// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/files/file_path_watcher_kqueue.h" #include #include #include "base/bind.h" #include "base/files/file_util.h" #include "base/logging.h" #include "base/strings/stringprintf.h" #include "base/thread_task_runner_handle.h" // On some platforms these are not defined. #if !defined(EV_RECEIPT) #define EV_RECEIPT 0 #endif #if !defined(O_EVTONLY) #define O_EVTONLY O_RDONLY #endif namespace base { FilePathWatcherKQueue::FilePathWatcherKQueue() : kqueue_(-1) {} FilePathWatcherKQueue::~FilePathWatcherKQueue() {} void FilePathWatcherKQueue::ReleaseEvent(struct kevent& event) { CloseFileDescriptor(&event.ident); EventData* entry = EventDataForKevent(event); delete entry; event.udata = NULL; } int FilePathWatcherKQueue::EventsForPath(FilePath path, EventVector* events) { DCHECK(MessageLoopForIO::current()); // Make sure that we are working with a clean slate. DCHECK(events->empty()); std::vector components; path.GetComponents(&components); if (components.size() < 1) { return -1; } int last_existing_entry = 0; FilePath built_path; bool path_still_exists = true; for (std::vector::iterator i = components.begin(); i != components.end(); ++i) { if (i == components.begin()) { built_path = FilePath(*i); } else { built_path = built_path.Append(*i); } uintptr_t fd = kNoFileDescriptor; if (path_still_exists) { fd = FileDescriptorForPath(built_path); if (fd == kNoFileDescriptor) { path_still_exists = false; } else { ++last_existing_entry; } } FilePath::StringType subdir = (i != (components.end() - 1)) ? *(i + 1) : ""; EventData* data = new EventData(built_path, subdir); struct kevent event; EV_SET(&event, fd, EVFILT_VNODE, (EV_ADD | EV_CLEAR | EV_RECEIPT), (NOTE_DELETE | NOTE_WRITE | NOTE_ATTRIB | NOTE_RENAME | NOTE_REVOKE | NOTE_EXTEND), 0, data); events->push_back(event); } return last_existing_entry; } uintptr_t FilePathWatcherKQueue::FileDescriptorForPath(const FilePath& path) { int fd = HANDLE_EINTR(open(path.value().c_str(), O_EVTONLY)); if (fd == -1) return kNoFileDescriptor; return fd; } void FilePathWatcherKQueue::CloseFileDescriptor(uintptr_t* fd) { if (*fd == kNoFileDescriptor) { return; } if (IGNORE_EINTR(close(*fd)) != 0) { DPLOG(ERROR) << "close"; } *fd = kNoFileDescriptor; } bool FilePathWatcherKQueue::AreKeventValuesValid(struct kevent* kevents, int count) { if (count < 0) { DPLOG(ERROR) << "kevent"; return false; } bool valid = true; for (int i = 0; i < count; ++i) { if (kevents[i].flags & EV_ERROR && kevents[i].data) { // Find the kevent in |events_| that matches the kevent with the error. EventVector::iterator event = events_.begin(); for (; event != events_.end(); ++event) { if (event->ident == kevents[i].ident) { break; } } std::string path_name; if (event != events_.end()) { EventData* event_data = EventDataForKevent(*event); if (event_data != NULL) { path_name = event_data->path_.value(); } } if (path_name.empty()) { path_name = base::StringPrintf( "fd %ld", reinterpret_cast(&kevents[i].ident)); } DLOG(ERROR) << "Error: " << kevents[i].data << " for " << path_name; valid = false; } } return valid; } void FilePathWatcherKQueue::HandleAttributesChange( const EventVector::iterator& event, bool* target_file_affected, bool* update_watches) { EventVector::iterator next_event = event + 1; EventData* next_event_data = EventDataForKevent(*next_event); // Check to see if the next item in path is still accessible. uintptr_t have_access = FileDescriptorForPath(next_event_data->path_); if (have_access == kNoFileDescriptor) { *target_file_affected = true; *update_watches = true; EventVector::iterator local_event(event); for (; local_event != events_.end(); ++local_event) { // Close all nodes from the event down. This has the side effect of // potentially rendering other events in |updates| invalid. // There is no need to remove the events from |kqueue_| because this // happens as a side effect of closing the file descriptor. CloseFileDescriptor(&local_event->ident); } } else { CloseFileDescriptor(&have_access); } } void FilePathWatcherKQueue::HandleDeleteOrMoveChange( const EventVector::iterator& event, bool* target_file_affected, bool* update_watches) { *target_file_affected = true; *update_watches = true; EventVector::iterator local_event(event); for (; local_event != events_.end(); ++local_event) { // Close all nodes from the event down. This has the side effect of // potentially rendering other events in |updates| invalid. // There is no need to remove the events from |kqueue_| because this // happens as a side effect of closing the file descriptor. CloseFileDescriptor(&local_event->ident); } } void FilePathWatcherKQueue::HandleCreateItemChange( const EventVector::iterator& event, bool* target_file_affected, bool* update_watches) { // Get the next item in the path. EventVector::iterator next_event = event + 1; // Check to see if it already has a valid file descriptor. if (!IsKeventFileDescriptorOpen(*next_event)) { EventData* next_event_data = EventDataForKevent(*next_event); // If not, attempt to open a file descriptor for it. next_event->ident = FileDescriptorForPath(next_event_data->path_); if (IsKeventFileDescriptorOpen(*next_event)) { *update_watches = true; if (next_event_data->subdir_.empty()) { *target_file_affected = true; } } } } bool FilePathWatcherKQueue::UpdateWatches(bool* target_file_affected) { // Iterate over events adding kevents for items that exist to the kqueue. // Then check to see if new components in the path have been created. // Repeat until no new components in the path are detected. // This is to get around races in directory creation in a watched path. bool update_watches = true; while (update_watches) { size_t valid; for (valid = 0; valid < events_.size(); ++valid) { if (!IsKeventFileDescriptorOpen(events_[valid])) { break; } } if (valid == 0) { // The root of the file path is inaccessible? return false; } EventVector updates(valid); int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], valid, &updates[0], valid, NULL)); if (!AreKeventValuesValid(&updates[0], count)) { return false; } update_watches = false; for (; valid < events_.size(); ++valid) { EventData* event_data = EventDataForKevent(events_[valid]); events_[valid].ident = FileDescriptorForPath(event_data->path_); if (IsKeventFileDescriptorOpen(events_[valid])) { update_watches = true; if (event_data->subdir_.empty()) { *target_file_affected = true; } } else { break; } } } return true; } void FilePathWatcherKQueue::OnFileCanReadWithoutBlocking(int fd) { DCHECK(MessageLoopForIO::current()); DCHECK_EQ(fd, kqueue_); DCHECK(events_.size()); // Request the file system update notifications that have occurred and return // them in |updates|. |count| will contain the number of updates that have // occurred. EventVector updates(events_.size()); struct timespec timeout = {0, 0}; int count = HANDLE_EINTR(kevent(kqueue_, NULL, 0, &updates[0], updates.size(), &timeout)); // Error values are stored within updates, so check to make sure that no // errors occurred. if (!AreKeventValuesValid(&updates[0], count)) { callback_.Run(target_, true /* error */); Cancel(); return; } bool update_watches = false; bool send_notification = false; // Iterate through each of the updates and react to them. for (int i = 0; i < count; ++i) { // Find our kevent record that matches the update notification. EventVector::iterator event = events_.begin(); for (; event != events_.end(); ++event) { if (!IsKeventFileDescriptorOpen(*event) || event->ident == updates[i].ident) { break; } } if (event == events_.end() || !IsKeventFileDescriptorOpen(*event)) { // The event may no longer exist in |events_| because another event // modified |events_| in such a way to make it invalid. For example if // the path is /foo/bar/bam and foo is deleted, NOTE_DELETE events for // foo, bar and bam will be sent. If foo is processed first, then // the file descriptors for bar and bam will already be closed and set // to -1 before they get a chance to be processed. continue; } EventData* event_data = EventDataForKevent(*event); // If the subdir is empty, this is the last item on the path and is the // target file. bool target_file_affected = event_data->subdir_.empty(); if ((updates[i].fflags & NOTE_ATTRIB) && !target_file_affected) { HandleAttributesChange(event, &target_file_affected, &update_watches); } if (updates[i].fflags & (NOTE_DELETE | NOTE_REVOKE | NOTE_RENAME)) { HandleDeleteOrMoveChange(event, &target_file_affected, &update_watches); } if ((updates[i].fflags & NOTE_WRITE) && !target_file_affected) { HandleCreateItemChange(event, &target_file_affected, &update_watches); } send_notification |= target_file_affected; } if (update_watches) { if (!UpdateWatches(&send_notification)) { callback_.Run(target_, true /* error */); Cancel(); } } if (send_notification) { callback_.Run(target_, false); } } void FilePathWatcherKQueue::OnFileCanWriteWithoutBlocking(int fd) { NOTREACHED(); } void FilePathWatcherKQueue::WillDestroyCurrentMessageLoop() { CancelOnMessageLoopThread(); } bool FilePathWatcherKQueue::Watch(const FilePath& path, bool recursive, const FilePathWatcher::Callback& callback) { DCHECK(MessageLoopForIO::current()); DCHECK(target_.value().empty()); // Can only watch one path. DCHECK(!callback.is_null()); DCHECK_EQ(kqueue_, -1); if (recursive) { // Recursive watch is not supported using kqueue. NOTIMPLEMENTED(); return false; } callback_ = callback; target_ = path; MessageLoop::current()->AddDestructionObserver(this); io_task_runner_ = ThreadTaskRunnerHandle::Get(); kqueue_ = kqueue(); if (kqueue_ == -1) { DPLOG(ERROR) << "kqueue"; return false; } int last_entry = EventsForPath(target_, &events_); DCHECK_NE(last_entry, 0); EventVector responses(last_entry); int count = HANDLE_EINTR(kevent(kqueue_, &events_[0], last_entry, &responses[0], last_entry, NULL)); if (!AreKeventValuesValid(&responses[0], count)) { // Calling Cancel() here to close any file descriptors that were opened. // This would happen in the destructor anyways, but FilePathWatchers tend to // be long lived, and if an error has occurred, there is no reason to waste // the file descriptors. Cancel(); return false; } return MessageLoopForIO::current()->WatchFileDescriptor( kqueue_, true, MessageLoopForIO::WATCH_READ, &kqueue_watcher_, this); } void FilePathWatcherKQueue::Cancel() { SingleThreadTaskRunner* task_runner = io_task_runner_.get(); if (!task_runner) { set_cancelled(); return; } if (!task_runner->BelongsToCurrentThread()) { task_runner->PostTask(FROM_HERE, base::Bind(&FilePathWatcherKQueue::Cancel, this)); return; } CancelOnMessageLoopThread(); } void FilePathWatcherKQueue::CancelOnMessageLoopThread() { DCHECK(MessageLoopForIO::current()); if (!is_cancelled()) { set_cancelled(); kqueue_watcher_.StopWatchingFileDescriptor(); if (IGNORE_EINTR(close(kqueue_)) != 0) { DPLOG(ERROR) << "close kqueue"; } kqueue_ = -1; std::for_each(events_.begin(), events_.end(), ReleaseEvent); events_.clear(); io_task_runner_ = NULL; MessageLoop::current()->RemoveDestructionObserver(this); callback_.Reset(); } } } // namespace base