// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_MESSAGE_LOOP_H_ #define BASE_MESSAGE_LOOP_H_ #include #include #include #include #include "base/histogram.h" #include "base/message_pump.h" #include "base/observer_list.h" #include "base/ref_counted.h" #include "base/task.h" #include "base/timer.h" #if defined(OS_WIN) // We need this to declare base::MessagePumpWin::Dispatcher, which we should // really just eliminate. #include "base/message_pump_win.h" #elif defined(OS_POSIX) #include "base/message_pump_libevent.h" #endif // A MessageLoop is used to process events for a particular thread. There is // at most one MessageLoop instance per thread. // // Events include at a minimum Task instances submitted to PostTask or those // managed by TimerManager. Depending on the type of message pump used by the // MessageLoop other events such as UI messages may be processed. On Windows // APC calls (as time permits) and signals sent to a registered set of HANDLEs // may also be processed. // // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called // on the thread where the MessageLoop's Run method executes. // // NOTE: MessageLoop has task reentrancy protection. This means that if a // task is being processed, a second task cannot start until the first task is // finished. Reentrancy can happen when processing a task, and an inner // message pump is created. That inner pump then processes native messages // which could implicitly start an inner task. Inner message pumps are created // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions // (DoDragDrop), printer functions (StartDoc) and *many* others. // // Sample workaround when inner task processing is needed: // bool old_state = MessageLoop::current()->NestableTasksAllowed(); // MessageLoop::current()->SetNestableTasksAllowed(true); // HRESULT hr = DoDragDrop(...); // Implicitly runs a modal message loop here. // MessageLoop::current()->SetNestableTasksAllowed(old_state); // // Process hr (the result returned by DoDragDrop(). // // Please be SURE your task is reentrant (nestable) and all global variables // are stable and accessible before calling SetNestableTasksAllowed(true). // class MessageLoop : public base::MessagePump::Delegate { public: static void EnableHistogrammer(bool enable_histogrammer); // A DestructionObserver is notified when the current MessageLoop is being // destroyed. These obsevers are notified prior to MessageLoop::current() // being changed to return NULL. This gives interested parties the chance to // do final cleanup that depends on the MessageLoop. // // NOTE: Any tasks posted to the MessageLoop during this notification will // not be run. Instead, they will be deleted. // class DestructionObserver { public: virtual ~DestructionObserver() {} virtual void WillDestroyCurrentMessageLoop() = 0; }; // Add a DestructionObserver, which will start receiving notifications // immediately. void AddDestructionObserver(DestructionObserver* destruction_observer); // Remove a DestructionObserver. It is safe to call this method while a // DestructionObserver is receiving a notification callback. void RemoveDestructionObserver(DestructionObserver* destruction_observer); // The "PostTask" family of methods call the task's Run method asynchronously // from within a message loop at some point in the future. // // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed // with normal UI or IO event processing. With the PostDelayedTask variant, // tasks are called after at least approximately 'delay_ms' have elapsed. // // The NonNestable variants work similarly except that they promise never to // dispatch the task from a nested invocation of MessageLoop::Run. Instead, // such tasks get deferred until the top-most MessageLoop::Run is executing. // // The MessageLoop takes ownership of the Task, and deletes it after it has // been Run(). // // NOTE: These methods may be called on any thread. The Task will be invoked // on the thread that executes MessageLoop::Run(). void PostTask( const tracked_objects::Location& from_here, Task* task); void PostDelayedTask( const tracked_objects::Location& from_here, Task* task, int delay_ms); void PostNonNestableTask( const tracked_objects::Location& from_here, Task* task); void PostNonNestableDelayedTask( const tracked_objects::Location& from_here, Task* task, int delay_ms); // A variant on PostTask that deletes the given object. This is useful // if the object needs to live until the next run of the MessageLoop (for // example, deleting a RenderProcessHost from within an IPC callback is not // good). // // NOTE: This method may be called on any thread. The object will be deleted // on the thread that executes MessageLoop::Run(). If this is not the same // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit // from RefCountedThreadSafe! template void DeleteSoon(const tracked_objects::Location& from_here, T* object) { PostNonNestableTask(from_here, new DeleteTask(object)); } // A variant on PostTask that releases the given reference counted object // (by calling its Release method). This is useful if the object needs to // live until the next run of the MessageLoop, or if the object needs to be // released on a particular thread. // // NOTE: This method may be called on any thread. The object will be // released (and thus possibly deleted) on the thread that executes // MessageLoop::Run(). If this is not the same as the thread that calls // PostDelayedTask(FROM_HERE, ), then T MUST inherit from // RefCountedThreadSafe! template void ReleaseSoon(const tracked_objects::Location& from_here, T* object) { PostNonNestableTask(from_here, new ReleaseTask(object)); } // Run the message loop. void Run(); // Process all pending tasks, windows messages, etc., but don't wait/sleep. // Return as soon as all items that can be run are taken care of. void RunAllPending(); // Signals the Run method to return after it is done processing all pending // messages. This method may only be called on the same thread that called // Run, and Run must still be on the call stack. // // Use QuitTask if you need to Quit another thread's MessageLoop, but note // that doing so is fairly dangerous if the target thread makes nested calls // to MessageLoop::Run. The problem being that you won't know which nested // run loop you are quiting, so be careful! // void Quit(); // Invokes Quit on the current MessageLoop when run. Useful to schedule an // arbitrary MessageLoop to Quit. class QuitTask : public Task { public: virtual void Run() { MessageLoop::current()->Quit(); } }; // A MessageLoop has a particular type, which indicates the set of // asynchronous events it may process in addition to tasks and timers. // // TYPE_DEFAULT // This type of ML only supports tasks and timers. // // TYPE_UI // This type of ML also supports native UI events (e.g., Windows messages). // See also MessageLoopForUI. // // TYPE_IO // This type of ML also supports asynchronous IO. See also // MessageLoopForIO. // enum Type { TYPE_DEFAULT, TYPE_UI, TYPE_IO }; // Normally, it is not necessary to instantiate a MessageLoop. Instead, it // is typical to make use of the current thread's MessageLoop instance. explicit MessageLoop(Type type = TYPE_DEFAULT); ~MessageLoop(); // Returns the type passed to the constructor. Type type() const { return type_; } // Optional call to connect the thread name with this loop. void set_thread_name(const std::string& thread_name) { DCHECK(thread_name_.empty()) << "Should not rename this thread!"; thread_name_ = thread_name; } const std::string& thread_name() const { return thread_name_; } // Returns the MessageLoop object for the current thread, or null if none. static MessageLoop* current(); // Enables or disables the recursive task processing. This happens in the case // of recursive message loops. Some unwanted message loop may occurs when // using common controls or printer functions. By default, recursive task // processing is disabled. // // The specific case where tasks get queued is: // - The thread is running a message loop. // - It receives a task #1 and execute it. // - The task #1 implicitly start a message loop, like a MessageBox in the // unit test. This can also be StartDoc or GetSaveFileName. // - The thread receives a task #2 before or while in this second message // loop. // - With NestableTasksAllowed set to true, the task #2 will run right away. // Otherwise, it will get executed right after task #1 completes at "thread // message loop level". void SetNestableTasksAllowed(bool allowed); bool NestableTasksAllowed() const; // Enables or disables the restoration during an exception of the unhandled // exception filter that was active when Run() was called. This can happen // if some third party code call SetUnhandledExceptionFilter() and never // restores the previous filter. void set_exception_restoration(bool restore) { exception_restoration_ = restore; } //---------------------------------------------------------------------------- protected: struct RunState { // Used to count how many Run() invocations are on the stack. int run_depth; // Used to record that Quit() was called, or that we should quit the pump // once it becomes idle. bool quit_received; #if defined(OS_WIN) base::MessagePumpWin::Dispatcher* dispatcher; #endif }; class AutoRunState : RunState { public: AutoRunState(MessageLoop* loop); ~AutoRunState(); private: MessageLoop* loop_; RunState* previous_state_; }; // This structure is copied around by value. struct PendingTask { Task* task; // The task to run. Time delayed_run_time; // The time when the task should be run. int sequence_num; // Used to facilitate sorting by run time. bool nestable; // True if OK to dispatch from a nested loop. PendingTask(Task* task, bool nestable) : task(task), sequence_num(0), nestable(nestable) { } // Used to support sorting. bool operator<(const PendingTask& other) const; }; typedef std::queue TaskQueue; typedef std::priority_queue DelayedTaskQueue; #if defined(OS_WIN) base::MessagePumpWin* pump_win() { return static_cast(pump_.get()); } #elif defined(OS_POSIX) base::MessagePumpLibevent* pump_libevent() { return static_cast(pump_.get()); } #endif // A function to encapsulate all the exception handling capability in the // stacks around the running of a main message loop. It will run the message // loop in a SEH try block or not depending on the set_SEH_restoration() // flag. void RunHandler(); // A surrounding stack frame around the running of the message loop that // supports all saving and restoring of state, as is needed for any/all (ugly) // recursive calls. void RunInternal(); // Called to process any delayed non-nestable tasks. bool ProcessNextDelayedNonNestableTask(); //---------------------------------------------------------------------------- // Run a work_queue_ task or new_task, and delete it (if it was processed by // PostTask). If there are queued tasks, the oldest one is executed and // new_task is queued. new_task is optional and can be NULL. In this NULL // case, the method will run one pending task (if any exist). Returns true if // it executes a task. Queued tasks accumulate only when there is a // non-nestable task currently processing, in which case the new_task is // appended to the list work_queue_. Such re-entrancy generally happens when // an unrequested message pump (typical of a native dialog) is executing in // the context of a task. bool QueueOrRunTask(Task* new_task); // Runs the specified task and deletes it. void RunTask(Task* task); // Calls RunTask or queues the pending_task on the deferred task list if it // cannot be run right now. Returns true if the task was run. bool DeferOrRunPendingTask(const PendingTask& pending_task); // Adds the pending task to delayed_work_queue_. void AddToDelayedWorkQueue(const PendingTask& pending_task); // Load tasks from the incoming_queue_ into work_queue_ if the latter is // empty. The former requires a lock to access, while the latter is directly // accessible on this thread. void ReloadWorkQueue(); // Delete tasks that haven't run yet without running them. Used in the // destructor to make sure all the task's destructors get called. Returns // true if some work was done. bool DeletePendingTasks(); // Post a task to our incomming queue. void PostTask_Helper(const tracked_objects::Location& from_here, Task* task, int delay_ms, bool nestable); // base::MessagePump::Delegate methods: virtual bool DoWork(); virtual bool DoDelayedWork(Time* next_delayed_work_time); virtual bool DoIdleWork(); // Start recording histogram info about events and action IF it was enabled // and IF the statistics recorder can accept a registration of our histogram. void StartHistogrammer(); // Add occurence of event to our histogram, so that we can see what is being // done in a specific MessageLoop instance (i.e., specific thread). // If message_histogram_ is NULL, this is a no-op. void HistogramEvent(int event); static const LinearHistogram::DescriptionPair event_descriptions_[]; static bool enable_histogrammer_; Type type_; // A list of tasks that need to be processed by this instance. Note that // this queue is only accessed (push/pop) by our current thread. TaskQueue work_queue_; // Contains delayed tasks, sorted by their 'delayed_run_time' property. DelayedTaskQueue delayed_work_queue_; // A queue of non-nestable tasks that we had to defer because when it came // time to execute them we were in a nested message loop. They will execute // once we're out of nested message loops. TaskQueue deferred_non_nestable_work_queue_; scoped_refptr pump_; ObserverList destruction_observers_; // A recursion block that prevents accidentally running additonal tasks when // insider a (accidentally induced?) nested message pump. bool nestable_tasks_allowed_; bool exception_restoration_; std::string thread_name_; // A profiling histogram showing the counts of various messages and events. scoped_ptr message_histogram_; // A null terminated list which creates an incoming_queue of tasks that are // aquired under a mutex for processing on this instance's thread. These tasks // have not yet been sorted out into items for our work_queue_ vs items that // will be handled by the TimerManager. TaskQueue incoming_queue_; // Protect access to incoming_queue_. Lock incoming_queue_lock_; RunState* state_; // The next sequence number to use for delayed tasks. int next_sequence_num_; DISALLOW_COPY_AND_ASSIGN(MessageLoop); }; //----------------------------------------------------------------------------- // MessageLoopForUI extends MessageLoop with methods that are particular to a // MessageLoop instantiated with TYPE_UI. // // This class is typically used like so: // MessageLoopForUI::current()->...call some method... // class MessageLoopForUI : public MessageLoop { public: MessageLoopForUI() : MessageLoop(TYPE_UI) { } // Returns the MessageLoopForUI of the current thread. static MessageLoopForUI* current() { MessageLoop* loop = MessageLoop::current(); DCHECK_EQ(MessageLoop::TYPE_UI, loop->type()); return static_cast(loop); } #if defined(OS_WIN) typedef base::MessagePumpWin::Dispatcher Dispatcher; typedef base::MessagePumpWin::Observer Observer; // Please see MessagePumpWin for definitions of these methods. void Run(Dispatcher* dispatcher); void AddObserver(Observer* observer); void RemoveObserver(Observer* observer); void WillProcessMessage(const MSG& message); void DidProcessMessage(const MSG& message); void PumpOutPendingPaintMessages(); protected: // TODO(rvargas): Make this platform independent. base::MessagePumpWin* pump_ui() { return static_cast(pump_.get()); } #endif // defined(OS_WIN) }; // Do not add any member variables to MessageLoopForUI! This is important b/c // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra // data that you need should be stored on the MessageLoop's pump_ instance. COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI), MessageLoopForUI_should_not_have_extra_member_variables); //----------------------------------------------------------------------------- // MessageLoopForIO extends MessageLoop with methods that are particular to a // MessageLoop instantiated with TYPE_IO. // // This class is typically used like so: // MessageLoopForIO::current()->...call some method... // class MessageLoopForIO : public MessageLoop { public: MessageLoopForIO() : MessageLoop(TYPE_IO) { } // Returns the MessageLoopForIO of the current thread. static MessageLoopForIO* current() { MessageLoop* loop = MessageLoop::current(); DCHECK_EQ(MessageLoop::TYPE_IO, loop->type()); return static_cast(loop); } #if defined(OS_WIN) typedef base::MessagePumpForIO::Watcher Watcher; typedef base::MessagePumpForIO::IOHandler IOHandler; // Please see MessagePumpWin for definitions of these methods. void WatchObject(HANDLE object, Watcher* watcher); void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); void RegisterIOContext(OVERLAPPED* context, IOHandler* handler); protected: // TODO(rvargas): Make this platform independent. base::MessagePumpForIO* pump_io() { return static_cast(pump_.get()); } #elif defined(OS_POSIX) typedef base::MessagePumpLibevent::Watcher Watcher; // Please see MessagePumpLibevent for definitions of these methods. void WatchSocket(int socket, short interest_mask, struct event* e, Watcher* watcher); void UnwatchSocket(struct event* e); #endif // defined(OS_POSIX) }; // Do not add any member variables to MessageLoopForIO! This is important b/c // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra // data that you need should be stored on the MessageLoop's pump_ instance. COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO), MessageLoopForIO_should_not_have_extra_member_variables); #endif // BASE_MESSAGE_LOOP_H_