// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_loop/message_pump_win.h" #include #include #include #include "base/message_loop/message_loop.h" #include "base/metrics/histogram.h" #include "base/process/memory.h" #include "base/strings/stringprintf.h" #include "base/trace_event/trace_event.h" #include "base/win/wrapped_window_proc.h" namespace base { namespace { enum MessageLoopProblems { MESSAGE_POST_ERROR, COMPLETION_POST_ERROR, SET_TIMER_ERROR, MESSAGE_LOOP_PROBLEM_MAX, }; } // namespace static const wchar_t kWndClassFormat[] = L"Chrome_MessagePumpWindow_%p"; // Message sent to get an additional time slice for pumping (processing) another // task (a series of such messages creates a continuous task pump). static const int kMsgHaveWork = WM_USER + 1; //----------------------------------------------------------------------------- // MessagePumpWin public: void MessagePumpWin::Run(Delegate* delegate) { RunState s; s.delegate = delegate; s.should_quit = false; s.run_depth = state_ ? state_->run_depth + 1 : 1; RunState* previous_state = state_; state_ = &s; DoRunLoop(); state_ = previous_state; } void MessagePumpWin::Quit() { DCHECK(state_); state_->should_quit = true; } //----------------------------------------------------------------------------- // MessagePumpWin protected: int MessagePumpWin::GetCurrentDelay() const { if (delayed_work_time_.is_null()) return -1; // Be careful here. TimeDelta has a precision of microseconds, but we want a // value in milliseconds. If there are 5.5ms left, should the delay be 5 or // 6? It should be 6 to avoid executing delayed work too early. double timeout = ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF()); // Range check the |timeout| while converting to an integer. If the |timeout| // is negative, then we need to run delayed work soon. If the |timeout| is // "overflowingly" large, that means a delayed task was posted with a // super-long delay. return timeout < 0 ? 0 : (timeout > std::numeric_limits::max() ? std::numeric_limits::max() : static_cast(timeout)); } //----------------------------------------------------------------------------- // MessagePumpForUI public: MessagePumpForUI::MessagePumpForUI() : atom_(0) { InitMessageWnd(); } MessagePumpForUI::~MessagePumpForUI() { DestroyWindow(message_hwnd_); UnregisterClass(MAKEINTATOM(atom_), GetModuleFromAddress(&WndProcThunk)); } void MessagePumpForUI::ScheduleWork() { if (InterlockedExchange(&have_work_, 1)) return; // Someone else continued the pumping. // Make sure the MessagePump does some work for us. BOOL ret = PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast(this), 0); if (ret) return; // There was room in the Window Message queue. // We have failed to insert a have-work message, so there is a chance that we // will starve tasks/timers while sitting in a nested message loop. Nested // loops only look at Windows Message queues, and don't look at *our* task // queues, etc., so we might not get a time slice in such. :-( // We could abort here, but the fear is that this failure mode is plausibly // common (queue is full, of about 2000 messages), so we'll do a near-graceful // recovery. Nested loops are pretty transient (we think), so this will // probably be recoverable. InterlockedExchange(&have_work_, 0); // Clarify that we didn't really insert. UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", MESSAGE_POST_ERROR, MESSAGE_LOOP_PROBLEM_MAX); } void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { delayed_work_time_ = delayed_work_time; RescheduleTimer(); } //----------------------------------------------------------------------------- // MessagePumpForUI private: // static LRESULT CALLBACK MessagePumpForUI::WndProcThunk( HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { switch (message) { case kMsgHaveWork: reinterpret_cast(wparam)->HandleWorkMessage(); break; case WM_TIMER: reinterpret_cast(wparam)->HandleTimerMessage(); break; } return DefWindowProc(hwnd, message, wparam, lparam); } void MessagePumpForUI::DoRunLoop() { // IF this was just a simple PeekMessage() loop (servicing all possible work // queues), then Windows would try to achieve the following order according // to MSDN documentation about PeekMessage with no filter): // * Sent messages // * Posted messages // * Sent messages (again) // * WM_PAINT messages // * WM_TIMER messages // // Summary: none of the above classes is starved, and sent messages has twice // the chance of being processed (i.e., reduced service time). for (;;) { // If we do any work, we may create more messages etc., and more work may // possibly be waiting in another task group. When we (for example) // ProcessNextWindowsMessage(), there is a good chance there are still more // messages waiting. On the other hand, when any of these methods return // having done no work, then it is pretty unlikely that calling them again // quickly will find any work to do. Finally, if they all say they had no // work, then it is a good time to consider sleeping (waiting) for more // work. bool more_work_is_plausible = ProcessNextWindowsMessage(); if (state_->should_quit) break; more_work_is_plausible |= state_->delegate->DoWork(); if (state_->should_quit) break; more_work_is_plausible |= state_->delegate->DoDelayedWork(&delayed_work_time_); // If we did not process any delayed work, then we can assume that our // existing WM_TIMER if any will fire when delayed work should run. We // don't want to disturb that timer if it is already in flight. However, // if we did do all remaining delayed work, then lets kill the WM_TIMER. if (more_work_is_plausible && delayed_work_time_.is_null()) KillTimer(message_hwnd_, reinterpret_cast(this)); if (state_->should_quit) break; if (more_work_is_plausible) continue; more_work_is_plausible = state_->delegate->DoIdleWork(); if (state_->should_quit) break; if (more_work_is_plausible) continue; WaitForWork(); // Wait (sleep) until we have work to do again. } } void MessagePumpForUI::InitMessageWnd() { // Generate a unique window class name. string16 class_name = StringPrintf(kWndClassFormat, this); HINSTANCE instance = GetModuleFromAddress(&WndProcThunk); WNDCLASSEX wc = {0}; wc.cbSize = sizeof(wc); wc.lpfnWndProc = base::win::WrappedWindowProc; wc.hInstance = instance; wc.lpszClassName = class_name.c_str(); atom_ = RegisterClassEx(&wc); DCHECK(atom_); message_hwnd_ = CreateWindow(MAKEINTATOM(atom_), 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, instance, 0); DCHECK(message_hwnd_); } void MessagePumpForUI::WaitForWork() { // Wait until a message is available, up to the time needed by the timer // manager to fire the next set of timers. int delay = GetCurrentDelay(); if (delay < 0) // Negative value means no timers waiting. delay = INFINITE; DWORD result; result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT, MWMO_INPUTAVAILABLE); if (WAIT_OBJECT_0 == result) { // A WM_* message is available. // If a parent child relationship exists between windows across threads // then their thread inputs are implicitly attached. // This causes the MsgWaitForMultipleObjectsEx API to return indicating // that messages are ready for processing (Specifically, mouse messages // intended for the child window may appear if the child window has // capture). // The subsequent PeekMessages call may fail to return any messages thus // causing us to enter a tight loop at times. // The WaitMessage call below is a workaround to give the child window // some time to process its input messages. MSG msg = {0}; DWORD queue_status = GetQueueStatus(QS_MOUSE); if (HIWORD(queue_status) & QS_MOUSE && !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) { WaitMessage(); } return; } DCHECK_NE(WAIT_FAILED, result) << GetLastError(); } void MessagePumpForUI::HandleWorkMessage() { // If we are being called outside of the context of Run, then don't try to do // any work. This could correspond to a MessageBox call or something of that // sort. if (!state_) { // Since we handled a kMsgHaveWork message, we must still update this flag. InterlockedExchange(&have_work_, 0); return; } // Let whatever would have run had we not been putting messages in the queue // run now. This is an attempt to make our dummy message not starve other // messages that may be in the Windows message queue. ProcessPumpReplacementMessage(); // Now give the delegate a chance to do some work. He'll let us know if he // needs to do more work. if (state_->delegate->DoWork()) ScheduleWork(); state_->delegate->DoDelayedWork(&delayed_work_time_); RescheduleTimer(); } void MessagePumpForUI::HandleTimerMessage() { KillTimer(message_hwnd_, reinterpret_cast(this)); // If we are being called outside of the context of Run, then don't do // anything. This could correspond to a MessageBox call or something of // that sort. if (!state_) return; state_->delegate->DoDelayedWork(&delayed_work_time_); RescheduleTimer(); } void MessagePumpForUI::RescheduleTimer() { if (delayed_work_time_.is_null()) return; // // We would *like* to provide high resolution timers. Windows timers using // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup // mechanism because the application can enter modal windows loops where it // is not running our MessageLoop; the only way to have our timers fire in // these cases is to post messages there. // // To provide sub-10ms timers, we process timers directly from our run loop. // For the common case, timers will be processed there as the run loop does // its normal work. However, we *also* set the system timer so that WM_TIMER // events fire. This mops up the case of timers not being able to work in // modal message loops. It is possible for the SetTimer to pop and have no // pending timers, because they could have already been processed by the // run loop itself. // // We use a single SetTimer corresponding to the timer that will expire // soonest. As new timers are created and destroyed, we update SetTimer. // Getting a spurious SetTimer event firing is benign, as we'll just be // processing an empty timer queue. // int delay_msec = GetCurrentDelay(); DCHECK_GE(delay_msec, 0); if (delay_msec == 0) { ScheduleWork(); } else { if (delay_msec < USER_TIMER_MINIMUM) delay_msec = USER_TIMER_MINIMUM; // Create a WM_TIMER event that will wake us up to check for any pending // timers (in case we are running within a nested, external sub-pump). BOOL ret = SetTimer(message_hwnd_, reinterpret_cast(this), delay_msec, NULL); if (ret) return; // If we can't set timers, we are in big trouble... but cross our fingers // for now. // TODO(jar): If we don't see this error, use a CHECK() here instead. UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", SET_TIMER_ERROR, MESSAGE_LOOP_PROBLEM_MAX); } } bool MessagePumpForUI::ProcessNextWindowsMessage() { // If there are sent messages in the queue then PeekMessage internally // dispatches the message and returns false. We return true in this // case to ensure that the message loop peeks again instead of calling // MsgWaitForMultipleObjectsEx again. bool sent_messages_in_queue = false; DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE); if (HIWORD(queue_status) & QS_SENDMESSAGE) sent_messages_in_queue = true; MSG msg; if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE) return ProcessMessageHelper(msg); return sent_messages_in_queue; } bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) { TRACE_EVENT1("base", "MessagePumpForUI::ProcessMessageHelper", "message", msg.message); if (WM_QUIT == msg.message) { // Repost the QUIT message so that it will be retrieved by the primary // GetMessage() loop. state_->should_quit = true; PostQuitMessage(static_cast(msg.wParam)); return false; } // While running our main message pump, we discard kMsgHaveWork messages. if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) return ProcessPumpReplacementMessage(); if (CallMsgFilter(const_cast(&msg), kMessageFilterCode)) return true; TranslateMessage(&msg); DispatchMessage(&msg); return true; } bool MessagePumpForUI::ProcessPumpReplacementMessage() { // When we encounter a kMsgHaveWork message, this method is called to peek // and process a replacement message, such as a WM_PAINT or WM_TIMER. The // goal is to make the kMsgHaveWork as non-intrusive as possible, even though // a continuous stream of such messages are posted. This method carefully // peeks a message while there is no chance for a kMsgHaveWork to be pending, // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to // possibly be posted), and finally dispatches that peeked replacement. Note // that the re-post of kMsgHaveWork may be asynchronous to this thread!! bool have_message = false; MSG msg; // We should not process all window messages if we are in the context of an // OS modal loop, i.e. in the context of a windows API call like MessageBox. // This is to ensure that these messages are peeked out by the OS modal loop. if (MessageLoop::current()->os_modal_loop()) { // We only peek out WM_PAINT and WM_TIMER here for reasons mentioned above. have_message = PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE) || PeekMessage(&msg, NULL, WM_TIMER, WM_TIMER, PM_REMOVE); } else { have_message = PeekMessage(&msg, NULL, 0, 0, PM_REMOVE) != FALSE; } DCHECK(!have_message || kMsgHaveWork != msg.message || msg.hwnd != message_hwnd_); // Since we discarded a kMsgHaveWork message, we must update the flag. int old_have_work = InterlockedExchange(&have_work_, 0); DCHECK(old_have_work); // We don't need a special time slice if we didn't have_message to process. if (!have_message) return false; // Guarantee we'll get another time slice in the case where we go into native // windows code. This ScheduleWork() may hurt performance a tiny bit when // tasks appear very infrequently, but when the event queue is busy, the // kMsgHaveWork events get (percentage wise) rarer and rarer. ScheduleWork(); return ProcessMessageHelper(msg); } //----------------------------------------------------------------------------- // MessagePumpForIO public: MessagePumpForIO::MessagePumpForIO() { port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1)); DCHECK(port_.IsValid()); } MessagePumpForIO::~MessagePumpForIO() { } void MessagePumpForIO::ScheduleWork() { if (InterlockedExchange(&have_work_, 1)) return; // Someone else continued the pumping. // Make sure the MessagePump does some work for us. BOOL ret = PostQueuedCompletionStatus(port_.Get(), 0, reinterpret_cast(this), reinterpret_cast(this)); if (ret) return; // Post worked perfectly. // See comment in MessagePumpForUI::ScheduleWork() for this error recovery. InterlockedExchange(&have_work_, 0); // Clarify that we didn't succeed. UMA_HISTOGRAM_ENUMERATION("Chrome.MessageLoopProblem", COMPLETION_POST_ERROR, MESSAGE_LOOP_PROBLEM_MAX); } void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) { // We know that we can't be blocked right now since this method can only be // called on the same thread as Run, so we only need to update our record of // how long to sleep when we do sleep. delayed_work_time_ = delayed_work_time; } void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle, IOHandler* handler) { ULONG_PTR key = HandlerToKey(handler, true); HANDLE port = CreateIoCompletionPort(file_handle, port_.Get(), key, 1); DPCHECK(port); } bool MessagePumpForIO::RegisterJobObject(HANDLE job_handle, IOHandler* handler) { // Job object notifications use the OVERLAPPED pointer to carry the message // data. Mark the completion key correspondingly, so we will not try to // convert OVERLAPPED* to IOContext*. ULONG_PTR key = HandlerToKey(handler, false); JOBOBJECT_ASSOCIATE_COMPLETION_PORT info; info.CompletionKey = reinterpret_cast(key); info.CompletionPort = port_.Get(); return SetInformationJobObject(job_handle, JobObjectAssociateCompletionPortInformation, &info, sizeof(info)) != FALSE; } //----------------------------------------------------------------------------- // MessagePumpForIO private: void MessagePumpForIO::DoRunLoop() { for (;;) { // If we do any work, we may create more messages etc., and more work may // possibly be waiting in another task group. When we (for example) // WaitForIOCompletion(), there is a good chance there are still more // messages waiting. On the other hand, when any of these methods return // having done no work, then it is pretty unlikely that calling them // again quickly will find any work to do. Finally, if they all say they // had no work, then it is a good time to consider sleeping (waiting) for // more work. bool more_work_is_plausible = state_->delegate->DoWork(); if (state_->should_quit) break; more_work_is_plausible |= WaitForIOCompletion(0, NULL); if (state_->should_quit) break; more_work_is_plausible |= state_->delegate->DoDelayedWork(&delayed_work_time_); if (state_->should_quit) break; if (more_work_is_plausible) continue; more_work_is_plausible = state_->delegate->DoIdleWork(); if (state_->should_quit) break; if (more_work_is_plausible) continue; WaitForWork(); // Wait (sleep) until we have work to do again. } } // Wait until IO completes, up to the time needed by the timer manager to fire // the next set of timers. void MessagePumpForIO::WaitForWork() { // We do not support nested IO message loops. This is to avoid messy // recursion problems. DCHECK_EQ(1, state_->run_depth) << "Cannot nest an IO message loop!"; int timeout = GetCurrentDelay(); if (timeout < 0) // Negative value means no timers waiting. timeout = INFINITE; WaitForIOCompletion(timeout, NULL); } bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) { IOItem item; if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) { // We have to ask the system for another IO completion. if (!GetIOItem(timeout, &item)) return false; if (ProcessInternalIOItem(item)) return true; } // If |item.has_valid_io_context| is false then |item.context| does not point // to a context structure, and so should not be dereferenced, although it may // still hold valid non-pointer data. if (!item.has_valid_io_context || item.context->handler) { if (filter && item.handler != filter) { // Save this item for later completed_io_.push_back(item); } else { DCHECK(!item.has_valid_io_context || (item.context->handler == item.handler)); WillProcessIOEvent(); item.handler->OnIOCompleted(item.context, item.bytes_transfered, item.error); DidProcessIOEvent(); } } else { // The handler must be gone by now, just cleanup the mess. delete item.context; } return true; } // Asks the OS for another IO completion result. bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) { memset(item, 0, sizeof(*item)); ULONG_PTR key = NULL; OVERLAPPED* overlapped = NULL; if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key, &overlapped, timeout)) { if (!overlapped) return false; // Nothing in the queue. item->error = GetLastError(); item->bytes_transfered = 0; } item->handler = KeyToHandler(key, &item->has_valid_io_context); item->context = reinterpret_cast(overlapped); return true; } bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) { if (reinterpret_cast(this) == reinterpret_cast(item.context) && reinterpret_cast(this) == reinterpret_cast(item.handler)) { // This is our internal completion. DCHECK(!item.bytes_transfered); InterlockedExchange(&have_work_, 0); return true; } return false; } // Returns a completion item that was previously received. bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) { DCHECK(!completed_io_.empty()); for (std::list::iterator it = completed_io_.begin(); it != completed_io_.end(); ++it) { if (!filter || it->handler == filter) { *item = *it; completed_io_.erase(it); return true; } } return false; } void MessagePumpForIO::AddIOObserver(IOObserver *obs) { io_observers_.AddObserver(obs); } void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) { io_observers_.RemoveObserver(obs); } void MessagePumpForIO::WillProcessIOEvent() { FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent()); } void MessagePumpForIO::DidProcessIOEvent() { FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent()); } // static ULONG_PTR MessagePumpForIO::HandlerToKey(IOHandler* handler, bool has_valid_io_context) { ULONG_PTR key = reinterpret_cast(handler); // |IOHandler| is at least pointer-size aligned, so the lowest two bits are // always cleared. We use the lowest bit to distinguish completion keys with // and without the associated |IOContext|. DCHECK_EQ(key & 1, 0u); // Mark the completion key as context-less. if (!has_valid_io_context) key = key | 1; return key; } // static MessagePumpForIO::IOHandler* MessagePumpForIO::KeyToHandler( ULONG_PTR key, bool* has_valid_io_context) { *has_valid_io_context = ((key & 1) == 0); return reinterpret_cast(key & ~static_cast(1)); } } // namespace base