// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop.h" #include #include "base/bind.h" #include "base/compiler_specific.h" #include "base/debug/alias.h" #include "base/debug/trace_event.h" #include "base/lazy_instance.h" #include "base/logging.h" #include "base/memory/scoped_ptr.h" #include "base/message_loop_proxy_impl.h" #include "base/message_pump_default.h" #include "base/metrics/histogram.h" #include "base/third_party/dynamic_annotations/dynamic_annotations.h" #include "base/threading/thread_local.h" #include "base/time.h" #include "base/tracked_objects.h" #if defined(OS_MACOSX) #include "base/message_pump_mac.h" #endif #if defined(OS_POSIX) #include "base/message_pump_libevent.h" #endif #if defined(OS_ANDROID) #include "base/message_pump_android.h" #endif #if defined(TOOLKIT_USES_GTK) #include #include #endif // defined(OS_POSIX) && !defined(OS_MACOSX) using base::PendingTask; using base::TimeDelta; using base::TimeTicks; namespace { // A lazily created thread local storage for quick access to a thread's message // loop, if one exists. This should be safe and free of static constructors. base::LazyInstance > lazy_tls_ptr = LAZY_INSTANCE_INITIALIZER; // Logical events for Histogram profiling. Run with -message-loop-histogrammer // to get an accounting of messages and actions taken on each thread. const int kTaskRunEvent = 0x1; const int kTimerEvent = 0x2; // Provide range of message IDs for use in histogramming and debug display. const int kLeastNonZeroMessageId = 1; const int kMaxMessageId = 1099; const int kNumberOfDistinctMessagesDisplayed = 1100; // Provide a macro that takes an expression (such as a constant, or macro // constant) and creates a pair to initalize an array of pairs. In this case, // our pair consists of the expressions value, and the "stringized" version // of the expression (i.e., the exrpression put in quotes). For example, if // we have: // #define FOO 2 // #define BAR 5 // then the following: // VALUE_TO_NUMBER_AND_NAME(FOO + BAR) // will expand to: // {7, "FOO + BAR"} // We use the resulting array as an argument to our histogram, which reads the // number as a bucket identifier, and proceeds to use the corresponding name // in the pair (i.e., the quoted string) when printing out a histogram. #define VALUE_TO_NUMBER_AND_NAME(name) {name, #name}, const base::LinearHistogram::DescriptionPair event_descriptions_[] = { // Provide some pretty print capability in our histogram for our internal // messages. // A few events we handle (kindred to messages), and used to profile actions. VALUE_TO_NUMBER_AND_NAME(kTaskRunEvent) VALUE_TO_NUMBER_AND_NAME(kTimerEvent) {-1, NULL} // The list must be null terminated, per API to histogram. }; bool enable_histogrammer_ = false; MessageLoop::MessagePumpFactory* message_pump_for_ui_factory_ = NULL; } // namespace //------------------------------------------------------------------------------ #if defined(OS_WIN) // Upon a SEH exception in this thread, it restores the original unhandled // exception filter. static int SEHFilter(LPTOP_LEVEL_EXCEPTION_FILTER old_filter) { ::SetUnhandledExceptionFilter(old_filter); return EXCEPTION_CONTINUE_SEARCH; } // Retrieves a pointer to the current unhandled exception filter. There // is no standalone getter method. static LPTOP_LEVEL_EXCEPTION_FILTER GetTopSEHFilter() { LPTOP_LEVEL_EXCEPTION_FILTER top_filter = NULL; top_filter = ::SetUnhandledExceptionFilter(0); ::SetUnhandledExceptionFilter(top_filter); return top_filter; } #endif // defined(OS_WIN) //------------------------------------------------------------------------------ MessageLoop::TaskObserver::TaskObserver() { } MessageLoop::TaskObserver::~TaskObserver() { } MessageLoop::DestructionObserver::~DestructionObserver() { } //------------------------------------------------------------------------------ MessageLoop::MessageLoop(Type type) : type_(type), nestable_tasks_allowed_(true), exception_restoration_(false), message_histogram_(NULL), state_(NULL), should_leak_tasks_(true), #ifdef OS_WIN os_modal_loop_(false), #endif // OS_WIN next_sequence_num_(0) { DCHECK(!current()) << "should only have one message loop per thread"; lazy_tls_ptr.Pointer()->Set(this); message_loop_proxy_ = new base::MessageLoopProxyImpl(); // TODO(rvargas): Get rid of the OS guards. #if defined(OS_WIN) #define MESSAGE_PUMP_UI new base::MessagePumpForUI() #define MESSAGE_PUMP_IO new base::MessagePumpForIO() #elif defined(OS_MACOSX) #define MESSAGE_PUMP_UI base::MessagePumpMac::Create() #define MESSAGE_PUMP_IO new base::MessagePumpLibevent() #elif defined(OS_ANDROID) #define MESSAGE_PUMP_UI new base::MessagePumpForUI() #define MESSAGE_PUMP_IO new base::MessagePumpLibevent() #elif defined(USE_WAYLAND) #define MESSAGE_PUMP_UI new base::MessagePumpWayland() #define MESSAGE_PUMP_IO new base::MessagePumpLibevent() #elif defined(USE_AURA) #define MESSAGE_PUMP_UI new base::MessagePumpX() #define MESSAGE_PUMP_IO new base::MessagePumpLibevent() #elif defined(OS_NACL) // Currently NaCl doesn't have a UI or an IO MessageLoop. // TODO(abarth): Figure out if we need these. #define MESSAGE_PUMP_UI NULL #define MESSAGE_PUMP_IO NULL #elif defined(OS_POSIX) // POSIX but not MACOSX. #define MESSAGE_PUMP_UI new base::MessagePumpGtk() #define MESSAGE_PUMP_IO new base::MessagePumpLibevent() #else #error Not implemented #endif if (type_ == TYPE_UI) { if (message_pump_for_ui_factory_) pump_ = message_pump_for_ui_factory_(); else pump_ = MESSAGE_PUMP_UI; } else if (type_ == TYPE_IO) { pump_ = MESSAGE_PUMP_IO; } else { DCHECK_EQ(TYPE_DEFAULT, type_); pump_ = new base::MessagePumpDefault(); } } MessageLoop::~MessageLoop() { DCHECK_EQ(this, current()); DCHECK(!state_); // Clean up any unprocessed tasks, but take care: deleting a task could // result in the addition of more tasks (e.g., via DeleteSoon). We set a // limit on the number of times we will allow a deleted task to generate more // tasks. Normally, we should only pass through this loop once or twice. If // we end up hitting the loop limit, then it is probably due to one task that // is being stubborn. Inspect the queues to see who is left. bool did_work; for (int i = 0; i < 100; ++i) { DeletePendingTasks(); ReloadWorkQueue(); // If we end up with empty queues, then break out of the loop. did_work = DeletePendingTasks(); if (!did_work) break; } DCHECK(!did_work); // Let interested parties have one last shot at accessing this. FOR_EACH_OBSERVER(DestructionObserver, destruction_observers_, WillDestroyCurrentMessageLoop()); // Tell the message_loop_proxy that we are dying. static_cast(message_loop_proxy_.get())-> WillDestroyCurrentMessageLoop(); message_loop_proxy_ = NULL; // OK, now make it so that no one can find us. lazy_tls_ptr.Pointer()->Set(NULL); #if defined(OS_WIN) // If we left the high-resolution timer activated, deactivate it now. // Doing this is not-critical, it is mainly to make sure we track // the high resolution timer activations properly in our unit tests. if (!high_resolution_timer_expiration_.is_null()) { base::Time::ActivateHighResolutionTimer(false); high_resolution_timer_expiration_ = base::TimeTicks(); } #endif } // static MessageLoop* MessageLoop::current() { // TODO(darin): sadly, we cannot enable this yet since people call us even // when they have no intention of using us. // DCHECK(loop) << "Ouch, did you forget to initialize me?"; return lazy_tls_ptr.Pointer()->Get(); } // static void MessageLoop::EnableHistogrammer(bool enable) { enable_histogrammer_ = enable; } // static void MessageLoop::InitMessagePumpForUIFactory(MessagePumpFactory* factory) { DCHECK(!message_pump_for_ui_factory_); message_pump_for_ui_factory_ = factory; } void MessageLoop::AddDestructionObserver( DestructionObserver* destruction_observer) { DCHECK_EQ(this, current()); destruction_observers_.AddObserver(destruction_observer); } void MessageLoop::RemoveDestructionObserver( DestructionObserver* destruction_observer) { DCHECK_EQ(this, current()); destruction_observers_.RemoveObserver(destruction_observer); } void MessageLoop::PostTask( const tracked_objects::Location& from_here, Task* task) { DCHECK(task); PendingTask pending_task( from_here, base::Bind( &base::subtle::TaskClosureAdapter::Run, new base::subtle::TaskClosureAdapter(task, &should_leak_tasks_)), CalculateDelayedRuntime(0), true); AddToIncomingQueue(&pending_task); } void MessageLoop::PostDelayedTask( const tracked_objects::Location& from_here, Task* task, int64 delay_ms) { DCHECK(task); PendingTask pending_task( from_here, base::Bind( &base::subtle::TaskClosureAdapter::Run, new base::subtle::TaskClosureAdapter(task, &should_leak_tasks_)), CalculateDelayedRuntime(delay_ms), true); AddToIncomingQueue(&pending_task); } void MessageLoop::PostNonNestableTask( const tracked_objects::Location& from_here, Task* task) { DCHECK(task); PendingTask pending_task( from_here, base::Bind( &base::subtle::TaskClosureAdapter::Run, new base::subtle::TaskClosureAdapter(task, &should_leak_tasks_)), CalculateDelayedRuntime(0), false); AddToIncomingQueue(&pending_task); } void MessageLoop::PostNonNestableDelayedTask( const tracked_objects::Location& from_here, Task* task, int64 delay_ms) { DCHECK(task); PendingTask pending_task( from_here, base::Bind( &base::subtle::TaskClosureAdapter::Run, new base::subtle::TaskClosureAdapter(task, &should_leak_tasks_)), CalculateDelayedRuntime(delay_ms), false); AddToIncomingQueue(&pending_task); } void MessageLoop::PostTask( const tracked_objects::Location& from_here, const base::Closure& task) { DCHECK(!task.is_null()) << from_here.ToString(); PendingTask pending_task(from_here, task, CalculateDelayedRuntime(0), true); AddToIncomingQueue(&pending_task); } void MessageLoop::PostDelayedTask( const tracked_objects::Location& from_here, const base::Closure& task, int64 delay_ms) { DCHECK(!task.is_null()) << from_here.ToString(); PendingTask pending_task(from_here, task, CalculateDelayedRuntime(delay_ms), true); AddToIncomingQueue(&pending_task); } void MessageLoop::PostNonNestableTask( const tracked_objects::Location& from_here, const base::Closure& task) { DCHECK(!task.is_null()) << from_here.ToString(); PendingTask pending_task(from_here, task, CalculateDelayedRuntime(0), false); AddToIncomingQueue(&pending_task); } void MessageLoop::PostNonNestableDelayedTask( const tracked_objects::Location& from_here, const base::Closure& task, int64 delay_ms) { DCHECK(!task.is_null()) << from_here.ToString(); PendingTask pending_task(from_here, task, CalculateDelayedRuntime(delay_ms), false); AddToIncomingQueue(&pending_task); } void MessageLoop::Run() { AutoRunState save_state(this); RunHandler(); } void MessageLoop::RunAllPending() { AutoRunState save_state(this); state_->quit_received = true; // Means run until we would otherwise block. RunHandler(); } void MessageLoop::Quit() { DCHECK_EQ(this, current()); if (state_) { state_->quit_received = true; } else { NOTREACHED() << "Must be inside Run to call Quit"; } } void MessageLoop::QuitNow() { DCHECK_EQ(this, current()); if (state_) { pump_->Quit(); } else { NOTREACHED() << "Must be inside Run to call Quit"; } } static void QuitCurrent() { MessageLoop::current()->Quit(); } // static base::Closure MessageLoop::QuitClosure() { return base::Bind(&QuitCurrent); } void MessageLoop::SetNestableTasksAllowed(bool allowed) { if (nestable_tasks_allowed_ != allowed) { nestable_tasks_allowed_ = allowed; if (!nestable_tasks_allowed_) return; // Start the native pump if we are not already pumping. pump_->ScheduleWork(); } } bool MessageLoop::NestableTasksAllowed() const { return nestable_tasks_allowed_; } bool MessageLoop::IsNested() { return state_->run_depth > 1; } void MessageLoop::AddTaskObserver(TaskObserver* task_observer) { DCHECK_EQ(this, current()); task_observers_.AddObserver(task_observer); } void MessageLoop::RemoveTaskObserver(TaskObserver* task_observer) { DCHECK_EQ(this, current()); task_observers_.RemoveObserver(task_observer); } void MessageLoop::AssertIdle() const { // We only check |incoming_queue_|, since we don't want to lock |work_queue_|. base::AutoLock lock(incoming_queue_lock_); DCHECK(incoming_queue_.empty()); } bool MessageLoop::is_running() const { DCHECK_EQ(this, current()); return state_ != NULL; } //------------------------------------------------------------------------------ // Runs the loop in two different SEH modes: // enable_SEH_restoration_ = false : any unhandled exception goes to the last // one that calls SetUnhandledExceptionFilter(). // enable_SEH_restoration_ = true : any unhandled exception goes to the filter // that was existed before the loop was run. void MessageLoop::RunHandler() { #if defined(OS_WIN) if (exception_restoration_) { RunInternalInSEHFrame(); return; } #endif RunInternal(); } #if defined(OS_WIN) __declspec(noinline) void MessageLoop::RunInternalInSEHFrame() { LPTOP_LEVEL_EXCEPTION_FILTER current_filter = GetTopSEHFilter(); __try { RunInternal(); } __except(SEHFilter(current_filter)) { } return; } #endif void MessageLoop::RunInternal() { DCHECK_EQ(this, current()); StartHistogrammer(); #if !defined(OS_MACOSX) && !defined(OS_ANDROID) if (state_->dispatcher && type() == TYPE_UI) { static_cast(pump_.get())-> RunWithDispatcher(this, state_->dispatcher); return; } #endif pump_->Run(this); } bool MessageLoop::ProcessNextDelayedNonNestableTask() { if (state_->run_depth != 1) return false; if (deferred_non_nestable_work_queue_.empty()) return false; PendingTask pending_task = deferred_non_nestable_work_queue_.front(); deferred_non_nestable_work_queue_.pop(); RunTask(pending_task); return true; } void MessageLoop::RunTask(const PendingTask& pending_task) { UNSHIPPED_TRACE_EVENT2("task", "MessageLoop::RunTask", "src_file", pending_task.posted_from.file_name(), "src_func", pending_task.posted_from.function_name()); DCHECK(nestable_tasks_allowed_); // Execute the task and assume the worst: It is probably not reentrant. nestable_tasks_allowed_ = false; // Before running the task, store the program counter where it was posted // and deliberately alias it to ensure it is on the stack if the task // crashes. Be careful not to assume that the variable itself will have the // expected value when displayed by the optimizer in an optimized build. // Look at a memory dump of the stack. const void* program_counter = pending_task.posted_from.program_counter(); base::debug::Alias(&program_counter); HistogramEvent(kTaskRunEvent); tracked_objects::TrackedTime start_time = tracked_objects::ThreadData::NowForStartOfRun(); FOR_EACH_OBSERVER(TaskObserver, task_observers_, WillProcessTask(pending_task.time_posted)); pending_task.task.Run(); FOR_EACH_OBSERVER(TaskObserver, task_observers_, DidProcessTask(pending_task.time_posted)); tracked_objects::ThreadData::TallyRunOnNamedThreadIfTracking(pending_task, start_time, tracked_objects::ThreadData::NowForEndOfRun()); nestable_tasks_allowed_ = true; } bool MessageLoop::DeferOrRunPendingTask(const PendingTask& pending_task) { if (pending_task.nestable || state_->run_depth == 1) { RunTask(pending_task); // Show that we ran a task (Note: a new one might arrive as a // consequence!). return true; } // We couldn't run the task now because we're in a nested message loop // and the task isn't nestable. deferred_non_nestable_work_queue_.push(pending_task); return false; } void MessageLoop::AddToDelayedWorkQueue(const PendingTask& pending_task) { // Move to the delayed work queue. Initialize the sequence number // before inserting into the delayed_work_queue_. The sequence number // is used to faciliate FIFO sorting when two tasks have the same // delayed_run_time value. PendingTask new_pending_task(pending_task); new_pending_task.sequence_num = next_sequence_num_++; delayed_work_queue_.push(new_pending_task); } void MessageLoop::ReloadWorkQueue() { // We can improve performance of our loading tasks from incoming_queue_ to // work_queue_ by waiting until the last minute (work_queue_ is empty) to // load. That reduces the number of locks-per-task significantly when our // queues get large. if (!work_queue_.empty()) return; // Wait till we *really* need to lock and load. // Acquire all we can from the inter-thread queue with one lock acquisition. { base::AutoLock lock(incoming_queue_lock_); if (incoming_queue_.empty()) return; incoming_queue_.Swap(&work_queue_); // Constant time DCHECK(incoming_queue_.empty()); } } bool MessageLoop::DeletePendingTasks() { bool did_work = !work_queue_.empty(); // TODO(darin): Delete all tasks once it is safe to do so. // Until it is totally safe, just do it when running Valgrind. // // See http://crbug.com/61131 // #if defined(USE_HEAPCHECKER) should_leak_tasks_ = false; #else if (RunningOnValgrind()) should_leak_tasks_ = false; #endif // defined(OS_POSIX) while (!work_queue_.empty()) { PendingTask pending_task = work_queue_.front(); work_queue_.pop(); if (!pending_task.delayed_run_time.is_null()) { // We want to delete delayed tasks in the same order in which they would // normally be deleted in case of any funny dependencies between delayed // tasks. AddToDelayedWorkQueue(pending_task); } } did_work |= !deferred_non_nestable_work_queue_.empty(); while (!deferred_non_nestable_work_queue_.empty()) { deferred_non_nestable_work_queue_.pop(); } did_work |= !delayed_work_queue_.empty(); // Historically, we always delete the task regardless of valgrind status. It's // not completely clear why we want to leak them in the loops above. This // code is replicating legacy behavior, and should not be considered // absolutely "correct" behavior. See TODO above about deleting all tasks // when it's safe. should_leak_tasks_ = false; while (!delayed_work_queue_.empty()) { delayed_work_queue_.pop(); } should_leak_tasks_ = true; return did_work; } TimeTicks MessageLoop::CalculateDelayedRuntime(int64 delay_ms) { TimeTicks delayed_run_time; if (delay_ms > 0) { delayed_run_time = TimeTicks::Now() + TimeDelta::FromMilliseconds(delay_ms); #if defined(OS_WIN) if (high_resolution_timer_expiration_.is_null()) { // Windows timers are granular to 15.6ms. If we only set high-res // timers for those under 15.6ms, then a 18ms timer ticks at ~32ms, // which as a percentage is pretty inaccurate. So enable high // res timers for any timer which is within 2x of the granularity. // This is a tradeoff between accuracy and power management. bool needs_high_res_timers = delay_ms < (2 * base::Time::kMinLowResolutionThresholdMs); if (needs_high_res_timers) { if (base::Time::ActivateHighResolutionTimer(true)) { high_resolution_timer_expiration_ = TimeTicks::Now() + TimeDelta::FromMilliseconds(kHighResolutionTimerModeLeaseTimeMs); } } } #endif } else { DCHECK_EQ(delay_ms, 0) << "delay should not be negative"; } #if defined(OS_WIN) if (!high_resolution_timer_expiration_.is_null()) { if (TimeTicks::Now() > high_resolution_timer_expiration_) { base::Time::ActivateHighResolutionTimer(false); high_resolution_timer_expiration_ = TimeTicks(); } } #endif return delayed_run_time; } // Possibly called on a background thread! void MessageLoop::AddToIncomingQueue(PendingTask* pending_task) { // Warning: Don't try to short-circuit, and handle this thread's tasks more // directly, as it could starve handling of foreign threads. Put every task // into this queue. scoped_refptr pump; { base::AutoLock locked(incoming_queue_lock_); bool was_empty = incoming_queue_.empty(); incoming_queue_.push(*pending_task); pending_task->task.Reset(); if (!was_empty) return; // Someone else should have started the sub-pump. pump = pump_; } // Since the incoming_queue_ may contain a task that destroys this message // loop, we cannot exit incoming_queue_lock_ until we are done with |this|. // We use a stack-based reference to the message pump so that we can call // ScheduleWork outside of incoming_queue_lock_. pump->ScheduleWork(); } //------------------------------------------------------------------------------ // Method and data for histogramming events and actions taken by each instance // on each thread. void MessageLoop::StartHistogrammer() { if (enable_histogrammer_ && !message_histogram_ && base::StatisticsRecorder::IsActive()) { DCHECK(!thread_name_.empty()); message_histogram_ = base::LinearHistogram::FactoryGet( "MsgLoop:" + thread_name_, kLeastNonZeroMessageId, kMaxMessageId, kNumberOfDistinctMessagesDisplayed, message_histogram_->kHexRangePrintingFlag); message_histogram_->SetRangeDescriptions(event_descriptions_); } } void MessageLoop::HistogramEvent(int event) { if (message_histogram_) message_histogram_->Add(event); } bool MessageLoop::DoWork() { if (!nestable_tasks_allowed_) { // Task can't be executed right now. return false; } for (;;) { ReloadWorkQueue(); if (work_queue_.empty()) break; // Execute oldest task. do { PendingTask pending_task = work_queue_.front(); work_queue_.pop(); if (!pending_task.delayed_run_time.is_null()) { AddToDelayedWorkQueue(pending_task); // If we changed the topmost task, then it is time to reschedule. if (delayed_work_queue_.top().task.Equals(pending_task.task)) pump_->ScheduleDelayedWork(pending_task.delayed_run_time); } else { if (DeferOrRunPendingTask(pending_task)) return true; } } while (!work_queue_.empty()); } // Nothing happened. return false; } bool MessageLoop::DoDelayedWork(TimeTicks* next_delayed_work_time) { if (!nestable_tasks_allowed_ || delayed_work_queue_.empty()) { recent_time_ = *next_delayed_work_time = TimeTicks(); return false; } // When we "fall behind," there will be a lot of tasks in the delayed work // queue that are ready to run. To increase efficiency when we fall behind, // we will only call Time::Now() intermittently, and then process all tasks // that are ready to run before calling it again. As a result, the more we // fall behind (and have a lot of ready-to-run delayed tasks), the more // efficient we'll be at handling the tasks. TimeTicks next_run_time = delayed_work_queue_.top().delayed_run_time; if (next_run_time > recent_time_) { recent_time_ = TimeTicks::Now(); // Get a better view of Now(); if (next_run_time > recent_time_) { *next_delayed_work_time = next_run_time; return false; } } PendingTask pending_task = delayed_work_queue_.top(); delayed_work_queue_.pop(); if (!delayed_work_queue_.empty()) *next_delayed_work_time = delayed_work_queue_.top().delayed_run_time; return DeferOrRunPendingTask(pending_task); } bool MessageLoop::DoIdleWork() { if (ProcessNextDelayedNonNestableTask()) return true; if (state_->quit_received) pump_->Quit(); return false; } //------------------------------------------------------------------------------ // MessageLoop::AutoRunState MessageLoop::AutoRunState::AutoRunState(MessageLoop* loop) : loop_(loop) { // Make the loop reference us. previous_state_ = loop_->state_; if (previous_state_) { run_depth = previous_state_->run_depth + 1; } else { run_depth = 1; } loop_->state_ = this; // Initialize the other fields: quit_received = false; #if !defined(OS_MACOSX) && !defined(OS_ANDROID) dispatcher = NULL; #endif } MessageLoop::AutoRunState::~AutoRunState() { loop_->state_ = previous_state_; } //------------------------------------------------------------------------------ // MessageLoopForUI #if defined(OS_WIN) void MessageLoopForUI::DidProcessMessage(const MSG& message) { pump_win()->DidProcessMessage(message); } #endif // defined(OS_WIN) #if defined(OS_ANDROID) void MessageLoopForUI::Start() { // No Histogram support for UI message loop as it is managed by Java side static_cast(pump_.get())->Start(this); } #endif #if !defined(OS_MACOSX) && !defined(OS_NACL) && !defined(OS_ANDROID) void MessageLoopForUI::AddObserver(Observer* observer) { pump_ui()->AddObserver(observer); } void MessageLoopForUI::RemoveObserver(Observer* observer) { pump_ui()->RemoveObserver(observer); } void MessageLoopForUI::RunWithDispatcher(Dispatcher* dispatcher) { AutoRunState save_state(this); state_->dispatcher = dispatcher; RunHandler(); } void MessageLoopForUI::RunAllPendingWithDispatcher(Dispatcher* dispatcher) { AutoRunState save_state(this); state_->dispatcher = dispatcher; state_->quit_received = true; // Means run until we would otherwise block. RunHandler(); } #endif // !defined(OS_MACOSX) && !defined(OS_NACL) && !defined(OS_ANDROID) //------------------------------------------------------------------------------ // MessageLoopForIO #if defined(OS_WIN) void MessageLoopForIO::RegisterIOHandler(HANDLE file, IOHandler* handler) { pump_io()->RegisterIOHandler(file, handler); } bool MessageLoopForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { return pump_io()->WaitForIOCompletion(timeout, filter); } #elif defined(OS_POSIX) && !defined(OS_NACL) bool MessageLoopForIO::WatchFileDescriptor(int fd, bool persistent, Mode mode, FileDescriptorWatcher *controller, Watcher *delegate) { return pump_libevent()->WatchFileDescriptor( fd, persistent, static_cast(mode), controller, delegate); } #endif