// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/hmac.h" #include #include #include #include #include "base/logging.h" #include "base/third_party/nss/blapi.h" #include "base/third_party/nss/sha256.h" namespace base { namespace { // Implementation of HMAC-SHA-256: // // SHA-256 is supported in Windows XP SP3 or later. We still need to support // Windows XP SP2, so unfortunately we have to implement HMAC-SHA-256 here. enum { SHA256_BLOCK_SIZE = 64 // Block size (in bytes) of the input to SHA-256. }; // See FIPS 198: The Keyed-Hash Message Authentication Code (HMAC). void ComputeHMACSHA256(const unsigned char* key, size_t key_len, const unsigned char* text, size_t text_len, unsigned char* output, size_t output_len) { SHA256Context ctx; // Pre-process the key, if necessary. unsigned char key0[SHA256_BLOCK_SIZE]; if (key_len > SHA256_BLOCK_SIZE) { SHA256_Begin(&ctx); SHA256_Update(&ctx, key, key_len); SHA256_End(&ctx, key0, NULL, SHA256_LENGTH); memset(key0 + SHA256_LENGTH, 0, SHA256_BLOCK_SIZE - SHA256_LENGTH); } else { memcpy(key0, key, key_len); memset(key0 + key_len, 0, SHA256_BLOCK_SIZE - key_len); } unsigned char padded_key[SHA256_BLOCK_SIZE]; unsigned char inner_hash[SHA256_LENGTH]; // XOR key0 with ipad. for (int i = 0; i < SHA256_BLOCK_SIZE; ++i) padded_key[i] = key0[i] ^ 0x36; // Compute the inner hash. SHA256_Begin(&ctx); SHA256_Update(&ctx, padded_key, SHA256_BLOCK_SIZE); SHA256_Update(&ctx, text, text_len); SHA256_End(&ctx, inner_hash, NULL, SHA256_LENGTH); // XOR key0 with opad. for (int i = 0; i < SHA256_BLOCK_SIZE; ++i) padded_key[i] = key0[i] ^ 0x5c; // Compute the outer hash. SHA256_Begin(&ctx); SHA256_Update(&ctx, padded_key, SHA256_BLOCK_SIZE); SHA256_Update(&ctx, inner_hash, SHA256_LENGTH); SHA256_End(&ctx, output, NULL, output_len); } } // namespace struct HMACPlatformData { HMACPlatformData() : provider_(0), hash_(0), hkey_(0) {} // Windows Crypt API resources. HCRYPTPROV provider_; HCRYPTHASH hash_; HCRYPTKEY hkey_; // For HMAC-SHA-256 only. std::vector raw_key_; }; HMAC::HMAC(HashAlgorithm hash_alg) : hash_alg_(hash_alg), plat_(new HMACPlatformData()) { // Only SHA-1 and SHA-256 hash algorithms are supported now. DCHECK(hash_alg_ == SHA1 || hash_alg_ == SHA256); } bool HMAC::Init(const unsigned char *key, int key_length) { if (plat_->provider_ || plat_->hkey_ || !plat_->raw_key_.empty()) { // Init must not be called more than once on the same HMAC object. NOTREACHED(); return false; } if (hash_alg_ == SHA256) { if (key_length < SHA256_LENGTH / 2) return false; // Key is too short. plat_->raw_key_.assign(key, key + key_length); return true; } if (!CryptAcquireContext(&plat_->provider_, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT)) { NOTREACHED(); plat_->provider_ = NULL; return false; } // This code doesn't work on Win2k because PLAINTEXTKEYBLOB and // CRYPT_IPSEC_HMAC_KEY are not supported on Windows 2000. PLAINTEXTKEYBLOB // allows the import of an unencrypted key. For Win2k support, a cubmbersome // exponent-of-one key procedure must be used: // http://support.microsoft.com/kb/228786/en-us // CRYPT_IPSEC_HMAC_KEY allows keys longer than 16 bytes. struct KeyBlob { BLOBHEADER header; DWORD key_size; BYTE key_data[1]; }; size_t key_blob_size = std::max(offsetof(KeyBlob, key_data) + key_length, sizeof(KeyBlob)); std::vector key_blob_storage = std::vector(key_blob_size); KeyBlob* key_blob = reinterpret_cast(&key_blob_storage[0]); key_blob->header.bType = PLAINTEXTKEYBLOB; key_blob->header.bVersion = CUR_BLOB_VERSION; key_blob->header.reserved = 0; key_blob->header.aiKeyAlg = CALG_RC2; key_blob->key_size = key_length; memcpy(key_blob->key_data, key, key_length); if (!CryptImportKey(plat_->provider_, &key_blob_storage[0], key_blob_storage.size(), 0, CRYPT_IPSEC_HMAC_KEY, &plat_->hkey_)) { NOTREACHED(); plat_->hkey_ = NULL; return false; } // Destroy the copy of the key. SecureZeroMemory(key_blob->key_data, key_length); return true; } HMAC::~HMAC() { if (!plat_->raw_key_.empty()) SecureZeroMemory(&plat_->raw_key_[0], plat_->raw_key_.size()); BOOL ok; if (plat_->hkey_) { ok = CryptDestroyKey(plat_->hkey_); DCHECK(ok); } if (plat_->hash_) { ok = CryptDestroyHash(plat_->hash_); DCHECK(ok); } if (plat_->provider_) { ok = CryptReleaseContext(plat_->provider_, 0); DCHECK(ok); } } bool HMAC::Sign(const std::string& data, unsigned char* digest, int digest_length) { if (hash_alg_ == SHA256) { if (plat_->raw_key_.empty()) return false; ComputeHMACSHA256(&plat_->raw_key_[0], plat_->raw_key_.size(), reinterpret_cast(data.data()), data.size(), digest, digest_length); return true; } if (!plat_->provider_ || !plat_->hkey_) return false; if (hash_alg_ != SHA1) { NOTREACHED(); return false; } if (!CryptCreateHash( plat_->provider_, CALG_HMAC, plat_->hkey_, 0, &plat_->hash_)) return false; HMAC_INFO hmac_info; memset(&hmac_info, 0, sizeof(hmac_info)); hmac_info.HashAlgid = CALG_SHA1; if (!CryptSetHashParam(plat_->hash_, HP_HMAC_INFO, reinterpret_cast(&hmac_info), 0)) return false; if (!CryptHashData(plat_->hash_, reinterpret_cast(data.data()), static_cast(data.size()), 0)) return false; DWORD sha1_size = digest_length; if (!CryptGetHashParam(plat_->hash_, HP_HASHVAL, digest, &sha1_size, 0)) return false; return true; } } // namespace base