// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_ #define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_ #include #include #include "base/base_export.h" #include "base/callback_forward.h" #include "base/debug/task_annotator.h" #include "base/gtest_prod_util.h" #include "base/location.h" #include "base/macros.h" #include "base/memory/ref_counted.h" #include "base/memory/scoped_ptr.h" #include "base/message_loop/incoming_task_queue.h" #include "base/message_loop/message_loop_task_runner.h" #include "base/message_loop/message_pump.h" #include "base/message_loop/timer_slack.h" #include "base/observer_list.h" #include "base/pending_task.h" #include "base/sequenced_task_runner_helpers.h" #include "base/synchronization/lock.h" #include "base/time/time.h" #include "base/tracking_info.h" #include "build/build_config.h" // TODO(sky): these includes should not be necessary. Nuke them. #if defined(OS_WIN) #include "base/message_loop/message_pump_win.h" #elif defined(OS_IOS) #include "base/message_loop/message_pump_io_ios.h" #elif defined(OS_POSIX) #include "base/message_loop/message_pump_libevent.h" #endif namespace base { class HistogramBase; class RunLoop; class ThreadTaskRunnerHandle; class WaitableEvent; // A MessageLoop is used to process events for a particular thread. There is // at most one MessageLoop instance per thread. // // Events include at a minimum Task instances submitted to PostTask and its // variants. Depending on the type of message pump used by the MessageLoop // other events such as UI messages may be processed. On Windows APC calls (as // time permits) and signals sent to a registered set of HANDLEs may also be // processed. // // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called // on the thread where the MessageLoop's Run method executes. // // NOTE: MessageLoop has task reentrancy protection. This means that if a // task is being processed, a second task cannot start until the first task is // finished. Reentrancy can happen when processing a task, and an inner // message pump is created. That inner pump then processes native messages // which could implicitly start an inner task. Inner message pumps are created // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions // (DoDragDrop), printer functions (StartDoc) and *many* others. // // Sample workaround when inner task processing is needed: // HRESULT hr; // { // MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current()); // hr = DoDragDrop(...); // Implicitly runs a modal message loop. // } // // Process |hr| (the result returned by DoDragDrop()). // // Please be SURE your task is reentrant (nestable) and all global variables // are stable and accessible before calling SetNestableTasksAllowed(true). // class BASE_EXPORT MessageLoop : public MessagePump::Delegate { public: // A MessageLoop has a particular type, which indicates the set of // asynchronous events it may process in addition to tasks and timers. // // TYPE_DEFAULT // This type of ML only supports tasks and timers. // // TYPE_UI // This type of ML also supports native UI events (e.g., Windows messages). // See also MessageLoopForUI. // // TYPE_IO // This type of ML also supports asynchronous IO. See also // MessageLoopForIO. // // TYPE_JAVA // This type of ML is backed by a Java message handler which is responsible // for running the tasks added to the ML. This is only for use on Android. // TYPE_JAVA behaves in essence like TYPE_UI, except during construction // where it does not use the main thread specific pump factory. // // TYPE_CUSTOM // MessagePump was supplied to constructor. // enum Type { TYPE_DEFAULT, TYPE_UI, TYPE_CUSTOM, TYPE_IO, #if defined(OS_ANDROID) TYPE_JAVA, #endif // defined(OS_ANDROID) }; // Normally, it is not necessary to instantiate a MessageLoop. Instead, it // is typical to make use of the current thread's MessageLoop instance. explicit MessageLoop(Type type = TYPE_DEFAULT); // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must // be non-NULL. explicit MessageLoop(scoped_ptr pump); ~MessageLoop() override; // Returns the MessageLoop object for the current thread, or null if none. static MessageLoop* current(); static void EnableHistogrammer(bool enable_histogrammer); typedef scoped_ptr (MessagePumpFactory)(); // Uses the given base::MessagePumpForUIFactory to override the default // MessagePump implementation for 'TYPE_UI'. Returns true if the factory // was successfully registered. static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory); // Creates the default MessagePump based on |type|. Caller owns return // value. static scoped_ptr CreateMessagePumpForType(Type type); // A DestructionObserver is notified when the current MessageLoop is being // destroyed. These observers are notified prior to MessageLoop::current() // being changed to return NULL. This gives interested parties the chance to // do final cleanup that depends on the MessageLoop. // // NOTE: Any tasks posted to the MessageLoop during this notification will // not be run. Instead, they will be deleted. // class BASE_EXPORT DestructionObserver { public: virtual void WillDestroyCurrentMessageLoop() = 0; protected: virtual ~DestructionObserver(); }; // Add a DestructionObserver, which will start receiving notifications // immediately. void AddDestructionObserver(DestructionObserver* destruction_observer); // Remove a DestructionObserver. It is safe to call this method while a // DestructionObserver is receiving a notification callback. void RemoveDestructionObserver(DestructionObserver* destruction_observer); // NOTE: Deprecated; prefer task_runner() and the TaskRunner interfaces. // TODO(skyostil): Remove these functions (crbug.com/465354). // // The "PostTask" family of methods call the task's Run method asynchronously // from within a message loop at some point in the future. // // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed // with normal UI or IO event processing. With the PostDelayedTask variant, // tasks are called after at least approximately 'delay_ms' have elapsed. // // The NonNestable variants work similarly except that they promise never to // dispatch the task from a nested invocation of MessageLoop::Run. Instead, // such tasks get deferred until the top-most MessageLoop::Run is executing. // // The MessageLoop takes ownership of the Task, and deletes it after it has // been Run(). // // PostTask(from_here, task) is equivalent to // PostDelayedTask(from_here, task, 0). // // NOTE: These methods may be called on any thread. The Task will be invoked // on the thread that executes MessageLoop::Run(). void PostTask(const tracked_objects::Location& from_here, const Closure& task); void PostDelayedTask(const tracked_objects::Location& from_here, const Closure& task, TimeDelta delay); void PostNonNestableTask(const tracked_objects::Location& from_here, const Closure& task); void PostNonNestableDelayedTask(const tracked_objects::Location& from_here, const Closure& task, TimeDelta delay); // A variant on PostTask that deletes the given object. This is useful // if the object needs to live until the next run of the MessageLoop (for // example, deleting a RenderProcessHost from within an IPC callback is not // good). // // NOTE: This method may be called on any thread. The object will be deleted // on the thread that executes MessageLoop::Run(). template void DeleteSoon(const tracked_objects::Location& from_here, const T* object) { base::subtle::DeleteHelperInternal::DeleteViaSequencedTaskRunner( this, from_here, object); } // A variant on PostTask that releases the given reference counted object // (by calling its Release method). This is useful if the object needs to // live until the next run of the MessageLoop, or if the object needs to be // released on a particular thread. // // A common pattern is to manually increment the object's reference count // (AddRef), clear the pointer, then issue a ReleaseSoon. The reference count // is incremented manually to ensure clearing the pointer does not trigger a // delete and to account for the upcoming decrement (ReleaseSoon). For // example: // // scoped_refptr foo = ... // foo->AddRef(); // Foo* raw_foo = foo.get(); // foo = NULL; // message_loop->ReleaseSoon(raw_foo); // // NOTE: This method may be called on any thread. The object will be // released (and thus possibly deleted) on the thread that executes // MessageLoop::Run(). If this is not the same as the thread that calls // ReleaseSoon(FROM_HERE, ), then T MUST inherit from // RefCountedThreadSafe! template void ReleaseSoon(const tracked_objects::Location& from_here, const T* object) { base::subtle::ReleaseHelperInternal::ReleaseViaSequencedTaskRunner( this, from_here, object); } // Deprecated: use RunLoop instead. // Run the message loop. void Run(); // Deprecated: use RunLoop instead. // Process all pending tasks, windows messages, etc., but don't wait/sleep. // Return as soon as all items that can be run are taken care of. void RunUntilIdle(); // Deprecated: use RunLoop instead. // // Signals the Run method to return when it becomes idle. It will continue to // process pending messages and future messages as long as they are enqueued. // Warning: if the MessageLoop remains busy, it may never quit. Only use this // Quit method when looping procedures (such as web pages) have been shut // down. // // This method may only be called on the same thread that called Run, and Run // must still be on the call stack. // // Use QuitClosure variants if you need to Quit another thread's MessageLoop, // but note that doing so is fairly dangerous if the target thread makes // nested calls to MessageLoop::Run. The problem being that you won't know // which nested run loop you are quitting, so be careful! void QuitWhenIdle(); // Deprecated: use RunLoop instead. // // This method is a variant of Quit, that does not wait for pending messages // to be processed before returning from Run. void QuitNow(); // Deprecated: use RunLoop instead. // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an // arbitrary MessageLoop to QuitWhenIdle. static Closure QuitWhenIdleClosure(); // Set the timer slack for this message loop. void SetTimerSlack(TimerSlack timer_slack) { pump_->SetTimerSlack(timer_slack); } // Returns true if this loop is |type|. This allows subclasses (especially // those in tests) to specialize how they are identified. virtual bool IsType(Type type) const; // Returns the type passed to the constructor. Type type() const { return type_; } // Optional call to connect the thread name with this loop. void set_thread_name(const std::string& thread_name) { DCHECK(thread_name_.empty()) << "Should not rename this thread!"; thread_name_ = thread_name; } const std::string& thread_name() const { return thread_name_; } // Gets the TaskRunner associated with this message loop. const scoped_refptr& task_runner() { return task_runner_; } // Sets a new TaskRunner for this message loop. The message loop must already // have been bound to a thread prior to this call, and the task runner must // belong to that thread. Note that changing the task runner will also affect // the ThreadTaskRunnerHandle for the target thread. Must be called on the // thread to which the message loop is bound. void SetTaskRunner(scoped_refptr task_runner); // Enables or disables the recursive task processing. This happens in the case // of recursive message loops. Some unwanted message loops may occur when // using common controls or printer functions. By default, recursive task // processing is disabled. // // Please use |ScopedNestableTaskAllower| instead of calling these methods // directly. In general, nestable message loops are to be avoided. They are // dangerous and difficult to get right, so please use with extreme caution. // // The specific case where tasks get queued is: // - The thread is running a message loop. // - It receives a task #1 and executes it. // - The task #1 implicitly starts a message loop, like a MessageBox in the // unit test. This can also be StartDoc or GetSaveFileName. // - The thread receives a task #2 before or while in this second message // loop. // - With NestableTasksAllowed set to true, the task #2 will run right away. // Otherwise, it will get executed right after task #1 completes at "thread // message loop level". void SetNestableTasksAllowed(bool allowed); bool NestableTasksAllowed() const; // Enables nestable tasks on |loop| while in scope. class ScopedNestableTaskAllower { public: explicit ScopedNestableTaskAllower(MessageLoop* loop) : loop_(loop), old_state_(loop_->NestableTasksAllowed()) { loop_->SetNestableTasksAllowed(true); } ~ScopedNestableTaskAllower() { loop_->SetNestableTasksAllowed(old_state_); } private: MessageLoop* loop_; bool old_state_; }; // Returns true if we are currently running a nested message loop. bool IsNested(); // A TaskObserver is an object that receives task notifications from the // MessageLoop. // // NOTE: A TaskObserver implementation should be extremely fast! class BASE_EXPORT TaskObserver { public: TaskObserver(); // This method is called before processing a task. virtual void WillProcessTask(const PendingTask& pending_task) = 0; // This method is called after processing a task. virtual void DidProcessTask(const PendingTask& pending_task) = 0; protected: virtual ~TaskObserver(); }; // These functions can only be called on the same thread that |this| is // running on. void AddTaskObserver(TaskObserver* task_observer); void RemoveTaskObserver(TaskObserver* task_observer); #if defined(OS_WIN) void set_os_modal_loop(bool os_modal_loop) { os_modal_loop_ = os_modal_loop; } bool os_modal_loop() const { return os_modal_loop_; } #endif // OS_WIN // Can only be called from the thread that owns the MessageLoop. bool is_running() const; // Returns true if the message loop has high resolution timers enabled. // Provided for testing. bool HasHighResolutionTasks(); // Returns true if the message loop is "idle". Provided for testing. bool IsIdleForTesting(); // Returns the TaskAnnotator which is used to add debug information to posted // tasks. debug::TaskAnnotator* task_annotator() { return &task_annotator_; } // Runs the specified PendingTask. void RunTask(const PendingTask& pending_task); //---------------------------------------------------------------------------- protected: scoped_ptr pump_; using MessagePumpFactoryCallback = Callback()>; // Common protected constructor. Other constructors delegate the // initialization to this constructor. // A subclass can invoke this constructor to create a message_loop of a // specific type with a custom loop. The implementation does not call // BindToCurrentThread. If this constructor is invoked directly by a subclass, // then the subclass must subsequently bind the message loop. MessageLoop(Type type, MessagePumpFactoryCallback pump_factory); // Configure various members and bind this message loop to the current thread. void BindToCurrentThread(); private: friend class RunLoop; friend class internal::IncomingTaskQueue; friend class ScheduleWorkTest; friend class Thread; FRIEND_TEST_ALL_PREFIXES(MessageLoopTest, DeleteUnboundLoop); // Creates a MessageLoop without binding to a thread. // If |type| is TYPE_CUSTOM non-null |pump_factory| must be also given // to create a message pump for this message loop. Otherwise a default // message pump for the |type| is created. // // It is valid to call this to create a new message loop on one thread, // and then pass it to the thread where the message loop actually runs. // The message loop's BindToCurrentThread() method must be called on the // thread the message loop runs on, before calling Run(). // Before BindToCurrentThread() is called, only Post*Task() functions can // be called on the message loop. static scoped_ptr CreateUnbound( Type type, MessagePumpFactoryCallback pump_factory); // Sets the ThreadTaskRunnerHandle for the current thread to point to the // task runner for this message loop. void SetThreadTaskRunnerHandle(); // Invokes the actual run loop using the message pump. void RunHandler(); // Called to process any delayed non-nestable tasks. bool ProcessNextDelayedNonNestableTask(); // Calls RunTask or queues the pending_task on the deferred task list if it // cannot be run right now. Returns true if the task was run. bool DeferOrRunPendingTask(const PendingTask& pending_task); // Adds the pending task to delayed_work_queue_. void AddToDelayedWorkQueue(const PendingTask& pending_task); // Delete tasks that haven't run yet without running them. Used in the // destructor to make sure all the task's destructors get called. Returns // true if some work was done. bool DeletePendingTasks(); // Loads tasks from the incoming queue to |work_queue_| if the latter is // empty. void ReloadWorkQueue(); // Wakes up the message pump. Can be called on any thread. The caller is // responsible for synchronizing ScheduleWork() calls. void ScheduleWork(); // Start recording histogram info about events and action IF it was enabled // and IF the statistics recorder can accept a registration of our histogram. void StartHistogrammer(); // Add occurrence of event to our histogram, so that we can see what is being // done in a specific MessageLoop instance (i.e., specific thread). // If message_histogram_ is NULL, this is a no-op. void HistogramEvent(int event); // MessagePump::Delegate methods: bool DoWork() override; bool DoDelayedWork(TimeTicks* next_delayed_work_time) override; bool DoIdleWork() override; const Type type_; // A list of tasks that need to be processed by this instance. Note that // this queue is only accessed (push/pop) by our current thread. TaskQueue work_queue_; #if defined(OS_WIN) // How many high resolution tasks are in the pending task queue. This value // increases by N every time we call ReloadWorkQueue() and decreases by 1 // every time we call RunTask() if the task needs a high resolution timer. int pending_high_res_tasks_; // Tracks if we have requested high resolution timers. Its only use is to // turn off the high resolution timer upon loop destruction. bool in_high_res_mode_; #endif // Contains delayed tasks, sorted by their 'delayed_run_time' property. DelayedTaskQueue delayed_work_queue_; // A recent snapshot of Time::Now(), used to check delayed_work_queue_. TimeTicks recent_time_; // A queue of non-nestable tasks that we had to defer because when it came // time to execute them we were in a nested message loop. They will execute // once we're out of nested message loops. TaskQueue deferred_non_nestable_work_queue_; ObserverList destruction_observers_; // A recursion block that prevents accidentally running additional tasks when // insider a (accidentally induced?) nested message pump. bool nestable_tasks_allowed_; #if defined(OS_WIN) // Should be set to true before calling Windows APIs like TrackPopupMenu, etc. // which enter a modal message loop. bool os_modal_loop_; #endif // pump_factory_.Run() is called to create a message pump for this loop // if type_ is TYPE_CUSTOM and pump_ is null. MessagePumpFactoryCallback pump_factory_; std::string thread_name_; // A profiling histogram showing the counts of various messages and events. HistogramBase* message_histogram_; RunLoop* run_loop_; ObserverList task_observers_; debug::TaskAnnotator task_annotator_; scoped_refptr incoming_task_queue_; // A task runner which we haven't bound to a thread yet. scoped_refptr unbound_task_runner_; // The task runner associated with this message loop. scoped_refptr task_runner_; scoped_ptr thread_task_runner_handle_; template friend class base::subtle::DeleteHelperInternal; template friend class base::subtle::ReleaseHelperInternal; void DeleteSoonInternal(const tracked_objects::Location& from_here, void(*deleter)(const void*), const void* object); void ReleaseSoonInternal(const tracked_objects::Location& from_here, void(*releaser)(const void*), const void* object); DISALLOW_COPY_AND_ASSIGN(MessageLoop); }; #if !defined(OS_NACL) //----------------------------------------------------------------------------- // MessageLoopForUI extends MessageLoop with methods that are particular to a // MessageLoop instantiated with TYPE_UI. // // This class is typically used like so: // MessageLoopForUI::current()->...call some method... // class BASE_EXPORT MessageLoopForUI : public MessageLoop { public: MessageLoopForUI() : MessageLoop(TYPE_UI) { } explicit MessageLoopForUI(scoped_ptr pump); // Returns the MessageLoopForUI of the current thread. static MessageLoopForUI* current() { MessageLoop* loop = MessageLoop::current(); DCHECK(loop); DCHECK(loop->IsType(MessageLoop::TYPE_UI)); return static_cast(loop); } static bool IsCurrent() { MessageLoop* loop = MessageLoop::current(); return loop && loop->IsType(MessageLoop::TYPE_UI); } #if defined(OS_IOS) // On iOS, the main message loop cannot be Run(). Instead call Attach(), // which connects this MessageLoop to the UI thread's CFRunLoop and allows // PostTask() to work. void Attach(); #endif #if defined(OS_ANDROID) // On Android, the UI message loop is handled by Java side. So Run() should // never be called. Instead use Start(), which will forward all the native UI // events to the Java message loop. void Start(); #endif #if defined(USE_OZONE) || (defined(USE_X11) && !defined(USE_GLIB)) // Please see MessagePumpLibevent for definition. bool WatchFileDescriptor( int fd, bool persistent, MessagePumpLibevent::Mode mode, MessagePumpLibevent::FileDescriptorWatcher* controller, MessagePumpLibevent::Watcher* delegate); #endif }; // Do not add any member variables to MessageLoopForUI! This is important b/c // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra // data that you need should be stored on the MessageLoop's pump_ instance. static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForUI), "MessageLoopForUI should not have extra member variables"); #endif // !defined(OS_NACL) //----------------------------------------------------------------------------- // MessageLoopForIO extends MessageLoop with methods that are particular to a // MessageLoop instantiated with TYPE_IO. // // This class is typically used like so: // MessageLoopForIO::current()->...call some method... // class BASE_EXPORT MessageLoopForIO : public MessageLoop { public: MessageLoopForIO() : MessageLoop(TYPE_IO) { } // Returns the MessageLoopForIO of the current thread. static MessageLoopForIO* current() { MessageLoop* loop = MessageLoop::current(); DCHECK(loop); DCHECK_EQ(MessageLoop::TYPE_IO, loop->type()); return static_cast(loop); } static bool IsCurrent() { MessageLoop* loop = MessageLoop::current(); return loop && loop->type() == MessageLoop::TYPE_IO; } #if !defined(OS_NACL_SFI) #if defined(OS_WIN) typedef MessagePumpForIO::IOHandler IOHandler; typedef MessagePumpForIO::IOContext IOContext; typedef MessagePumpForIO::IOObserver IOObserver; #elif defined(OS_IOS) typedef MessagePumpIOSForIO::Watcher Watcher; typedef MessagePumpIOSForIO::FileDescriptorWatcher FileDescriptorWatcher; typedef MessagePumpIOSForIO::IOObserver IOObserver; enum Mode { WATCH_READ = MessagePumpIOSForIO::WATCH_READ, WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE, WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE }; #elif defined(OS_POSIX) typedef MessagePumpLibevent::Watcher Watcher; typedef MessagePumpLibevent::FileDescriptorWatcher FileDescriptorWatcher; typedef MessagePumpLibevent::IOObserver IOObserver; enum Mode { WATCH_READ = MessagePumpLibevent::WATCH_READ, WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE, WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE }; #endif void AddIOObserver(IOObserver* io_observer); void RemoveIOObserver(IOObserver* io_observer); #if defined(OS_WIN) // Please see MessagePumpWin for definitions of these methods. void RegisterIOHandler(HANDLE file, IOHandler* handler); bool RegisterJobObject(HANDLE job, IOHandler* handler); bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); #elif defined(OS_POSIX) // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition. bool WatchFileDescriptor(int fd, bool persistent, Mode mode, FileDescriptorWatcher* controller, Watcher* delegate); #endif // defined(OS_IOS) || defined(OS_POSIX) #endif // !defined(OS_NACL_SFI) }; // Do not add any member variables to MessageLoopForIO! This is important b/c // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra // data that you need should be stored on the MessageLoop's pump_ instance. static_assert(sizeof(MessageLoop) == sizeof(MessageLoopForIO), "MessageLoopForIO should not have extra member variables"); } // namespace base #endif // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_