// Copyright (c) 2006-2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Histogram is an object that aggregates statistics, and can summarize them in // various forms, including ASCII graphical, HTML, and numerically (as a // vector of numbers corresponding to each of the aggregating buckets). // See header file for details and examples. #include "base/histogram.h" #include #include #include "base/lock.h" #include "base/logging.h" #include "base/pickle.h" #include "base/string_util.h" using base::TimeDelta; typedef Histogram::Count Count; scoped_refptr Histogram::FactoryGet(const std::string& name, Sample minimum, Sample maximum, size_t bucket_count, Flags flags) { scoped_refptr histogram(NULL); // Defensive code. if (minimum <= 0) minimum = 1; if (maximum >= kSampleType_MAX) maximum = kSampleType_MAX - 1; if (!StatisticsRecorder::FindHistogram(name, &histogram)) { histogram = new Histogram(name, minimum, maximum, bucket_count); StatisticsRecorder::FindHistogram(name, &histogram); } DCHECK(HISTOGRAM == histogram->histogram_type()); DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count)); histogram->SetFlags(flags); return histogram; } scoped_refptr Histogram::FactoryTimeGet(const std::string& name, base::TimeDelta minimum, base::TimeDelta maximum, size_t bucket_count, Flags flags) { return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(), bucket_count, flags); } Histogram::Histogram(const std::string& name, Sample minimum, Sample maximum, size_t bucket_count) : histogram_name_(name), declared_min_(minimum), declared_max_(maximum), bucket_count_(bucket_count), flags_(kNoFlags), ranges_(bucket_count + 1, 0), sample_() { Initialize(); } Histogram::Histogram(const std::string& name, TimeDelta minimum, TimeDelta maximum, size_t bucket_count) : histogram_name_(name), declared_min_(static_cast (minimum.InMilliseconds())), declared_max_(static_cast (maximum.InMilliseconds())), bucket_count_(bucket_count), flags_(kNoFlags), ranges_(bucket_count + 1, 0), sample_() { Initialize(); } Histogram::~Histogram() { if (StatisticsRecorder::dump_on_exit()) { std::string output; WriteAscii(true, "\n", &output); LOG(INFO) << output; } // Just to make sure most derived class did this properly... DCHECK(ValidateBucketRanges()); } void Histogram::Add(int value) { if (value >= kSampleType_MAX) value = kSampleType_MAX - 1; if (value < 0) value = 0; size_t index = BucketIndex(value); DCHECK(value >= ranges(index)); DCHECK(value < ranges(index + 1)); Accumulate(value, 1, index); } void Histogram::AddSampleSet(const SampleSet& sample) { sample_.Add(sample); } // The following methods provide a graphical histogram display. void Histogram::WriteHTMLGraph(std::string* output) const { // TBD(jar) Write a nice HTML bar chart, with divs an mouse-overs etc. output->append("
");
  WriteAscii(true, "
", output); output->append("
"); } void Histogram::WriteAscii(bool graph_it, const std::string& newline, std::string* output) const { // Get local (stack) copies of all effectively volatile class data so that we // are consistent across our output activities. SampleSet snapshot; SnapshotSample(&snapshot); Count sample_count = snapshot.TotalCount(); WriteAsciiHeader(snapshot, sample_count, output); output->append(newline); // Prepare to normalize graphical rendering of bucket contents. double max_size = 0; if (graph_it) max_size = GetPeakBucketSize(snapshot); // Calculate space needed to print bucket range numbers. Leave room to print // nearly the largest bucket range without sliding over the histogram. size_t largest_non_empty_bucket = bucket_count() - 1; while (0 == snapshot.counts(largest_non_empty_bucket)) { if (0 == largest_non_empty_bucket) break; // All buckets are empty. --largest_non_empty_bucket; } // Calculate largest print width needed for any of our bucket range displays. size_t print_width = 1; for (size_t i = 0; i < bucket_count(); ++i) { if (snapshot.counts(i)) { size_t width = GetAsciiBucketRange(i).size() + 1; if (width > print_width) print_width = width; } } int64 remaining = sample_count; int64 past = 0; // Output the actual histogram graph. for (size_t i = 0; i < bucket_count(); ++i) { Count current = snapshot.counts(i); if (!current && !PrintEmptyBucket(i)) continue; remaining -= current; std::string range = GetAsciiBucketRange(i); output->append(range); for (size_t j = 0; range.size() + j < print_width + 1; ++j) output->push_back(' '); if (0 == current && i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) { while (i < bucket_count() - 1 && 0 == snapshot.counts(i + 1)) ++i; output->append("... "); output->append(newline); continue; // No reason to plot emptiness. } double current_size = GetBucketSize(current, i); if (graph_it) WriteAsciiBucketGraph(current_size, max_size, output); WriteAsciiBucketContext(past, current, remaining, i, output); output->append(newline); past += current; } DCHECK(past == sample_count); } bool Histogram::ValidateBucketRanges() const { // Standard assertions that all bucket ranges should satisfy. DCHECK(ranges_.size() == bucket_count_ + 1); DCHECK_EQ(ranges_[0], 0); DCHECK(declared_min() == ranges_[1]); DCHECK(declared_max() == ranges_[bucket_count_ - 1]); DCHECK(kSampleType_MAX == ranges_[bucket_count_]); return true; } void Histogram::Initialize() { sample_.Resize(*this); if (declared_min_ <= 0) declared_min_ = 1; if (declared_max_ >= kSampleType_MAX) declared_max_ = kSampleType_MAX - 1; DCHECK(declared_min_ <= declared_max_); DCHECK_GT(bucket_count_, 1u); size_t maximal_bucket_count = declared_max_ - declared_min_ + 2; DCHECK(bucket_count_ <= maximal_bucket_count); DCHECK_EQ(ranges_[0], 0); ranges_[bucket_count_] = kSampleType_MAX; InitializeBucketRange(); DCHECK(ValidateBucketRanges()); StatisticsRecorder::Register(this); } // Calculate what range of values are held in each bucket. // We have to be careful that we don't pick a ratio between starting points in // consecutive buckets that is sooo small, that the integer bounds are the same // (effectively making one bucket get no values). We need to avoid: // (ranges_[i] == ranges_[i + 1] // To avoid that, we just do a fine-grained bucket width as far as we need to // until we get a ratio that moves us along at least 2 units at a time. From // that bucket onward we do use the exponential growth of buckets. void Histogram::InitializeBucketRange() { double log_max = log(static_cast(declared_max())); double log_ratio; double log_next; size_t bucket_index = 1; Sample current = declared_min(); SetBucketRange(bucket_index, current); while (bucket_count() > ++bucket_index) { double log_current; log_current = log(static_cast(current)); // Calculate the count'th root of the range. log_ratio = (log_max - log_current) / (bucket_count() - bucket_index); // See where the next bucket would start. log_next = log_current + log_ratio; int next; next = static_cast(floor(exp(log_next) + 0.5)); if (next > current) current = next; else ++current; // Just do a narrow bucket, and keep trying. SetBucketRange(bucket_index, current); } DCHECK(bucket_count() == bucket_index); } size_t Histogram::BucketIndex(Sample value) const { // Use simple binary search. This is very general, but there are better // approaches if we knew that the buckets were linearly distributed. DCHECK(ranges(0) <= value); DCHECK(ranges(bucket_count()) > value); size_t under = 0; size_t over = bucket_count(); size_t mid; do { DCHECK(over >= under); mid = (over + under)/2; if (mid == under) break; if (ranges(mid) <= value) under = mid; else over = mid; } while (true); DCHECK(ranges(mid) <= value && ranges(mid+1) > value); return mid; } // Use the actual bucket widths (like a linear histogram) until the widths get // over some transition value, and then use that transition width. Exponentials // get so big so fast (and we don't expect to see a lot of entries in the large // buckets), so we need this to make it possible to see what is going on and // not have 0-graphical-height buckets. double Histogram::GetBucketSize(Count current, size_t i) const { DCHECK(ranges(i + 1) > ranges(i)); static const double kTransitionWidth = 5; double denominator = ranges(i + 1) - ranges(i); if (denominator > kTransitionWidth) denominator = kTransitionWidth; // Stop trying to normalize. return current/denominator; } //------------------------------------------------------------------------------ // The following two methods can be overridden to provide a thread safe // version of this class. The cost of locking is low... but an error in each // of these methods has minimal impact. For now, I'll leave this unlocked, // and I don't believe I can loose more than a count or two. // The vectors are NOT reallocated, so there is no risk of them moving around. // Update histogram data with new sample. void Histogram::Accumulate(Sample value, Count count, size_t index) { // Note locking not done in this version!!! sample_.Accumulate(value, count, index); } // Do a safe atomic snapshot of sample data. // This implementation assumes we are on a safe single thread. void Histogram::SnapshotSample(SampleSet* sample) const { // Note locking not done in this version!!! *sample = sample_; } //------------------------------------------------------------------------------ // Accessor methods void Histogram::SetBucketRange(size_t i, Sample value) { DCHECK(bucket_count_ > i); ranges_[i] = value; } //------------------------------------------------------------------------------ // Private methods double Histogram::GetPeakBucketSize(const SampleSet& snapshot) const { double max = 0; for (size_t i = 0; i < bucket_count() ; ++i) { double current_size = GetBucketSize(snapshot.counts(i), i); if (current_size > max) max = current_size; } return max; } void Histogram::WriteAsciiHeader(const SampleSet& snapshot, Count sample_count, std::string* output) const { StringAppendF(output, "Histogram: %s recorded %d samples", histogram_name().c_str(), sample_count); if (0 == sample_count) { DCHECK_EQ(snapshot.sum(), 0); } else { double average = static_cast(snapshot.sum()) / sample_count; double variance = static_cast(snapshot.square_sum())/sample_count - average * average; double standard_deviation = sqrt(variance); StringAppendF(output, ", average = %.1f, standard deviation = %.1f", average, standard_deviation); } if (flags_ & ~kHexRangePrintingFlag ) StringAppendF(output, " (flags = 0x%x)", flags_ & ~kHexRangePrintingFlag); } void Histogram::WriteAsciiBucketContext(const int64 past, const Count current, const int64 remaining, const size_t i, std::string* output) const { double scaled_sum = (past + current + remaining) / 100.0; WriteAsciiBucketValue(current, scaled_sum, output); if (0 < i) { double percentage = past / scaled_sum; StringAppendF(output, " {%3.1f%%}", percentage); } } const std::string Histogram::GetAsciiBucketRange(size_t i) const { std::string result; if (kHexRangePrintingFlag & flags_) StringAppendF(&result, "%#x", ranges(i)); else StringAppendF(&result, "%d", ranges(i)); return result; } void Histogram::WriteAsciiBucketValue(Count current, double scaled_sum, std::string* output) const { StringAppendF(output, " (%d = %3.1f%%)", current, current/scaled_sum); } void Histogram::WriteAsciiBucketGraph(double current_size, double max_size, std::string* output) const { const int k_line_length = 72; // Maximal horizontal width of graph. int x_count = static_cast(k_line_length * (current_size / max_size) + 0.5); int x_remainder = k_line_length - x_count; while (0 < x_count--) output->append("-"); output->append("O"); while (0 < x_remainder--) output->append(" "); } // static std::string Histogram::SerializeHistogramInfo(const Histogram& histogram, const SampleSet& snapshot) { DCHECK(histogram.histogram_type() != NOT_VALID_IN_RENDERER); Pickle pickle; pickle.WriteString(histogram.histogram_name()); pickle.WriteInt(histogram.declared_min()); pickle.WriteInt(histogram.declared_max()); pickle.WriteSize(histogram.bucket_count()); pickle.WriteInt(histogram.histogram_type()); pickle.WriteInt(histogram.flags()); snapshot.Serialize(&pickle); return std::string(static_cast(pickle.data()), pickle.size()); } // static bool Histogram::DeserializeHistogramInfo(const std::string& histogram_info) { if (histogram_info.empty()) { return false; } Pickle pickle(histogram_info.data(), static_cast(histogram_info.size())); void* iter = NULL; size_t bucket_count; int declared_min; int declared_max; int histogram_type; int pickle_flags; std::string histogram_name; SampleSet sample; if (!pickle.ReadString(&iter, &histogram_name) || !pickle.ReadInt(&iter, &declared_min) || !pickle.ReadInt(&iter, &declared_max) || !pickle.ReadSize(&iter, &bucket_count) || !pickle.ReadInt(&iter, &histogram_type) || !pickle.ReadInt(&iter, &pickle_flags) || !sample.Histogram::SampleSet::Deserialize(&iter, pickle)) { LOG(ERROR) << "Pickle error decoding Histogram: " << histogram_name; return false; } DCHECK(pickle_flags & kIPCSerializationSourceFlag); // Since these fields may have come from an untrusted renderer, do additional // checks above and beyond those in Histogram::Initialize() if (declared_max <= 0 || declared_min <= 0 || declared_max < declared_min || INT_MAX / sizeof(Count) <= bucket_count || bucket_count < 2) { LOG(ERROR) << "Values error decoding Histogram: " << histogram_name; return false; } Flags flags = static_cast(pickle_flags & ~kIPCSerializationSourceFlag); DCHECK(histogram_type != NOT_VALID_IN_RENDERER); scoped_refptr render_histogram(NULL); if (histogram_type == HISTOGRAM) { render_histogram = Histogram::FactoryGet( histogram_name, declared_min, declared_max, bucket_count, flags); } else if (histogram_type == LINEAR_HISTOGRAM) { render_histogram = LinearHistogram::FactoryGet( histogram_name, declared_min, declared_max, bucket_count, flags); } else if (histogram_type == BOOLEAN_HISTOGRAM) { render_histogram = BooleanHistogram::FactoryGet(histogram_name, flags); } else { LOG(ERROR) << "Error Deserializing Histogram Unknown histogram_type: " << histogram_type; return false; } DCHECK(declared_min == render_histogram->declared_min()); DCHECK(declared_max == render_histogram->declared_max()); DCHECK(bucket_count == render_histogram->bucket_count()); DCHECK(histogram_type == render_histogram->histogram_type()); if (render_histogram->flags() & kIPCSerializationSourceFlag) { DLOG(INFO) << "Single process mode, histogram observed and not copied: " << histogram_name; } else { DCHECK(flags == (flags & render_histogram->flags())); render_histogram->AddSampleSet(sample); } return true; } //------------------------------------------------------------------------------ // Methods for the Histogram::SampleSet class //------------------------------------------------------------------------------ Histogram::SampleSet::SampleSet() : counts_(), sum_(0), square_sum_(0) { } void Histogram::SampleSet::Resize(const Histogram& histogram) { counts_.resize(histogram.bucket_count(), 0); } void Histogram::SampleSet::CheckSize(const Histogram& histogram) const { DCHECK(counts_.size() == histogram.bucket_count()); } void Histogram::SampleSet::Accumulate(Sample value, Count count, size_t index) { DCHECK(count == 1 || count == -1); counts_[index] += count; sum_ += count * value; square_sum_ += (count * value) * static_cast(value); DCHECK_GE(counts_[index], 0); DCHECK_GE(sum_, 0); DCHECK_GE(square_sum_, 0); } Count Histogram::SampleSet::TotalCount() const { Count total = 0; for (Counts::const_iterator it = counts_.begin(); it != counts_.end(); ++it) { total += *it; } return total; } void Histogram::SampleSet::Add(const SampleSet& other) { DCHECK(counts_.size() == other.counts_.size()); sum_ += other.sum_; square_sum_ += other.square_sum_; for (size_t index = 0; index < counts_.size(); ++index) counts_[index] += other.counts_[index]; } void Histogram::SampleSet::Subtract(const SampleSet& other) { DCHECK(counts_.size() == other.counts_.size()); // Note: Race conditions in snapshotting a sum or square_sum may lead to // (temporary) negative values when snapshots are later combined (and deltas // calculated). As a result, we don't currently CHCEK() for positive values. sum_ -= other.sum_; square_sum_ -= other.square_sum_; for (size_t index = 0; index < counts_.size(); ++index) { counts_[index] -= other.counts_[index]; DCHECK_GE(counts_[index], 0); } } bool Histogram::SampleSet::Serialize(Pickle* pickle) const { pickle->WriteInt64(sum_); pickle->WriteInt64(square_sum_); pickle->WriteSize(counts_.size()); for (size_t index = 0; index < counts_.size(); ++index) { pickle->WriteInt(counts_[index]); } return true; } bool Histogram::SampleSet::Deserialize(void** iter, const Pickle& pickle) { DCHECK_EQ(counts_.size(), 0u); DCHECK_EQ(sum_, 0); DCHECK_EQ(square_sum_, 0); size_t counts_size; if (!pickle.ReadInt64(iter, &sum_) || !pickle.ReadInt64(iter, &square_sum_) || !pickle.ReadSize(iter, &counts_size)) { return false; } if (counts_size == 0) return false; for (size_t index = 0; index < counts_size; ++index) { int i; if (!pickle.ReadInt(iter, &i)) return false; counts_.push_back(i); } return true; } //------------------------------------------------------------------------------ // LinearHistogram: This histogram uses a traditional set of evenly spaced // buckets. //------------------------------------------------------------------------------ scoped_refptr LinearHistogram::FactoryGet( const std::string& name, Sample minimum, Sample maximum, size_t bucket_count, Flags flags) { scoped_refptr histogram(NULL); if (minimum <= 0) minimum = 1; if (maximum >= kSampleType_MAX) maximum = kSampleType_MAX - 1; if (!StatisticsRecorder::FindHistogram(name, &histogram)) { histogram = new LinearHistogram(name, minimum, maximum, bucket_count); StatisticsRecorder::FindHistogram(name, &histogram); } DCHECK(LINEAR_HISTOGRAM == histogram->histogram_type()); DCHECK(histogram->HasConstructorArguments(minimum, maximum, bucket_count)); histogram->SetFlags(flags); return histogram; } scoped_refptr LinearHistogram::FactoryTimeGet( const std::string& name, base::TimeDelta minimum, base::TimeDelta maximum, size_t bucket_count, Flags flags) { return FactoryGet(name, minimum.InMilliseconds(), maximum.InMilliseconds(), bucket_count, flags); } LinearHistogram::LinearHistogram(const std::string& name, Sample minimum, Sample maximum, size_t bucket_count) : Histogram(name, minimum >= 1 ? minimum : 1, maximum, bucket_count) { InitializeBucketRange(); DCHECK(ValidateBucketRanges()); } LinearHistogram::LinearHistogram(const std::string& name, TimeDelta minimum, TimeDelta maximum, size_t bucket_count) : Histogram(name, minimum >= TimeDelta::FromMilliseconds(1) ? minimum : TimeDelta::FromMilliseconds(1), maximum, bucket_count) { // Do a "better" (different) job at init than a base classes did... InitializeBucketRange(); DCHECK(ValidateBucketRanges()); } void LinearHistogram::SetRangeDescriptions( const DescriptionPair descriptions[]) { for (int i =0; descriptions[i].description; ++i) { bucket_description_[descriptions[i].sample] = descriptions[i].description; } } const std::string LinearHistogram::GetAsciiBucketRange(size_t i) const { int range = ranges(i); BucketDescriptionMap::const_iterator it = bucket_description_.find(range); if (it == bucket_description_.end()) return Histogram::GetAsciiBucketRange(i); return it->second; } bool LinearHistogram::PrintEmptyBucket(size_t index) const { return bucket_description_.find(ranges(index)) == bucket_description_.end(); } void LinearHistogram::InitializeBucketRange() { DCHECK_GT(declared_min(), 0); // 0 is the underflow bucket here. double min = declared_min(); double max = declared_max(); size_t i; for (i = 1; i < bucket_count(); ++i) { double linear_range = (min * (bucket_count() -1 - i) + max * (i - 1)) / (bucket_count() - 2); SetBucketRange(i, static_cast (linear_range + 0.5)); } } double LinearHistogram::GetBucketSize(Count current, size_t i) const { DCHECK(ranges(i + 1) > ranges(i)); // Adjacent buckets with different widths would have "surprisingly" many (few) // samples in a histogram if we didn't normalize this way. double denominator = ranges(i + 1) - ranges(i); return current/denominator; } //------------------------------------------------------------------------------ // This section provides implementation for BooleanHistogram. //------------------------------------------------------------------------------ scoped_refptr BooleanHistogram::FactoryGet(const std::string& name, Flags flags) { scoped_refptr histogram(NULL); if (!StatisticsRecorder::FindHistogram(name, &histogram)) { histogram = new BooleanHistogram(name); StatisticsRecorder::FindHistogram(name, &histogram); } DCHECK(BOOLEAN_HISTOGRAM == histogram->histogram_type()); histogram->SetFlags(flags); return histogram; } //------------------------------------------------------------------------------ // CustomHistogram: //------------------------------------------------------------------------------ scoped_refptr CustomHistogram::FactoryGet( const std::string& name, const std::vector& custom_ranges, Flags flags) { scoped_refptr histogram(NULL); // Remove the duplicates in the custom ranges array. std::vector ranges = custom_ranges; ranges.push_back(0); // Ensure we have a zero value. std::sort(ranges.begin(), ranges.end()); ranges.erase(std::unique(ranges.begin(), ranges.end()), ranges.end()); if (ranges.size() <= 1) { DCHECK(false); // Note that we pushed a 0 in above, so for defensive code.... ranges.push_back(1); // Put in some data so we can index to [1]. } DCHECK_LT(ranges.back(), kSampleType_MAX); if (!StatisticsRecorder::FindHistogram(name, &histogram)) { histogram = new CustomHistogram(name, ranges); StatisticsRecorder::FindHistogram(name, &histogram); } DCHECK_EQ(histogram->histogram_type(), CUSTOM_HISTOGRAM); DCHECK(histogram->HasConstructorArguments(ranges[1], ranges.back(), ranges.size())); histogram->SetFlags(flags); return histogram; } CustomHistogram::CustomHistogram(const std::string& name, const std::vector& custom_ranges) : Histogram(name, custom_ranges[1], custom_ranges.back(), custom_ranges.size()) { DCHECK_GT(custom_ranges.size(), 1u); DCHECK_EQ(custom_ranges[0], 0); ranges_vector_ = &custom_ranges; InitializeBucketRange(); ranges_vector_ = NULL; DCHECK(ValidateBucketRanges()); } void CustomHistogram::InitializeBucketRange() { DCHECK(ranges_vector_->size() <= bucket_count()); for (size_t index = 0; index < ranges_vector_->size(); ++index) { SetBucketRange(index, (*ranges_vector_)[index]); } } double CustomHistogram::GetBucketSize(Count current, size_t i) const { return 1; } //------------------------------------------------------------------------------ // The next section handles global (central) support for all histograms, as well // as startup/teardown of this service. //------------------------------------------------------------------------------ // This singleton instance should be started during the single threaded portion // of main(), and hence it is not thread safe. It initializes globals to // provide support for all future calls. StatisticsRecorder::StatisticsRecorder() { DCHECK(!histograms_); lock_ = new Lock; histograms_ = new HistogramMap; } StatisticsRecorder::~StatisticsRecorder() { DCHECK(histograms_); if (dump_on_exit_) { std::string output; WriteGraph("", &output); LOG(INFO) << output; } // Clean up. delete histograms_; histograms_ = NULL; delete lock_; lock_ = NULL; } // static bool StatisticsRecorder::WasStarted() { return NULL != histograms_; } // Note: We can't accept a ref_ptr to |histogram| because we *might* not keep a // reference, and we are called while in the Histogram constructor. In that // scenario, a ref_ptr would have incremented the ref count when the histogram // was passed to us, decremented it when we returned, and the instance would be // destroyed before assignment (when value was returned by new). // static void StatisticsRecorder::Register(Histogram* histogram) { if (!histograms_) return; const std::string name = histogram->histogram_name(); AutoLock auto_lock(*lock_); DCHECK(histograms_->end() == histograms_->find(name)); (*histograms_)[name] = histogram; return; } // static void StatisticsRecorder::WriteHTMLGraph(const std::string& query, std::string* output) { if (!histograms_) return; output->append("About Histograms"); if (!query.empty()) output->append(" - " + query); output->append("" // We'd like the following no-cache... but it doesn't work. // "" ""); Histograms snapshot; GetSnapshot(query, &snapshot); for (Histograms::iterator it = snapshot.begin(); it != snapshot.end(); ++it) { (*it)->WriteHTMLGraph(output); output->append("


"); } output->append(""); } // static void StatisticsRecorder::WriteGraph(const std::string& query, std::string* output) { if (!histograms_) return; if (query.length()) StringAppendF(output, "Collections of histograms for %s\n", query.c_str()); else output->append("Collections of all histograms\n"); Histograms snapshot; GetSnapshot(query, &snapshot); for (Histograms::iterator it = snapshot.begin(); it != snapshot.end(); ++it) { (*it)->WriteAscii(true, "\n", output); output->append("\n"); } } // static void StatisticsRecorder::GetHistograms(Histograms* output) { if (!histograms_) return; AutoLock auto_lock(*lock_); for (HistogramMap::iterator it = histograms_->begin(); histograms_->end() != it; ++it) { DCHECK(it->second->histogram_name() == it->first); output->push_back(it->second); } } bool StatisticsRecorder::FindHistogram(const std::string& name, scoped_refptr* histogram) { if (!histograms_) return false; AutoLock auto_lock(*lock_); HistogramMap::iterator it = histograms_->find(name); if (histograms_->end() == it) return false; *histogram = it->second; return true; } // private static void StatisticsRecorder::GetSnapshot(const std::string& query, Histograms* snapshot) { AutoLock auto_lock(*lock_); for (HistogramMap::iterator it = histograms_->begin(); histograms_->end() != it; ++it) { if (it->first.find(query) != std::string::npos) snapshot->push_back(it->second); } } // static StatisticsRecorder::HistogramMap* StatisticsRecorder::histograms_ = NULL; // static Lock* StatisticsRecorder::lock_ = NULL; // static bool StatisticsRecorder::dump_on_exit_ = false;