// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop.h" #include #include "base/compiler_specific.h" #include "base/logging.h" #include "base/message_pump_default.h" #include "base/string_util.h" #include "base/thread_local_storage.h" // a TLS index to the message loop for the current thread // Note that if we start doing complex stuff in other static initializers // this could cause problems. // TODO(evanm): this shouldn't rely on static initialization. // static TLSSlot MessageLoop::tls_index_; //------------------------------------------------------------------------------ // Logical events for Histogram profiling. Run with -message-loop-histogrammer // to get an accounting of messages and actions taken on each thread. static const int kTaskRunEvent = 0x1; static const int kTimerEvent = 0x2; // Provide range of message IDs for use in histogramming and debug display. static const int kLeastNonZeroMessageId = 1; static const int kMaxMessageId = 1099; static const int kNumberOfDistinctMessagesDisplayed = 1100; //------------------------------------------------------------------------------ #if defined(OS_WIN) // Upon a SEH exception in this thread, it restores the original unhandled // exception filter. static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) { ::SetUnhandledExceptionFilter(old_filter); return EXCEPTION_CONTINUE_SEARCH; } // Retrieves a pointer to the current unhandled exception filter. There // is no standalone getter method. static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() { LPTOP_LEVEL_EXCEPTION_FILTER top_filter = NULL; top_filter = ::SetUnhandledExceptionFilter(0); ::SetUnhandledExceptionFilter(top_filter); return top_filter; } #endif // defined(OS_WIN) //------------------------------------------------------------------------------ MessageLoop::MessageLoop() : ALLOW_THIS_IN_INITIALIZER_LIST(timer_manager_(this)), nestable_tasks_allowed_(true), exception_restoration_(false), state_(NULL) { DCHECK(!current()) << "should only have one message loop per thread"; tls_index_.Set(this); // TODO(darin): Generalize this to support instantiating different pumps. #if defined(OS_WIN) pump_ = new base::MessagePumpWin(); #else pump_ = new base::MessagePumpDefault(); #endif } MessageLoop::~MessageLoop() { DCHECK(this == current()); // Let interested parties have one last shot at accessing this. FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_, WillDestroyCurrentMessageLoop()); // OK, now make it so that no one can find us. tls_index_.Set(NULL); DCHECK(!state_); // Most tasks that have not been Run() are deleted in the |timer_manager_| // destructor after we remove our tls index. We delete the tasks in our // queues here so their destuction is similar to the tasks in the // |timer_manager_|. DeletePendingTasks(); ReloadWorkQueue(); DeletePendingTasks(); } void MessageLoop::AddDestructionObserver(DestructionObserver *obs) { DCHECK(this == current()); destruction_observers_.AddObserver(obs); } void MessageLoop::RemoveDestructionObserver(DestructionObserver *obs) { DCHECK(this == current()); destruction_observers_.RemoveObserver(obs); } void MessageLoop::Run() { AutoRunState save_state(this); RunHandler(); } #if defined(OS_WIN) void MessageLoop::Run(base::MessagePumpWin::Dispatcher* dispatcher) { AutoRunState save_state(this); state_->dispatcher = dispatcher; RunHandler(); } #endif void MessageLoop::RunAllPending() { AutoRunState save_state(this); state_->quit_received = true; // Means run until we would otherwise block. RunHandler(); } // Runs the loop in two different SEH modes: // enable_SEH_restoration_ = false : any unhandled exception goes to the last // one that calls SetUnhandledExceptionFilter(). // enable_SEH_restoration_ = true : any unhandled exception goes to the filter // that was existed before the loop was run. void MessageLoop::RunHandler() { #if defined(OS_WIN) if (exception_restoration_) { LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter(); __try { RunInternal(); } __except(SEHFilter(current_filter)) { } return; } #endif RunInternal(); } //------------------------------------------------------------------------------ void MessageLoop::RunInternal() { DCHECK(this == current()); StartHistogrammer(); #if defined(OS_WIN) if (state_->dispatcher) { pump_win()->RunWithDispatcher(this, state_->dispatcher); return; } #endif pump_->Run(this); } //------------------------------------------------------------------------------ // Wrapper functions for use in above message loop framework. bool MessageLoop::ProcessNextDelayedNonNestableTask() { if (state_->run_depth != 1) return false; if (delayed_non_nestable_queue_.Empty()) return false; RunTask(delayed_non_nestable_queue_.Pop()); return true; } //------------------------------------------------------------------------------ void MessageLoop::Quit() { DCHECK(current() == this); if (state_) { state_->quit_received = true; } else { NOTREACHED() << "Must be inside Run to call Quit"; } } // Possibly called on a background thread! void MessageLoop::PostDelayedTask(const tracked_objects::Location& from_here, Task* task, int delay_ms) { task->SetBirthPlace(from_here); DCHECK(delay_ms >= 0); DCHECK(!task->is_owned_by_message_loop()); task->set_posted_task_delay(delay_ms); DCHECK(task->is_owned_by_message_loop()); PostTaskInternal(task); } void MessageLoop::PostTaskInternal(Task* task) { // Warning: Don't try to short-circuit, and handle this thread's tasks more // directly, as it could starve handling of foreign threads. Put every task // into this queue. scoped_refptr pump; { AutoLock locked(incoming_queue_lock_); bool was_empty = incoming_queue_.Empty(); incoming_queue_.Push(task); if (!was_empty) return; // Someone else should have started the sub-pump. pump = pump_; } // Since the incoming_queue_ may contain a task that destroys this message // loop, we cannot exit incoming_queue_lock_ until we are done with |this|. // We use a stack-based reference to the message pump so that we can call // ScheduleWork outside of incoming_queue_lock_. pump->ScheduleWork(); } void MessageLoop::SetNestableTasksAllowed(bool allowed) { if (nestable_tasks_allowed_ != allowed) { nestable_tasks_allowed_ = allowed; if (!nestable_tasks_allowed_) return; // Start the native pump if we are not already pumping. pump_->ScheduleWork(); } } bool MessageLoop::NestableTasksAllowed() const { return nestable_tasks_allowed_; } //------------------------------------------------------------------------------ bool MessageLoop::RunTimerTask(Timer* timer) { HistogramEvent(kTimerEvent); Task* task = timer->task(); if (task->is_owned_by_message_loop()) { // We constructed it through PostDelayedTask(). DCHECK(!timer->repeating()); timer->set_task(NULL); delete timer; task->ResetBirthTime(); return QueueOrRunTask(task); } // This is an unknown timer task, and we *can't* delay running it, as a user // might try to cancel it with TimerManager at any moment. DCHECK(nestable_tasks_allowed_); RunTask(task); return true; } void MessageLoop::DiscardTimer(Timer* timer) { Task* task = timer->task(); if (task->is_owned_by_message_loop()) { DCHECK(!timer->repeating()); timer->set_task(NULL); delete timer; // We constructed it through PostDelayedTask(). delete task; // We were given ouwnership in PostTask(). } } bool MessageLoop::QueueOrRunTask(Task* new_task) { if (!nestable_tasks_allowed_) { // Task can't be executed right now. Add it to the queue. if (new_task) work_queue_.Push(new_task); return false; } // Queue new_task first so we execute the task in FIFO order. if (new_task) work_queue_.Push(new_task); // Execute oldest task. while (!work_queue_.Empty()) { Task* task = work_queue_.Pop(); if (task->nestable() || state_->run_depth == 1) { RunTask(task); // Show that we ran a task (Note: a new one might arrive as a // consequence!). return true; } // We couldn't run the task now because we're in a nested message loop // and the task isn't nestable. delayed_non_nestable_queue_.Push(task); } // Nothing happened. return false; } void MessageLoop::RunTask(Task* task) { BeforeTaskRunSetup(); HistogramEvent(kTaskRunEvent); // task may self-delete during Run() if we don't happen to own it. // ...so check *before* we Run, since we can't check after. bool we_own_task = task->is_owned_by_message_loop(); task->Run(); if (we_own_task) task->RecycleOrDelete(); // Relinquish control, and probably delete. AfterTaskRunRestore(); } void MessageLoop::BeforeTaskRunSetup() { DCHECK(nestable_tasks_allowed_); // Execute the task and assume the worst: It is probably not reentrant. nestable_tasks_allowed_ = false; } void MessageLoop::AfterTaskRunRestore() { nestable_tasks_allowed_ = true; } void MessageLoop::ReloadWorkQueue() { // We can improve performance of our loading tasks from incoming_queue_ to // work_queue_ by waiting until the last minute (work_queue_ is empty) to // load. That reduces the number of locks-per-task significantly when our // queues get large. The optimization is disabled on threads that make use // of the priority queue (prioritization requires all our tasks to be in the // work_queue_ ASAP). if (!work_queue_.Empty() && !work_queue_.use_priority_queue()) return; // Wait till we *really* need to lock and load. // Acquire all we can from the inter-thread queue with one lock acquisition. TaskQueue new_task_list; // Null terminated list. { AutoLock lock(incoming_queue_lock_); if (incoming_queue_.Empty()) return; std::swap(incoming_queue_, new_task_list); DCHECK(incoming_queue_.Empty()); } // Release lock. while (!new_task_list.Empty()) { Task* task = new_task_list.Pop(); DCHECK(task->is_owned_by_message_loop()); if (task->posted_task_delay() > 0) timer_manager_.StartTimer(task->posted_task_delay(), task, false); else work_queue_.Push(task); } } void MessageLoop::DeletePendingTasks() { /* Comment this out as it's causing crashes. while (!work_queue_.Empty()) { Task* task = work_queue_.Pop(); if (task->is_owned_by_message_loop()) delete task; } while (!delayed_non_nestable_queue_.Empty()) { Task* task = delayed_non_nestable_queue_.Pop(); if (task->is_owned_by_message_loop()) delete task; } */ } void MessageLoop::DidChangeNextTimerExpiry() { Time next_delayed_work_time = timer_manager_.GetNextFireTime(); if (next_delayed_work_time.is_null()) return; // Simulates malfunctioning, early firing timers. Pending tasks should only // be invoked when the delay they specify has elapsed. if (timer_manager_.use_broken_delay()) next_delayed_work_time = Time::Now() + TimeDelta::FromMilliseconds(10); pump_->ScheduleDelayedWork(next_delayed_work_time); } bool MessageLoop::DoWork() { ReloadWorkQueue(); return QueueOrRunTask(NULL); } bool MessageLoop::DoDelayedWork(Time* next_delayed_work_time) { bool did_work = timer_manager_.RunSomePendingTimers(); // We may not have run any timers, but we may still have future timers to // run, so we need to inform the pump again of pending timers. *next_delayed_work_time = timer_manager_.GetNextFireTime(); return did_work; } bool MessageLoop::DoIdleWork() { if (ProcessNextDelayedNonNestableTask()) return true; if (state_->quit_received) pump_->Quit(); return false; } //------------------------------------------------------------------------------ // MessageLoop::AutoRunState MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) { // Make the loop reference us. previous_state_ = loop_->state_; if (previous_state_) { run_depth = previous_state_->run_depth + 1; } else { run_depth = 1; } loop_->state_ = this; // Initialize the other fields: quit_received = false; #if defined(OS_WIN) dispatcher = NULL; #endif } MessageLoop::AutoRunState::~AutoRunState() { loop_->state_ = previous_state_; } //------------------------------------------------------------------------------ // Implementation of the work_queue_ as a ProiritizedTaskQueue void MessageLoop::PrioritizedTaskQueue::push(Task * task) { queue_.push(PrioritizedTask(task, --next_sequence_number_)); } bool MessageLoop::PrioritizedTaskQueue::PrioritizedTask::operator < ( PrioritizedTask const & right) const { int compare = task_->priority() - right.task_->priority(); if (compare) return compare < 0; // Don't compare directly, but rather subtract. This handles overflow // as sequence numbers wrap around. compare = sequence_number_ - right.sequence_number_; DCHECK(compare); // Sequence number are unique for a "long time." // Make sure we don't starve anything with a low priority. CHECK(INT_MAX/8 > compare); // We don't get close to wrapping. CHECK(INT_MIN/8 < compare); // We don't get close to wrapping. return compare < 0; } //------------------------------------------------------------------------------ // Implementation of a TaskQueue as a null terminated list, with end pointers. void MessageLoop::TaskQueue::Push(Task* task) { if (!first_) first_ = task; else last_->set_next_task(task); last_ = task; } Task* MessageLoop::TaskQueue::Pop() { DCHECK((!first_) == !last_); Task* task = first_; if (first_) { first_ = task->next_task(); if (!first_) last_ = NULL; else task->set_next_task(NULL); } return task; } //------------------------------------------------------------------------------ // Implementation of a Task queue that automatically switches into a priority // queue if it observes any non-zero priorities on tasks. void MessageLoop::OptionallyPrioritizedTaskQueue::Push(Task* task) { if (use_priority_queue_) { prioritized_queue_.push(task); } else { queue_.Push(task); if (task->priority()) { use_priority_queue_ = true; // From now on. while (!queue_.Empty()) prioritized_queue_.push(queue_.Pop()); } } } Task* MessageLoop::OptionallyPrioritizedTaskQueue::Pop() { if (!use_priority_queue_) return queue_.Pop(); Task* task = prioritized_queue_.front(); prioritized_queue_.pop(); return task; } bool MessageLoop::OptionallyPrioritizedTaskQueue::Empty() { if (use_priority_queue_) return prioritized_queue_.empty(); return queue_.Empty(); } //------------------------------------------------------------------------------ // Method and data for histogramming events and actions taken by each instance // on each thread. // static bool MessageLoop::enable_histogrammer_ = false; // static void MessageLoop::EnableHistogrammer(bool enable) { enable_histogrammer_ = enable; } void MessageLoop::StartHistogrammer() { if (enable_histogrammer_ && !message_histogram_.get() && StatisticsRecorder::WasStarted()) { DCHECK(!thread_name_.empty()); message_histogram_.reset(new LinearHistogram( ASCIIToWide("MsgLoop:" + thread_name_).c_str(), kLeastNonZeroMessageId, kMaxMessageId, kNumberOfDistinctMessagesDisplayed)); message_histogram_->SetFlags(message_histogram_->kHexRangePrintingFlag); message_histogram_->SetRangeDescriptions(event_descriptions_); } } void MessageLoop::HistogramEvent(int event) { if (message_histogram_.get()) message_histogram_->Add(event); } // Provide a macro that takes an expression (such as a constant, or macro // constant) and creates a pair to initalize an array of pairs. In this case, // our pair consists of the expressions value, and the "stringized" version // of the expression (i.e., the exrpression put in quotes). For example, if // we have: // #define FOO 2 // #define BAR 5 // then the following: // VALUE_TO_NUMBER_AND_NAME(FOO + BAR) // will expand to: // {7, "FOO + BAR"} // We use the resulting array as an argument to our histogram, which reads the // number as a bucket identifier, and proceeds to use the corresponding name // in the pair (i.e., the quoted string) when printing out a histogram. #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name}, // static const LinearHistogram::DescriptionPair MessageLoop::event_descriptions_[] = { // Provide some pretty print capability in our histogram for our internal // messages. // A few events we handle (kindred to messages), and used to profile actions. VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent) VALUE_TO_NUMBER_AND_NAME(kTimerEvent) {-1, NULL} // The list must be null terminated, per API to histogram. };