); pending_paths_.push(root_path); } FileEnumerator::~FileEnumerator() { if (fts_) fts_close(fts_); } void FileEnumerator::GetFindInfo(FindInfo* info) { DCHECK(info); if (!is_in_find_op_) return; memcpy(&(info->stat), fts_ent_->fts_statp, sizeof(info->stat)); info->filename.assign(fts_ent_->fts_name); } // As it stands, this method calls itself recursively when the next item of // the fts enumeration doesn't match (type, pattern, etc.). In the case of // large directories with many files this can be quite deep. // TODO(erikkay) - get rid of this recursive pattern FilePath FileEnumerator::Next() { if (!is_in_find_op_) { if (pending_paths_.empty()) return FilePath(); // The last find FindFirstFile operation is done, prepare a new one. root_path_ = pending_paths_.top(); root_path_ = root_path_.StripTrailingSeparators(); pending_paths_.pop(); // Start a new find operation. int ftsflags = FTS_LOGICAL; char top_dir[PATH_MAX]; base::strlcpy(top_dir, root_path_.value().c_str(), arraysize(top_dir)); char* dir_list[2] = { top_dir, NULL }; fts_ = fts_open(dir_list, ftsflags, NULL); if (!fts_) return Next(); is_in_find_op_ = true; } fts_ent_ = fts_read(fts_); if (fts_ent_ == NULL) { fts_close(fts_); fts_ = NULL; is_in_find_op_ = false; return Next(); } // Level 0 is the top, which is always skipped. if (fts_ent_->fts_level == 0) return Next(); // Patterns are only matched on the items in the top-most directory. // (see Windows implementation) if (fts_ent_->fts_level == 1 && pattern_.value().length() > 0) { if (fnmatch(pattern_.value().c_str(), fts_ent_->fts_path, 0) != 0) { if (fts_ent_->fts_info == FTS_D) fts_set(fts_, fts_ent_, FTS_SKIP); return Next(); } } FilePath cur_file(fts_ent_->fts_path); if (fts_ent_->fts_info == FTS_D) { // If not recursive, then prune children. if (!recursive_) fts_set(fts_, fts_ent_, FTS_SKIP); return (file_type_ & FileEnumerator::DIRECTORIES) ? cur_file : Next(); } else if (fts_ent_->fts_info == FTS_F) { return (file_type_ & FileEnumerator::FILES) ? cur_file : Next(); } // TODO(erikkay) - verify that the other fts_info types aren't interesting return Next(); } /////////////////////////////////////////////// // MemoryMappedFile MemoryMappedFile::MemoryMappedFile() : file_(-1), data_(NULL), length_(0) { } bool MemoryMappedFile::MapFileToMemory(const FilePath& file_name) { file_ = -1; #if defined(OS_LINUX) base::ZygoteManager* zm = base::ZygoteManager::Get(); if (zm) { file_ = zm->OpenFile(file_name.value().c_str()); if (file_ == -1) { LOG(INFO) << "Zygote manager can't open " << file_name.value() << ", retrying locally"; } } #endif // defined(OS_LINUX) if (file_ == -1) file_ = open(file_name.value().c_str(), O_RDONLY); if (file_ == -1) { LOG(ERROR) << "Couldn't open " << file_name.value(); return false; } struct stat file_stat; if (fstat(file_, &file_stat) == -1) { LOG(ERROR) << "Couldn't fstat " << file_name.value() << ", errno " << errno; return false; } length_ = file_stat.st_size; data_ = static_cast( mmap(NULL, length_, PROT_READ, MAP_SHARED, file_, 0)); if (data_ == MAP_FAILED) LOG(ERROR) << "Couldn't mmap " << file_name.value() << ", errno " << errno; return data_ != MAP_FAILED; } void MemoryMappedFile::CloseHandles() { if (data_ != NULL) munmap(data_, length_); if (file_ != -1) close(file_); data_ = NULL; length_ = 0; file_ = -1; } } // namespace file_util