// Copyright 2013 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_ #define BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_ #include #include #include "base/base_export.h" #include "base/basictypes.h" #include "base/callback_forward.h" #include "base/location.h" #include "base/memory/ref_counted.h" #include "base/memory/scoped_ptr.h" #include "base/message_loop/incoming_task_queue.h" #include "base/message_loop/message_loop_proxy.h" #include "base/message_loop/message_loop_proxy_impl.h" #include "base/message_loop/message_pump.h" #include "base/observer_list.h" #include "base/pending_task.h" #include "base/sequenced_task_runner_helpers.h" #include "base/synchronization/lock.h" #include "base/time/time.h" #include "base/tracking_info.h" // TODO(sky): these includes should not be necessary. Nuke them. #if defined(OS_WIN) #include "base/message_loop/message_pump_win.h" #elif defined(OS_IOS) #include "base/message_loop/message_pump_io_ios.h" #elif defined(OS_POSIX) #include "base/message_loop/message_pump_libevent.h" #endif namespace base { class HistogramBase; class MessagePumpObserver; class RunLoop; class ThreadTaskRunnerHandle; class WaitableEvent; // A MessageLoop is used to process events for a particular thread. There is // at most one MessageLoop instance per thread. // // Events include at a minimum Task instances submitted to PostTask and its // variants. Depending on the type of message pump used by the MessageLoop // other events such as UI messages may be processed. On Windows APC calls (as // time permits) and signals sent to a registered set of HANDLEs may also be // processed. // // NOTE: Unless otherwise specified, a MessageLoop's methods may only be called // on the thread where the MessageLoop's Run method executes. // // NOTE: MessageLoop has task reentrancy protection. This means that if a // task is being processed, a second task cannot start until the first task is // finished. Reentrancy can happen when processing a task, and an inner // message pump is created. That inner pump then processes native messages // which could implicitly start an inner task. Inner message pumps are created // with dialogs (DialogBox), common dialogs (GetOpenFileName), OLE functions // (DoDragDrop), printer functions (StartDoc) and *many* others. // // Sample workaround when inner task processing is needed: // HRESULT hr; // { // MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current()); // hr = DoDragDrop(...); // Implicitly runs a modal message loop. // } // // Process |hr| (the result returned by DoDragDrop()). // // Please be SURE your task is reentrant (nestable) and all global variables // are stable and accessible before calling SetNestableTasksAllowed(true). // class BASE_EXPORT MessageLoop : public MessagePump::Delegate { public: // A MessageLoop has a particular type, which indicates the set of // asynchronous events it may process in addition to tasks and timers. // // TYPE_DEFAULT // This type of ML only supports tasks and timers. // // TYPE_UI // This type of ML also supports native UI events (e.g., Windows messages). // See also MessageLoopForUI. // // TYPE_IO // This type of ML also supports asynchronous IO. See also // MessageLoopForIO. // // TYPE_JAVA // This type of ML is backed by a Java message handler which is responsible // for running the tasks added to the ML. This is only for use on Android. // TYPE_JAVA behaves in essence like TYPE_UI, except during construction // where it does not use the main thread specific pump factory. // // TYPE_CUSTOM // MessagePump was supplied to constructor. // enum Type { TYPE_DEFAULT, TYPE_UI, TYPE_CUSTOM, TYPE_IO, #if defined(OS_ANDROID) TYPE_JAVA, #endif // defined(OS_ANDROID) }; // Normally, it is not necessary to instantiate a MessageLoop. Instead, it // is typical to make use of the current thread's MessageLoop instance. explicit MessageLoop(Type type = TYPE_DEFAULT); // Creates a TYPE_CUSTOM MessageLoop with the supplied MessagePump, which must // be non-NULL. explicit MessageLoop(scoped_ptr pump); virtual ~MessageLoop(); // Returns the MessageLoop object for the current thread, or null if none. static MessageLoop* current(); static void EnableHistogrammer(bool enable_histogrammer); typedef scoped_ptr (MessagePumpFactory)(); // Uses the given base::MessagePumpForUIFactory to override the default // MessagePump implementation for 'TYPE_UI'. Returns true if the factory // was successfully registered. static bool InitMessagePumpForUIFactory(MessagePumpFactory* factory); // Creates the default MessagePump based on |type|. Caller owns return // value. static scoped_ptr CreateMessagePumpForType(Type type); // A DestructionObserver is notified when the current MessageLoop is being // destroyed. These observers are notified prior to MessageLoop::current() // being changed to return NULL. This gives interested parties the chance to // do final cleanup that depends on the MessageLoop. // // NOTE: Any tasks posted to the MessageLoop during this notification will // not be run. Instead, they will be deleted. // class BASE_EXPORT DestructionObserver { public: virtual void WillDestroyCurrentMessageLoop() = 0; protected: virtual ~DestructionObserver(); }; // Add a DestructionObserver, which will start receiving notifications // immediately. void AddDestructionObserver(DestructionObserver* destruction_observer); // Remove a DestructionObserver. It is safe to call this method while a // DestructionObserver is receiving a notification callback. void RemoveDestructionObserver(DestructionObserver* destruction_observer); // The "PostTask" family of methods call the task's Run method asynchronously // from within a message loop at some point in the future. // // With the PostTask variant, tasks are invoked in FIFO order, inter-mixed // with normal UI or IO event processing. With the PostDelayedTask variant, // tasks are called after at least approximately 'delay_ms' have elapsed. // // The NonNestable variants work similarly except that they promise never to // dispatch the task from a nested invocation of MessageLoop::Run. Instead, // such tasks get deferred until the top-most MessageLoop::Run is executing. // // The MessageLoop takes ownership of the Task, and deletes it after it has // been Run(). // // PostTask(from_here, task) is equivalent to // PostDelayedTask(from_here, task, 0). // // NOTE: These methods may be called on any thread. The Task will be invoked // on the thread that executes MessageLoop::Run(). void PostTask(const tracked_objects::Location& from_here, const Closure& task); void PostDelayedTask(const tracked_objects::Location& from_here, const Closure& task, TimeDelta delay); void PostNonNestableTask(const tracked_objects::Location& from_here, const Closure& task); void PostNonNestableDelayedTask(const tracked_objects::Location& from_here, const Closure& task, TimeDelta delay); // A variant on PostTask that deletes the given object. This is useful // if the object needs to live until the next run of the MessageLoop (for // example, deleting a RenderProcessHost from within an IPC callback is not // good). // // NOTE: This method may be called on any thread. The object will be deleted // on the thread that executes MessageLoop::Run(). If this is not the same // as the thread that calls PostDelayedTask(FROM_HERE, ), then T MUST inherit // from RefCountedThreadSafe! template void DeleteSoon(const tracked_objects::Location& from_here, const T* object) { base::subtle::DeleteHelperInternal::DeleteViaSequencedTaskRunner( this, from_here, object); } // A variant on PostTask that releases the given reference counted object // (by calling its Release method). This is useful if the object needs to // live until the next run of the MessageLoop, or if the object needs to be // released on a particular thread. // // NOTE: This method may be called on any thread. The object will be // released (and thus possibly deleted) on the thread that executes // MessageLoop::Run(). If this is not the same as the thread that calls // PostDelayedTask(FROM_HERE, ), then T MUST inherit from // RefCountedThreadSafe! template void ReleaseSoon(const tracked_objects::Location& from_here, const T* object) { base::subtle::ReleaseHelperInternal::ReleaseViaSequencedTaskRunner( this, from_here, object); } // Deprecated: use RunLoop instead. // Run the message loop. void Run(); // Deprecated: use RunLoop instead. // Process all pending tasks, windows messages, etc., but don't wait/sleep. // Return as soon as all items that can be run are taken care of. void RunUntilIdle(); // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdle(). void Quit() { QuitWhenIdle(); } // Deprecated: use RunLoop instead. // // Signals the Run method to return when it becomes idle. It will continue to // process pending messages and future messages as long as they are enqueued. // Warning: if the MessageLoop remains busy, it may never quit. Only use this // Quit method when looping procedures (such as web pages) have been shut // down. // // This method may only be called on the same thread that called Run, and Run // must still be on the call stack. // // Use QuitClosure variants if you need to Quit another thread's MessageLoop, // but note that doing so is fairly dangerous if the target thread makes // nested calls to MessageLoop::Run. The problem being that you won't know // which nested run loop you are quitting, so be careful! void QuitWhenIdle(); // Deprecated: use RunLoop instead. // // This method is a variant of Quit, that does not wait for pending messages // to be processed before returning from Run. void QuitNow(); // TODO(jbates) remove this. crbug.com/131220. See QuitWhenIdleClosure(). static Closure QuitClosure() { return QuitWhenIdleClosure(); } // Deprecated: use RunLoop instead. // Construct a Closure that will call QuitWhenIdle(). Useful to schedule an // arbitrary MessageLoop to QuitWhenIdle. static Closure QuitWhenIdleClosure(); // Returns true if this loop is |type|. This allows subclasses (especially // those in tests) to specialize how they are identified. virtual bool IsType(Type type) const; // Returns the type passed to the constructor. Type type() const { return type_; } // Optional call to connect the thread name with this loop. void set_thread_name(const std::string& thread_name) { DCHECK(thread_name_.empty()) << "Should not rename this thread!"; thread_name_ = thread_name; } const std::string& thread_name() const { return thread_name_; } // Gets the message loop proxy associated with this message loop. scoped_refptr message_loop_proxy() { return message_loop_proxy_; } // Enables or disables the recursive task processing. This happens in the case // of recursive message loops. Some unwanted message loop may occurs when // using common controls or printer functions. By default, recursive task // processing is disabled. // // Please utilize |ScopedNestableTaskAllower| instead of calling these methods // directly. In general nestable message loops are to be avoided. They are // dangerous and difficult to get right, so please use with extreme caution. // // The specific case where tasks get queued is: // - The thread is running a message loop. // - It receives a task #1 and execute it. // - The task #1 implicitly start a message loop, like a MessageBox in the // unit test. This can also be StartDoc or GetSaveFileName. // - The thread receives a task #2 before or while in this second message // loop. // - With NestableTasksAllowed set to true, the task #2 will run right away. // Otherwise, it will get executed right after task #1 completes at "thread // message loop level". void SetNestableTasksAllowed(bool allowed); bool NestableTasksAllowed() const; // Enables nestable tasks on |loop| while in scope. class ScopedNestableTaskAllower { public: explicit ScopedNestableTaskAllower(MessageLoop* loop) : loop_(loop), old_state_(loop_->NestableTasksAllowed()) { loop_->SetNestableTasksAllowed(true); } ~ScopedNestableTaskAllower() { loop_->SetNestableTasksAllowed(old_state_); } private: MessageLoop* loop_; bool old_state_; }; // Returns true if we are currently running a nested message loop. bool IsNested(); // A TaskObserver is an object that receives task notifications from the // MessageLoop. // // NOTE: A TaskObserver implementation should be extremely fast! class BASE_EXPORT TaskObserver { public: TaskObserver(); // This method is called before processing a task. virtual void WillProcessTask(const PendingTask& pending_task) = 0; // This method is called after processing a task. virtual void DidProcessTask(const PendingTask& pending_task) = 0; protected: virtual ~TaskObserver(); }; // These functions can only be called on the same thread that |this| is // running on. void AddTaskObserver(TaskObserver* task_observer); void RemoveTaskObserver(TaskObserver* task_observer); // When we go into high resolution timer mode, we will stay in hi-res mode // for at least 1s. static const int kHighResolutionTimerModeLeaseTimeMs = 1000; #if defined(OS_WIN) void set_os_modal_loop(bool os_modal_loop) { os_modal_loop_ = os_modal_loop; } bool os_modal_loop() const { return os_modal_loop_; } #endif // OS_WIN // Can only be called from the thread that owns the MessageLoop. bool is_running() const; // Returns true if the message loop has high resolution timers enabled. // Provided for testing. bool IsHighResolutionTimerEnabledForTesting(); // Returns true if the message loop is "idle". Provided for testing. bool IsIdleForTesting(); //---------------------------------------------------------------------------- protected: scoped_ptr pump_; private: friend class internal::IncomingTaskQueue; friend class RunLoop; // Configures various members for the two constructors. void Init(); // Invokes the actual run loop using the message pump. void RunHandler(); // Called to process any delayed non-nestable tasks. bool ProcessNextDelayedNonNestableTask(); // Runs the specified PendingTask. void RunTask(const PendingTask& pending_task); // Calls RunTask or queues the pending_task on the deferred task list if it // cannot be run right now. Returns true if the task was run. bool DeferOrRunPendingTask(const PendingTask& pending_task); // Adds the pending task to delayed_work_queue_. void AddToDelayedWorkQueue(const PendingTask& pending_task); // Delete tasks that haven't run yet without running them. Used in the // destructor to make sure all the task's destructors get called. Returns // true if some work was done. bool DeletePendingTasks(); // Creates a process-wide unique ID to represent this task in trace events. // This will be mangled with a Process ID hash to reduce the likelyhood of // colliding with MessageLoop pointers on other processes. uint64 GetTaskTraceID(const PendingTask& task); // Loads tasks from the incoming queue to |work_queue_| if the latter is // empty. void ReloadWorkQueue(); // Wakes up the message pump. Can be called on any thread. The caller is // responsible for synchronizing ScheduleWork() calls. void ScheduleWork(bool was_empty); // Start recording histogram info about events and action IF it was enabled // and IF the statistics recorder can accept a registration of our histogram. void StartHistogrammer(); // Add occurrence of event to our histogram, so that we can see what is being // done in a specific MessageLoop instance (i.e., specific thread). // If message_histogram_ is NULL, this is a no-op. void HistogramEvent(int event); // MessagePump::Delegate methods: virtual bool DoWork() OVERRIDE; virtual bool DoDelayedWork(TimeTicks* next_delayed_work_time) OVERRIDE; virtual bool DoIdleWork() OVERRIDE; virtual void GetQueueingInformation(size_t* queue_size, TimeDelta* queueing_delay) OVERRIDE; const Type type_; // A list of tasks that need to be processed by this instance. Note that // this queue is only accessed (push/pop) by our current thread. TaskQueue work_queue_; // Contains delayed tasks, sorted by their 'delayed_run_time' property. DelayedTaskQueue delayed_work_queue_; // A recent snapshot of Time::Now(), used to check delayed_work_queue_. TimeTicks recent_time_; // A queue of non-nestable tasks that we had to defer because when it came // time to execute them we were in a nested message loop. They will execute // once we're out of nested message loops. TaskQueue deferred_non_nestable_work_queue_; ObserverList destruction_observers_; // A recursion block that prevents accidentally running additional tasks when // insider a (accidentally induced?) nested message pump. bool nestable_tasks_allowed_; #if defined(OS_WIN) // Should be set to true before calling Windows APIs like TrackPopupMenu, etc // which enter a modal message loop. bool os_modal_loop_; #endif std::string thread_name_; // A profiling histogram showing the counts of various messages and events. HistogramBase* message_histogram_; RunLoop* run_loop_; ObserverList task_observers_; scoped_refptr incoming_task_queue_; // The message loop proxy associated with this message loop. scoped_refptr message_loop_proxy_; scoped_ptr thread_task_runner_handle_; template friend class base::subtle::DeleteHelperInternal; template friend class base::subtle::ReleaseHelperInternal; void DeleteSoonInternal(const tracked_objects::Location& from_here, void(*deleter)(const void*), const void* object); void ReleaseSoonInternal(const tracked_objects::Location& from_here, void(*releaser)(const void*), const void* object); DISALLOW_COPY_AND_ASSIGN(MessageLoop); }; #if !defined(OS_NACL) //----------------------------------------------------------------------------- // MessageLoopForUI extends MessageLoop with methods that are particular to a // MessageLoop instantiated with TYPE_UI. // // This class is typically used like so: // MessageLoopForUI::current()->...call some method... // class BASE_EXPORT MessageLoopForUI : public MessageLoop { public: MessageLoopForUI() : MessageLoop(TYPE_UI) { } // Returns the MessageLoopForUI of the current thread. static MessageLoopForUI* current() { MessageLoop* loop = MessageLoop::current(); DCHECK(loop); DCHECK_EQ(MessageLoop::TYPE_UI, loop->type()); return static_cast(loop); } static bool IsCurrent() { MessageLoop* loop = MessageLoop::current(); return loop && loop->type() == MessageLoop::TYPE_UI; } #if defined(OS_IOS) // On iOS, the main message loop cannot be Run(). Instead call Attach(), // which connects this MessageLoop to the UI thread's CFRunLoop and allows // PostTask() to work. void Attach(); #endif #if defined(OS_ANDROID) // On Android, the UI message loop is handled by Java side. So Run() should // never be called. Instead use Start(), which will forward all the native UI // events to the Java message loop. void Start(); #endif #if defined(OS_WIN) typedef MessagePumpObserver Observer; // Please see message_pump_win for definitions of these methods. void AddObserver(Observer* observer); void RemoveObserver(Observer* observer); #endif #if defined(USE_OZONE) || (defined(OS_CHROMEOS) && !defined(USE_GLIB)) // Please see MessagePumpLibevent for definition. bool WatchFileDescriptor( int fd, bool persistent, MessagePumpLibevent::Mode mode, MessagePumpLibevent::FileDescriptorWatcher* controller, MessagePumpLibevent::Watcher* delegate); #endif }; // Do not add any member variables to MessageLoopForUI! This is important b/c // MessageLoopForUI is often allocated via MessageLoop(TYPE_UI). Any extra // data that you need should be stored on the MessageLoop's pump_ instance. COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForUI), MessageLoopForUI_should_not_have_extra_member_variables); #endif // !defined(OS_NACL) //----------------------------------------------------------------------------- // MessageLoopForIO extends MessageLoop with methods that are particular to a // MessageLoop instantiated with TYPE_IO. // // This class is typically used like so: // MessageLoopForIO::current()->...call some method... // class BASE_EXPORT MessageLoopForIO : public MessageLoop { public: MessageLoopForIO() : MessageLoop(TYPE_IO) { } // Returns the MessageLoopForIO of the current thread. static MessageLoopForIO* current() { MessageLoop* loop = MessageLoop::current(); DCHECK_EQ(MessageLoop::TYPE_IO, loop->type()); return static_cast(loop); } static bool IsCurrent() { MessageLoop* loop = MessageLoop::current(); return loop && loop->type() == MessageLoop::TYPE_IO; } #if !defined(OS_NACL) #if defined(OS_WIN) typedef MessagePumpForIO::IOHandler IOHandler; typedef MessagePumpForIO::IOContext IOContext; typedef MessagePumpForIO::IOObserver IOObserver; #elif defined(OS_IOS) typedef MessagePumpIOSForIO::Watcher Watcher; typedef MessagePumpIOSForIO::FileDescriptorWatcher FileDescriptorWatcher; typedef MessagePumpIOSForIO::IOObserver IOObserver; enum Mode { WATCH_READ = MessagePumpIOSForIO::WATCH_READ, WATCH_WRITE = MessagePumpIOSForIO::WATCH_WRITE, WATCH_READ_WRITE = MessagePumpIOSForIO::WATCH_READ_WRITE }; #elif defined(OS_POSIX) typedef MessagePumpLibevent::Watcher Watcher; typedef MessagePumpLibevent::FileDescriptorWatcher FileDescriptorWatcher; typedef MessagePumpLibevent::IOObserver IOObserver; enum Mode { WATCH_READ = MessagePumpLibevent::WATCH_READ, WATCH_WRITE = MessagePumpLibevent::WATCH_WRITE, WATCH_READ_WRITE = MessagePumpLibevent::WATCH_READ_WRITE }; #endif void AddIOObserver(IOObserver* io_observer); void RemoveIOObserver(IOObserver* io_observer); #if defined(OS_WIN) // Please see MessagePumpWin for definitions of these methods. void RegisterIOHandler(HANDLE file, IOHandler* handler); bool RegisterJobObject(HANDLE job, IOHandler* handler); bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); #elif defined(OS_POSIX) // Please see MessagePumpIOSForIO/MessagePumpLibevent for definition. bool WatchFileDescriptor(int fd, bool persistent, Mode mode, FileDescriptorWatcher *controller, Watcher *delegate); #endif // defined(OS_IOS) || defined(OS_POSIX) #endif // !defined(OS_NACL) }; // Do not add any member variables to MessageLoopForIO! This is important b/c // MessageLoopForIO is often allocated via MessageLoop(TYPE_IO). Any extra // data that you need should be stored on the MessageLoop's pump_ instance. COMPILE_ASSERT(sizeof(MessageLoop) == sizeof(MessageLoopForIO), MessageLoopForIO_should_not_have_extra_member_variables); } // namespace base #endif // BASE_MESSAGE_LOOP_MESSAGE_LOOP_H_