// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Scopers help you manage ownership of a pointer, helping you easily manage the // a pointer within a scope, and automatically destroying the pointer at the // end of a scope. There are two main classes you will use, which correspond // to the operators new/delete and new[]/delete[]. // // Example usage (scoped_ptr): // { // scoped_ptr foo(new Foo("wee")); // } // foo goes out of scope, releasing the pointer with it. // // { // scoped_ptr foo; // No pointer managed. // foo.reset(new Foo("wee")); // Now a pointer is managed. // foo.reset(new Foo("wee2")); // Foo("wee") was destroyed. // foo.reset(new Foo("wee3")); // Foo("wee2") was destroyed. // foo->Method(); // Foo::Method() called. // foo.get()->Method(); // Foo::Method() called. // SomeFunc(foo.release()); // SomeFunc takes ownership, foo no longer // // manages a pointer. // foo.reset(new Foo("wee4")); // foo manages a pointer again. // foo.reset(); // Foo("wee4") destroyed, foo no longer // // manages a pointer. // } // foo wasn't managing a pointer, so nothing was destroyed. // // Example usage (scoped_array): // { // scoped_array foo(new Foo[100]); // foo.get()->Method(); // Foo::Method on the 0th element. // foo[10].Method(); // Foo::Method on the 10th element. // } // // These scopers also implement part of the functionality of C++11 unique_ptr // in that they are "movable but not copyable." You can use the scopers in // the parameter and return types of functions to signify ownership transfer // in to and out of a function. When calling a function that has a scoper // as the argument type, it must be called with the result of an analogous // scoper's Pass() function or another function that generates a temporary; // passing by copy will NOT work. Here is an example using scoped_ptr: // // void TakesOwnership(scoped_ptr arg) { // // Do something with arg // } // scoped_ptr CreateFoo() { // // No need for calling Pass() because we are constructing a temporary // // for the return value. // return scoped_ptr(new Foo("new")); // } // scoped_ptr PassThru(scoped_ptr arg) { // return arg.Pass(); // } // // { // scoped_ptr ptr(new Foo("yay")); // ptr manages Foo("yay)" // TakesOwnership(ptr.Pass()); // ptr no longer owns Foo("yay"). // scoped_ptr ptr2 = CreateFoo(); // ptr2 owns the return Foo. // scoped_ptr ptr3 = // ptr3 now owns what was in ptr2. // PassThru(ptr2.Pass()); // ptr2 is correspondingly NULL. // } // // Notice that if you do not call Pass() when returning from PassThru(), or // when invoking TakesOwnership(), the code will not compile because scopers // are not copyable; they only implement move semantics which require calling // the Pass() function to signify a destructive transfer of state. CreateFoo() // is different though because we are constructing a temporary on the return // line and thus can avoid needing to call Pass(). // // Pass() properly handles upcast in assignment, i.e. you can assign // scoped_ptr to scoped_ptr: // // scoped_ptr foo(new Foo()); // scoped_ptr parent = foo.Pass(); // // PassAs<>() should be used to upcast return value in return statement: // // scoped_ptr CreateFoo() { // scoped_ptr result(new FooChild()); // return result.PassAs(); // } // // Note that PassAs<>() is implemented only for scoped_ptr, but not for // scoped_array. This is because casting array pointers may not be safe. #ifndef BASE_MEMORY_SCOPED_PTR_H_ #define BASE_MEMORY_SCOPED_PTR_H_ #pragma once // This is an implementation designed to match the anticipated future TR2 // implementation of the scoped_ptr class, and its closely-related brethren, // scoped_array, scoped_ptr_malloc. #include #include #include #include "base/compiler_specific.h" #include "base/move.h" // A scoped_ptr is like a T*, except that the destructor of scoped_ptr // automatically deletes the pointer it holds (if any). // That is, scoped_ptr owns the T object that it points to. // Like a T*, a scoped_ptr may hold either NULL or a pointer to a T object. // Also like T*, scoped_ptr is thread-compatible, and once you // dereference it, you get the thread safety guarantees of T. // // The size of a scoped_ptr is small: // sizeof(scoped_ptr) == sizeof(C*) template class scoped_ptr { MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr, RValue) public: // The element type typedef C element_type; // Constructor. Defaults to initializing with NULL. // There is no way to create an uninitialized scoped_ptr. // The input parameter must be allocated with new. explicit scoped_ptr(C* p = NULL) : ptr_(p) { } // Constructor. Allows construction from a scoped_ptr rvalue for a // convertible type. template scoped_ptr(scoped_ptr other) : ptr_(other.release()) { } // Constructor. Move constructor for C++03 move emulation of this type. scoped_ptr(RValue& other) : ptr_(other.release()) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~scoped_ptr() { enum { type_must_be_complete = sizeof(C) }; delete ptr_; } // operator=. Allows assignment from a scoped_ptr rvalue for a convertible // type. template scoped_ptr& operator=(scoped_ptr rhs) { reset(rhs.release()); return *this; } // operator=. Move operator= for C++03 move emulation of this type. scoped_ptr& operator=(RValue& rhs) { swap(rhs); return *this; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != ptr_) { enum { type_must_be_complete = sizeof(C) }; delete ptr_; ptr_ = p; } } // Accessors to get the owned object. // operator* and operator-> will assert() if there is no current object. C& operator*() const { assert(ptr_ != NULL); return *ptr_; } C* operator->() const { assert(ptr_ != NULL); return ptr_; } C* get() const { return ptr_; } // Comparison operators. // These return whether two scoped_ptr refer to the same object, not just to // two different but equal objects. bool operator==(C* p) const { return ptr_ == p; } bool operator!=(C* p) const { return ptr_ != p; } // Swap two scoped pointers. void swap(scoped_ptr& p2) { C* tmp = ptr_; ptr_ = p2.ptr_; p2.ptr_ = tmp; } // Release a pointer. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() WARN_UNUSED_RESULT { C* retVal = ptr_; ptr_ = NULL; return retVal; } template scoped_ptr PassAs() { return scoped_ptr(release()); } private: C* ptr_; // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't // make sense, and if C2 == C, it still doesn't make sense because you should // never have the same object owned by two different scoped_ptrs. template bool operator==(scoped_ptr const& p2) const; template bool operator!=(scoped_ptr const& p2) const; }; // Free functions template void swap(scoped_ptr& p1, scoped_ptr& p2) { p1.swap(p2); } template bool operator==(C* p1, const scoped_ptr& p2) { return p1 == p2.get(); } template bool operator!=(C* p1, const scoped_ptr& p2) { return p1 != p2.get(); } // scoped_array is like scoped_ptr, except that the caller must allocate // with new [] and the destructor deletes objects with delete []. // // As with scoped_ptr, a scoped_array either points to an object // or is NULL. A scoped_array owns the object that it points to. // scoped_array is thread-compatible, and once you index into it, // the returned objects have only the thread safety guarantees of T. // // Size: sizeof(scoped_array) == sizeof(C*) template class scoped_array { MOVE_ONLY_TYPE_FOR_CPP_03(scoped_array, RValue) public: // The element type typedef C element_type; // Constructor. Defaults to initializing with NULL. // There is no way to create an uninitialized scoped_array. // The input parameter must be allocated with new []. explicit scoped_array(C* p = NULL) : array_(p) { } // Constructor. Move constructor for C++03 move emulation of this type. scoped_array(RValue& other) : array_(other.release()) { } // Destructor. If there is a C object, delete it. // We don't need to test ptr_ == NULL because C++ does that for us. ~scoped_array() { enum { type_must_be_complete = sizeof(C) }; delete[] array_; } // operator=. Move operator= for C++03 move emulation of this type. scoped_array& operator=(RValue& rhs) { swap(rhs); return *this; } // Reset. Deletes the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (p != array_) { enum { type_must_be_complete = sizeof(C) }; delete[] array_; array_ = p; } } // Get one element of the current object. // Will assert() if there is no current object, or index i is negative. C& operator[](ptrdiff_t i) const { assert(i >= 0); assert(array_ != NULL); return array_[i]; } // Get a pointer to the zeroth element of the current object. // If there is no current object, return NULL. C* get() const { return array_; } // Comparison operators. // These return whether two scoped_array refer to the same object, not just to // two different but equal objects. bool operator==(C* p) const { return array_ == p; } bool operator!=(C* p) const { return array_ != p; } // Swap two scoped arrays. void swap(scoped_array& p2) { C* tmp = array_; array_ = p2.array_; p2.array_ = tmp; } // Release an array. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() WARN_UNUSED_RESULT { C* retVal = array_; array_ = NULL; return retVal; } private: C* array_; // Forbid comparison of different scoped_array types. template bool operator==(scoped_array const& p2) const; template bool operator!=(scoped_array const& p2) const; }; // Free functions template void swap(scoped_array& p1, scoped_array& p2) { p1.swap(p2); } template bool operator==(C* p1, const scoped_array& p2) { return p1 == p2.get(); } template bool operator!=(C* p1, const scoped_array& p2) { return p1 != p2.get(); } // This class wraps the c library function free() in a class that can be // passed as a template argument to scoped_ptr_malloc below. class ScopedPtrMallocFree { public: inline void operator()(void* x) const { free(x); } }; // scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a // second template argument, the functor used to free the object. template class scoped_ptr_malloc { MOVE_ONLY_TYPE_FOR_CPP_03(scoped_ptr_malloc, RValue) public: // The element type typedef C element_type; // Constructor. Defaults to initializing with NULL. // There is no way to create an uninitialized scoped_ptr. // The input parameter must be allocated with an allocator that matches the // Free functor. For the default Free functor, this is malloc, calloc, or // realloc. explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {} // Constructor. Move constructor for C++03 move emulation of this type. scoped_ptr_malloc(RValue& other) : ptr_(other.release()) { } // Destructor. If there is a C object, call the Free functor. ~scoped_ptr_malloc() { reset(); } // operator=. Move operator= for C++03 move emulation of this type. scoped_ptr_malloc& operator=(RValue& rhs) { swap(rhs); return *this; } // Reset. Calls the Free functor on the current owned object, if any. // Then takes ownership of a new object, if given. // this->reset(this->get()) works. void reset(C* p = NULL) { if (ptr_ != p) { FreeProc free_proc; free_proc(ptr_); ptr_ = p; } } // Get the current object. // operator* and operator-> will cause an assert() failure if there is // no current object. C& operator*() const { assert(ptr_ != NULL); return *ptr_; } C* operator->() const { assert(ptr_ != NULL); return ptr_; } C* get() const { return ptr_; } // Comparison operators. // These return whether a scoped_ptr_malloc and a plain pointer refer // to the same object, not just to two different but equal objects. // For compatibility with the boost-derived implementation, these // take non-const arguments. bool operator==(C* p) const { return ptr_ == p; } bool operator!=(C* p) const { return ptr_ != p; } // Swap two scoped pointers. void swap(scoped_ptr_malloc & b) { C* tmp = b.ptr_; b.ptr_ = ptr_; ptr_ = tmp; } // Release a pointer. // The return value is the current pointer held by this object. // If this object holds a NULL pointer, the return value is NULL. // After this operation, this object will hold a NULL pointer, // and will not own the object any more. C* release() WARN_UNUSED_RESULT { C* tmp = ptr_; ptr_ = NULL; return tmp; } private: C* ptr_; // no reason to use these: each scoped_ptr_malloc should have its own object template bool operator==(scoped_ptr_malloc const& p) const; template bool operator!=(scoped_ptr_malloc const& p) const; }; template inline void swap(scoped_ptr_malloc& a, scoped_ptr_malloc& b) { a.swap(b); } template inline bool operator==(C* p, const scoped_ptr_malloc& b) { return p == b.get(); } template inline bool operator!=(C* p, const scoped_ptr_malloc& b) { return p != b.get(); } #endif // BASE_MEMORY_SCOPED_PTR_H_