// Copyright (c) 2010 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "base/eintr_wrapper.h" #include "base/logging.h" #include "base/message_loop.h" #include "base/platform_thread.h" #include "base/ref_counted.h" #include "base/task.h" #include "base/thread.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_WIN) #include "base/message_pump_win.h" #include "base/scoped_handle.h" #endif #if defined(OS_POSIX) #include "base/message_pump_libevent.h" #endif using base::Thread; using base::Time; using base::TimeDelta; // TODO(darin): Platform-specific MessageLoop tests should be grouped together // to avoid chopping this file up with so many #ifdefs. namespace { class MessageLoopTest : public testing::Test {}; class Foo : public base::RefCounted { public: Foo() : test_count_(0) { } void Test0() { ++test_count_; } void Test1ConstRef(const std::string& a) { ++test_count_; result_.append(a); } void Test1Ptr(std::string* a) { ++test_count_; result_.append(*a); } void Test1Int(int a) { test_count_ += a; } void Test2Ptr(std::string* a, std::string* b) { ++test_count_; result_.append(*a); result_.append(*b); } void Test2Mixed(const std::string& a, std::string* b) { ++test_count_; result_.append(a); result_.append(*b); } int test_count() const { return test_count_; } const std::string& result() const { return result_; } private: friend class base::RefCounted; ~Foo() {} int test_count_; std::string result_; }; class QuitMsgLoop : public base::RefCounted { public: void QuitNow() { MessageLoop::current()->Quit(); } private: friend class base::RefCounted; ~QuitMsgLoop() {} }; void RunTest_PostTask(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Add tests to message loop scoped_refptr foo(new Foo()); std::string a("a"), b("b"), c("c"), d("d"); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test0)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test1ConstRef, a)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test1Ptr, &b)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test1Int, 100)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test2Ptr, &a, &c)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test2Mixed, a, &d)); // After all tests, post a message that will shut down the message loop scoped_refptr quit(new QuitMsgLoop()); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( quit.get(), &QuitMsgLoop::QuitNow)); // Now kick things off MessageLoop::current()->Run(); EXPECT_EQ(foo->test_count(), 105); EXPECT_EQ(foo->result(), "abacad"); } void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Add tests to message loop scoped_refptr foo(new Foo()); std::string a("a"), b("b"), c("c"), d("d"); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test0)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test1ConstRef, a)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test1Ptr, &b)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test1Int, 100)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test2Ptr, &a, &c)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( foo.get(), &Foo::Test2Mixed, a, &d)); // After all tests, post a message that will shut down the message loop scoped_refptr quit(new QuitMsgLoop()); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableMethod( quit.get(), &QuitMsgLoop::QuitNow)); // Now kick things off with the SEH block active. MessageLoop::current()->set_exception_restoration(true); MessageLoop::current()->Run(); MessageLoop::current()->set_exception_restoration(false); EXPECT_EQ(foo->test_count(), 105); EXPECT_EQ(foo->result(), "abacad"); } // This class runs slowly to simulate a large amount of work being done. class SlowTask : public Task { public: SlowTask(int pause_ms, int* quit_counter) : pause_ms_(pause_ms), quit_counter_(quit_counter) { } virtual void Run() { PlatformThread::Sleep(pause_ms_); if (--(*quit_counter_) == 0) MessageLoop::current()->Quit(); } private: int pause_ms_; int* quit_counter_; }; // This class records the time when Run was called in a Time object, which is // useful for building a variety of MessageLoop tests. class RecordRunTimeTask : public SlowTask { public: RecordRunTimeTask(Time* run_time, int* quit_counter) : SlowTask(10, quit_counter), run_time_(run_time) { } virtual void Run() { *run_time_ = Time::Now(); // Cause our Run function to take some time to execute. As a result we can // count on subsequent RecordRunTimeTask objects running at a future time, // without worry about the resolution of our system clock being an issue. SlowTask::Run(); } private: Time* run_time_; }; void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that PostDelayedTask results in a delayed task. const int kDelayMS = 100; int num_tasks = 1; Time run_time; loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), kDelayMS); Time time_before_run = Time::Now(); loop.Run(); Time time_after_run = Time::Now(); EXPECT_EQ(0, num_tasks); EXPECT_LT(kDelayMS, (time_after_run - time_before_run).InMilliseconds()); } void RunTest_PostDelayedTask_InDelayOrder(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that two tasks with different delays run in the right order. int num_tasks = 2; Time run_time1, run_time2; loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 200); // If we get a large pause in execution (due to a context switch) here, this // test could fail. loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10); loop.Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time2 < run_time1); } void RunTest_PostDelayedTask_InPostOrder(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that two tasks with the same delay run in the order in which they // were posted. // // NOTE: This is actually an approximate test since the API only takes a // "delay" parameter, so we are not exactly simulating two tasks that get // posted at the exact same time. It would be nice if the API allowed us to // specify the desired run time. const int kDelayMS = 100; int num_tasks = 2; Time run_time1, run_time2; loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), kDelayMS); loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), kDelayMS); loop.Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time1 < run_time2); } void RunTest_PostDelayedTask_InPostOrder_2( MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that a delayed task still runs after a normal tasks even if the // normal tasks take a long time to run. const int kPauseMS = 50; int num_tasks = 2; Time run_time; loop.PostTask( FROM_HERE, new SlowTask(kPauseMS, &num_tasks)); loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 10); Time time_before_run = Time::Now(); loop.Run(); Time time_after_run = Time::Now(); EXPECT_EQ(0, num_tasks); EXPECT_LT(kPauseMS, (time_after_run - time_before_run).InMilliseconds()); } void RunTest_PostDelayedTask_InPostOrder_3( MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that a delayed task still runs after a pile of normal tasks. The key // difference between this test and the previous one is that here we return // the MessageLoop a lot so we give the MessageLoop plenty of opportunities // to maybe run the delayed task. It should know not to do so until the // delayed task's delay has passed. int num_tasks = 11; Time run_time1, run_time2; // Clutter the ML with tasks. for (int i = 1; i < num_tasks; ++i) loop.PostTask(FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks)); loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 1); loop.Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time2 > run_time1); } void RunTest_PostDelayedTask_SharedTimer(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that the interval of the timer, used to run the next delayed task, is // set to a value corresponding to when the next delayed task should run. // By setting num_tasks to 1, we ensure that the first task to run causes the // run loop to exit. int num_tasks = 1; Time run_time1, run_time2; loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time1, &num_tasks), 1000000); loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time2, &num_tasks), 10); Time start_time = Time::Now(); loop.Run(); EXPECT_EQ(0, num_tasks); // Ensure that we ran in far less time than the slower timer. TimeDelta total_time = Time::Now() - start_time; EXPECT_GT(5000, total_time.InMilliseconds()); // In case both timers somehow run at nearly the same time, sleep a little // and then run all pending to force them both to have run. This is just // encouraging flakiness if there is any. PlatformThread::Sleep(100); loop.RunAllPending(); EXPECT_TRUE(run_time1.is_null()); EXPECT_FALSE(run_time2.is_null()); } #if defined(OS_WIN) class SubPumpTask : public Task { public: virtual void Run() { MessageLoop::current()->SetNestableTasksAllowed(true); MSG msg; while (GetMessage(&msg, NULL, 0, 0)) { TranslateMessage(&msg); DispatchMessage(&msg); } MessageLoop::current()->Quit(); } }; class SubPumpQuitTask : public Task { public: SubPumpQuitTask() { } virtual void Run() { PostQuitMessage(0); } }; void RunTest_PostDelayedTask_SharedTimer_SubPump() { MessageLoop loop(MessageLoop::TYPE_UI); // Test that the interval of the timer, used to run the next delayed task, is // set to a value corresponding to when the next delayed task should run. // By setting num_tasks to 1, we ensure that the first task to run causes the // run loop to exit. int num_tasks = 1; Time run_time; loop.PostTask(FROM_HERE, new SubPumpTask()); // This very delayed task should never run. loop.PostDelayedTask( FROM_HERE, new RecordRunTimeTask(&run_time, &num_tasks), 1000000); // This slightly delayed task should run from within SubPumpTask::Run(). loop.PostDelayedTask( FROM_HERE, new SubPumpQuitTask(), 10); Time start_time = Time::Now(); loop.Run(); EXPECT_EQ(1, num_tasks); // Ensure that we ran in far less time than the slower timer. TimeDelta total_time = Time::Now() - start_time; EXPECT_GT(5000, total_time.InMilliseconds()); // In case both timers somehow run at nearly the same time, sleep a little // and then run all pending to force them both to have run. This is just // encouraging flakiness if there is any. PlatformThread::Sleep(100); loop.RunAllPending(); EXPECT_TRUE(run_time.is_null()); } #endif // defined(OS_WIN) class RecordDeletionTask : public Task { public: RecordDeletionTask(Task* post_on_delete, bool* was_deleted) : post_on_delete_(post_on_delete), was_deleted_(was_deleted) { } ~RecordDeletionTask() { *was_deleted_ = true; if (post_on_delete_) MessageLoop::current()->PostTask(FROM_HERE, post_on_delete_); } virtual void Run() {} private: Task* post_on_delete_; bool* was_deleted_; }; void RunTest_EnsureTaskDeletion(MessageLoop::Type message_loop_type) { bool a_was_deleted = false; bool b_was_deleted = false; { MessageLoop loop(message_loop_type); loop.PostTask( FROM_HERE, new RecordDeletionTask(NULL, &a_was_deleted)); loop.PostDelayedTask( FROM_HERE, new RecordDeletionTask(NULL, &b_was_deleted), 1000); } EXPECT_TRUE(a_was_deleted); EXPECT_TRUE(b_was_deleted); } void RunTest_EnsureTaskDeletion_Chain(MessageLoop::Type message_loop_type) { bool a_was_deleted = false; bool b_was_deleted = false; bool c_was_deleted = false; { MessageLoop loop(message_loop_type); RecordDeletionTask* a = new RecordDeletionTask(NULL, &a_was_deleted); RecordDeletionTask* b = new RecordDeletionTask(a, &b_was_deleted); RecordDeletionTask* c = new RecordDeletionTask(b, &c_was_deleted); loop.PostTask(FROM_HERE, c); } EXPECT_TRUE(a_was_deleted); EXPECT_TRUE(b_was_deleted); EXPECT_TRUE(c_was_deleted); } class NestingTest : public Task { public: explicit NestingTest(int* depth) : depth_(depth) { } void Run() { if (*depth_ > 0) { *depth_ -= 1; MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(depth_)); MessageLoop::current()->SetNestableTasksAllowed(true); MessageLoop::current()->Run(); } MessageLoop::current()->Quit(); } private: int* depth_; }; #if defined(OS_WIN) LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) { ADD_FAILURE() << "bad exception handler"; ::ExitProcess(ex_info->ExceptionRecord->ExceptionCode); return EXCEPTION_EXECUTE_HANDLER; } // This task throws an SEH exception: initially write to an invalid address. // If the right SEH filter is installed, it will fix the error. class CrasherTask : public Task { public: // Ctor. If trash_SEH_handler is true, the task will override the unhandled // exception handler with one sure to crash this test. explicit CrasherTask(bool trash_SEH_handler) : trash_SEH_handler_(trash_SEH_handler) { } void Run() { PlatformThread::Sleep(1); if (trash_SEH_handler_) ::SetUnhandledExceptionFilter(&BadExceptionHandler); // Generate a SEH fault. We do it in asm to make sure we know how to undo // the damage. #if defined(_M_IX86) __asm { mov eax, dword ptr [CrasherTask::bad_array_] mov byte ptr [eax], 66 } #elif defined(_M_X64) bad_array_[0] = 66; #else #error "needs architecture support" #endif MessageLoop::current()->Quit(); } // Points the bad array to a valid memory location. static void FixError() { bad_array_ = &valid_store_; } private: bool trash_SEH_handler_; static volatile char* bad_array_; static char valid_store_; }; volatile char* CrasherTask::bad_array_ = 0; char CrasherTask::valid_store_ = 0; // This SEH filter fixes the problem and retries execution. Fixing requires // that the last instruction: mov eax, [CrasherTask::bad_array_] to be retried // so we move the instruction pointer 5 bytes back. LONG WINAPI HandleCrasherTaskException(EXCEPTION_POINTERS *ex_info) { if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION) return EXCEPTION_EXECUTE_HANDLER; CrasherTask::FixError(); #if defined(_M_IX86) ex_info->ContextRecord->Eip -= 5; #elif defined(_M_X64) ex_info->ContextRecord->Rip -= 5; #endif return EXCEPTION_CONTINUE_EXECUTION; } void RunTest_Crasher(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); if (::IsDebuggerPresent()) return; LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter = ::SetUnhandledExceptionFilter(&HandleCrasherTaskException); MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(false)); MessageLoop::current()->set_exception_restoration(true); MessageLoop::current()->Run(); MessageLoop::current()->set_exception_restoration(false); ::SetUnhandledExceptionFilter(old_SEH_filter); } void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); if (::IsDebuggerPresent()) return; LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter = ::SetUnhandledExceptionFilter(&HandleCrasherTaskException); MessageLoop::current()->PostTask(FROM_HERE, new CrasherTask(true)); MessageLoop::current()->set_exception_restoration(true); MessageLoop::current()->Run(); MessageLoop::current()->set_exception_restoration(false); ::SetUnhandledExceptionFilter(old_SEH_filter); } #endif // defined(OS_WIN) void RunTest_Nesting(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); int depth = 100; MessageLoop::current()->PostTask(FROM_HERE, new NestingTest(&depth)); MessageLoop::current()->Run(); EXPECT_EQ(depth, 0); } const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test"; enum TaskType { MESSAGEBOX, ENDDIALOG, RECURSIVE, TIMEDMESSAGELOOP, QUITMESSAGELOOP, ORDERERD, PUMPS, SLEEP, }; // Saves the order in which the tasks executed. struct TaskItem { TaskItem(TaskType t, int c, bool s) : type(t), cookie(c), start(s) { } TaskType type; int cookie; bool start; bool operator == (const TaskItem& other) const { return type == other.type && cookie == other.cookie && start == other.start; } }; typedef std::vector TaskList; std::ostream& operator <<(std::ostream& os, TaskType type) { switch (type) { case MESSAGEBOX: os << "MESSAGEBOX"; break; case ENDDIALOG: os << "ENDDIALOG"; break; case RECURSIVE: os << "RECURSIVE"; break; case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break; case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break; case ORDERERD: os << "ORDERERD"; break; case PUMPS: os << "PUMPS"; break; case SLEEP: os << "SLEEP"; break; default: NOTREACHED(); os << "Unknown TaskType"; break; } return os; } std::ostream& operator <<(std::ostream& os, const TaskItem& item) { if (item.start) return os << item.type << " " << item.cookie << " starts"; else return os << item.type << " " << item.cookie << " ends"; } // Saves the order the tasks ran. class OrderedTasks : public Task { public: OrderedTasks(TaskList* order, int cookie) : order_(order), type_(ORDERERD), cookie_(cookie) { } OrderedTasks(TaskList* order, TaskType type, int cookie) : order_(order), type_(type), cookie_(cookie) { } void RunStart() { TaskItem item(type_, cookie_, true); DVLOG(1) << item; order_->push_back(item); } void RunEnd() { TaskItem item(type_, cookie_, false); DVLOG(1) << item; order_->push_back(item); } virtual void Run() { RunStart(); RunEnd(); } protected: TaskList* order() const { return order_; } int cookie() const { return cookie_; } private: TaskList* order_; TaskType type_; int cookie_; }; #if defined(OS_WIN) // MessageLoop implicitly start a "modal message loop". Modal dialog boxes, // common controls (like OpenFile) and StartDoc printing function can cause // implicit message loops. class MessageBoxTask : public OrderedTasks { public: MessageBoxTask(TaskList* order, int cookie, bool is_reentrant) : OrderedTasks(order, MESSAGEBOX, cookie), is_reentrant_(is_reentrant) { } virtual void Run() { RunStart(); if (is_reentrant_) MessageLoop::current()->SetNestableTasksAllowed(true); MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK); RunEnd(); } private: bool is_reentrant_; }; // Will end the MessageBox. class EndDialogTask : public OrderedTasks { public: EndDialogTask(TaskList* order, int cookie) : OrderedTasks(order, ENDDIALOG, cookie) { } virtual void Run() { RunStart(); HWND window = GetActiveWindow(); if (window != NULL) { EXPECT_NE(EndDialog(window, IDCONTINUE), 0); // Cheap way to signal that the window wasn't found if RunEnd() isn't // called. RunEnd(); } } }; #endif // defined(OS_WIN) class RecursiveTask : public OrderedTasks { public: RecursiveTask(int depth, TaskList* order, int cookie, bool is_reentrant) : OrderedTasks(order, RECURSIVE, cookie), depth_(depth), is_reentrant_(is_reentrant) { } virtual void Run() { RunStart(); if (depth_ > 0) { if (is_reentrant_) MessageLoop::current()->SetNestableTasksAllowed(true); MessageLoop::current()->PostTask(FROM_HERE, new RecursiveTask(depth_ - 1, order(), cookie(), is_reentrant_)); } RunEnd(); } private: int depth_; bool is_reentrant_; }; class QuitTask : public OrderedTasks { public: QuitTask(TaskList* order, int cookie) : OrderedTasks(order, QUITMESSAGELOOP, cookie) { } virtual void Run() { RunStart(); MessageLoop::current()->Quit(); RunEnd(); } }; class SleepTask : public OrderedTasks { public: SleepTask(TaskList* order, int cookie, int ms) : OrderedTasks(order, SLEEP, cookie), ms_(ms) { } virtual void Run() { RunStart(); PlatformThread::Sleep(ms_); RunEnd(); } private: int ms_; }; #if defined(OS_WIN) class Recursive2Tasks : public Task { public: Recursive2Tasks(MessageLoop* target, HANDLE event, bool expect_window, TaskList* order, bool is_reentrant) : target_(target), event_(event), expect_window_(expect_window), order_(order), is_reentrant_(is_reentrant) { } virtual void Run() { target_->PostTask(FROM_HERE, new RecursiveTask(2, order_, 1, is_reentrant_)); target_->PostTask(FROM_HERE, new MessageBoxTask(order_, 2, is_reentrant_)); target_->PostTask(FROM_HERE, new RecursiveTask(2, order_, 3, is_reentrant_)); // The trick here is that for recursive task processing, this task will be // ran _inside_ the MessageBox message loop, dismissing the MessageBox // without a chance. // For non-recursive task processing, this will be executed _after_ the // MessageBox will have been dismissed by the code below, where // expect_window_ is true. target_->PostTask(FROM_HERE, new EndDialogTask(order_, 4)); target_->PostTask(FROM_HERE, new QuitTask(order_, 5)); // Enforce that every tasks are sent before starting to run the main thread // message loop. ASSERT_TRUE(SetEvent(event_)); // Poll for the MessageBox. Don't do this at home! At the speed we do it, // you will never realize one MessageBox was shown. for (; expect_window_;) { HWND window = FindWindow(L"#32770", kMessageBoxTitle); if (window) { // Dismiss it. for (;;) { HWND button = FindWindowEx(window, NULL, L"Button", NULL); if (button != NULL) { EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0)); EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0)); break; } } break; } } } private: MessageLoop* target_; HANDLE event_; TaskList* order_; bool expect_window_; bool is_reentrant_; }; #endif // defined(OS_WIN) void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed()); TaskList order; MessageLoop::current()->PostTask(FROM_HERE, new RecursiveTask(2, &order, 1, false)); MessageLoop::current()->PostTask(FROM_HERE, new RecursiveTask(2, &order, 2, false)); MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3)); MessageLoop::current()->Run(); // FIFO order. ASSERT_EQ(14U, order.size()); EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false)); EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false)); } void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); TaskList order; MessageLoop::current()->PostTask(FROM_HERE, new RecursiveTask(2, &order, 1, true)); MessageLoop::current()->PostTask(FROM_HERE, new RecursiveTask(2, &order, 2, true)); MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3)); MessageLoop::current()->Run(); // FIFO order. ASSERT_EQ(14U, order.size()); EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[ 2], TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false)); EXPECT_EQ(order[ 6], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[ 7], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[ 8], TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[12], TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order[13], TaskItem(RECURSIVE, 2, false)); } #if defined(OS_WIN) // TODO(darin): These tests need to be ported since they test critical // message loop functionality. // A side effect of this test is the generation a beep. Sorry. void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); Thread worker("RecursiveDenial2_worker"); Thread::Options options; options.message_loop_type = message_loop_type; ASSERT_EQ(true, worker.StartWithOptions(options)); TaskList order; ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL)); worker.message_loop()->PostTask(FROM_HERE, new Recursive2Tasks(MessageLoop::current(), event, true, &order, false)); // Let the other thread execute. WaitForSingleObject(event, INFINITE); MessageLoop::current()->Run(); ASSERT_EQ(order.size(), 17); EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true)); EXPECT_EQ(order[ 3], TaskItem(MESSAGEBOX, 2, false)); EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order[ 5], TaskItem(RECURSIVE, 3, false)); // When EndDialogTask is processed, the window is already dismissed, hence no // "end" entry. EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, true)); EXPECT_EQ(order[ 7], TaskItem(QUITMESSAGELOOP, 5, true)); EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, false)); EXPECT_EQ(order[ 9], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[11], TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, false)); EXPECT_EQ(order[13], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[15], TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, false)); } // A side effect of this test is the generation a beep. Sorry. This test also // needs to process windows messages on the current thread. void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); Thread worker("RecursiveSupport2_worker"); Thread::Options options; options.message_loop_type = message_loop_type; ASSERT_EQ(true, worker.StartWithOptions(options)); TaskList order; ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL)); worker.message_loop()->PostTask(FROM_HERE, new Recursive2Tasks(MessageLoop::current(), event, false, &order, true)); // Let the other thread execute. WaitForSingleObject(event, INFINITE); MessageLoop::current()->Run(); ASSERT_EQ(order.size(), 18); EXPECT_EQ(order[ 0], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[ 1], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[ 2], TaskItem(MESSAGEBOX, 2, true)); // Note that this executes in the MessageBox modal loop. EXPECT_EQ(order[ 3], TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order[ 4], TaskItem(RECURSIVE, 3, false)); EXPECT_EQ(order[ 5], TaskItem(ENDDIALOG, 4, true)); EXPECT_EQ(order[ 6], TaskItem(ENDDIALOG, 4, false)); EXPECT_EQ(order[ 7], TaskItem(MESSAGEBOX, 2, false)); /* The order can subtly change here. The reason is that when RecursiveTask(1) is called in the main thread, if it is faster than getting to the PostTask(FROM_HERE, QuitTask) execution, the order of task execution can change. We don't care anyway that the order isn't correct. EXPECT_EQ(order[ 8], TaskItem(QUITMESSAGELOOP, 5, true)); EXPECT_EQ(order[ 9], TaskItem(QUITMESSAGELOOP, 5, false)); EXPECT_EQ(order[10], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[11], TaskItem(RECURSIVE, 1, false)); */ EXPECT_EQ(order[12], TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order[13], TaskItem(RECURSIVE, 3, false)); EXPECT_EQ(order[14], TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order[15], TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order[16], TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order[17], TaskItem(RECURSIVE, 3, false)); } #endif // defined(OS_WIN) class TaskThatPumps : public OrderedTasks { public: TaskThatPumps(TaskList* order, int cookie) : OrderedTasks(order, PUMPS, cookie) { } virtual void Run() { RunStart(); bool old_state = MessageLoop::current()->NestableTasksAllowed(); MessageLoop::current()->SetNestableTasksAllowed(true); MessageLoop::current()->RunAllPending(); MessageLoop::current()->SetNestableTasksAllowed(old_state); RunEnd(); } }; // Tests that non nestable tasks run in FIFO if there are no nested loops. void RunTest_NonNestableWithNoNesting(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); TaskList order; Task* task = new OrderedTasks(&order, 1); MessageLoop::current()->PostNonNestableTask(FROM_HERE, task); MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 2)); MessageLoop::current()->PostTask(FROM_HERE, new QuitTask(&order, 3)); MessageLoop::current()->Run(); // FIFO order. ASSERT_EQ(6U, order.size()); EXPECT_EQ(order[ 0], TaskItem(ORDERERD, 1, true)); EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 1, false)); EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 2, true)); EXPECT_EQ(order[ 3], TaskItem(ORDERERD, 2, false)); EXPECT_EQ(order[ 4], TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order[ 5], TaskItem(QUITMESSAGELOOP, 3, false)); } // Tests that non nestable tasks don't run when there's code in the call stack. void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type, bool use_delayed) { MessageLoop loop(message_loop_type); TaskList order; MessageLoop::current()->PostTask(FROM_HERE, new TaskThatPumps(&order, 1)); Task* task = new OrderedTasks(&order, 2); if (use_delayed) { MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE, task, 1); } else { MessageLoop::current()->PostNonNestableTask(FROM_HERE, task); } MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 3)); MessageLoop::current()->PostTask(FROM_HERE, new SleepTask(&order, 4, 50)); MessageLoop::current()->PostTask(FROM_HERE, new OrderedTasks(&order, 5)); Task* non_nestable_quit = new QuitTask(&order, 6); if (use_delayed) { MessageLoop::current()->PostNonNestableDelayedTask(FROM_HERE, non_nestable_quit, 2); } else { MessageLoop::current()->PostNonNestableTask(FROM_HERE, non_nestable_quit); } MessageLoop::current()->Run(); // FIFO order. ASSERT_EQ(12U, order.size()); EXPECT_EQ(order[ 0], TaskItem(PUMPS, 1, true)); EXPECT_EQ(order[ 1], TaskItem(ORDERERD, 3, true)); EXPECT_EQ(order[ 2], TaskItem(ORDERERD, 3, false)); EXPECT_EQ(order[ 3], TaskItem(SLEEP, 4, true)); EXPECT_EQ(order[ 4], TaskItem(SLEEP, 4, false)); EXPECT_EQ(order[ 5], TaskItem(ORDERERD, 5, true)); EXPECT_EQ(order[ 6], TaskItem(ORDERERD, 5, false)); EXPECT_EQ(order[ 7], TaskItem(PUMPS, 1, false)); EXPECT_EQ(order[ 8], TaskItem(ORDERERD, 2, true)); EXPECT_EQ(order[ 9], TaskItem(ORDERERD, 2, false)); EXPECT_EQ(order[10], TaskItem(QUITMESSAGELOOP, 6, true)); EXPECT_EQ(order[11], TaskItem(QUITMESSAGELOOP, 6, false)); } #if defined(OS_WIN) class DispatcherImpl : public MessageLoopForUI::Dispatcher { public: DispatcherImpl() : dispatch_count_(0) {} virtual bool Dispatch(const MSG& msg) { ::TranslateMessage(&msg); ::DispatchMessage(&msg); // Do not count WM_TIMER since it is not what we post and it will cause // flakiness. if (msg.message != WM_TIMER) ++dispatch_count_; // We treat WM_LBUTTONUP as the last message. return msg.message != WM_LBUTTONUP; } int dispatch_count_; }; void RunTest_Dispatcher(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); class MyTask : public Task { public: virtual void Run() { PostMessage(NULL, WM_LBUTTONDOWN, 0, 0); PostMessage(NULL, WM_LBUTTONUP, 'A', 0); } }; Task* task = new MyTask(); MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100); DispatcherImpl dispatcher; MessageLoopForUI::current()->Run(&dispatcher); ASSERT_EQ(2, dispatcher.dispatch_count_); } LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) { if (code == base::MessagePumpForUI::kMessageFilterCode) { MSG* msg = reinterpret_cast(lparam); if (msg->message == WM_LBUTTONDOWN) return TRUE; } return FALSE; } void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); class MyTask : public Task { public: virtual void Run() { PostMessage(NULL, WM_LBUTTONDOWN, 0, 0); PostMessage(NULL, WM_LBUTTONUP, 'A', 0); } }; Task* task = new MyTask(); MessageLoop::current()->PostDelayedTask(FROM_HERE, task, 100); HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER, MsgFilterProc, NULL, GetCurrentThreadId()); DispatcherImpl dispatcher; MessageLoopForUI::current()->Run(&dispatcher); ASSERT_EQ(1, dispatcher.dispatch_count_); UnhookWindowsHookEx(msg_hook); } class TestIOHandler : public MessageLoopForIO::IOHandler { public: TestIOHandler(const wchar_t* name, HANDLE signal, bool wait); virtual void OnIOCompleted(MessageLoopForIO::IOContext* context, DWORD bytes_transfered, DWORD error); void Init(); void WaitForIO(); OVERLAPPED* context() { return &context_.overlapped; } DWORD size() { return sizeof(buffer_); } private: char buffer_[48]; MessageLoopForIO::IOContext context_; HANDLE signal_; ScopedHandle file_; bool wait_; }; TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait) : signal_(signal), wait_(wait) { memset(buffer_, 0, sizeof(buffer_)); memset(&context_, 0, sizeof(context_)); context_.handler = this; file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL)); EXPECT_TRUE(file_.IsValid()); } void TestIOHandler::Init() { MessageLoopForIO::current()->RegisterIOHandler(file_, this); DWORD read; EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context())); EXPECT_EQ(ERROR_IO_PENDING, GetLastError()); if (wait_) WaitForIO(); } void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context, DWORD bytes_transfered, DWORD error) { ASSERT_TRUE(context == &context_); ASSERT_TRUE(SetEvent(signal_)); } void TestIOHandler::WaitForIO() { EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this)); EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this)); } class IOHandlerTask : public Task { public: explicit IOHandlerTask(TestIOHandler* handler) : handler_(handler) {} virtual void Run() { handler_->Init(); } private: TestIOHandler* handler_; }; void RunTest_IOHandler() { ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL)); ASSERT_TRUE(callback_called.IsValid()); const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe"; ScopedHandle server(CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); ASSERT_TRUE(server.IsValid()); Thread thread("IOHandler test"); Thread::Options options; options.message_loop_type = MessageLoop::TYPE_IO; ASSERT_TRUE(thread.StartWithOptions(options)); MessageLoop* thread_loop = thread.message_loop(); ASSERT_TRUE(NULL != thread_loop); TestIOHandler handler(kPipeName, callback_called, false); IOHandlerTask* task = new IOHandlerTask(&handler); thread_loop->PostTask(FROM_HERE, task); Sleep(100); // Make sure the thread runs and sleeps for lack of work. const char buffer[] = "Hello there!"; DWORD written; EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL)); DWORD result = WaitForSingleObject(callback_called, 1000); EXPECT_EQ(WAIT_OBJECT_0, result); thread.Stop(); } void RunTest_WaitForIO() { ScopedHandle callback1_called(CreateEvent(NULL, TRUE, FALSE, NULL)); ScopedHandle callback2_called(CreateEvent(NULL, TRUE, FALSE, NULL)); ASSERT_TRUE(callback1_called.IsValid()); ASSERT_TRUE(callback2_called.IsValid()); const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1"; const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2"; ScopedHandle server1(CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); ScopedHandle server2(CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); ASSERT_TRUE(server1.IsValid()); ASSERT_TRUE(server2.IsValid()); Thread thread("IOHandler test"); Thread::Options options; options.message_loop_type = MessageLoop::TYPE_IO; ASSERT_TRUE(thread.StartWithOptions(options)); MessageLoop* thread_loop = thread.message_loop(); ASSERT_TRUE(NULL != thread_loop); TestIOHandler handler1(kPipeName1, callback1_called, false); TestIOHandler handler2(kPipeName2, callback2_called, true); IOHandlerTask* task1 = new IOHandlerTask(&handler1); IOHandlerTask* task2 = new IOHandlerTask(&handler2); thread_loop->PostTask(FROM_HERE, task1); Sleep(100); // Make sure the thread runs and sleeps for lack of work. thread_loop->PostTask(FROM_HERE, task2); Sleep(100); // At this time handler1 is waiting to be called, and the thread is waiting // on the Init method of handler2, filtering only handler2 callbacks. const char buffer[] = "Hello there!"; DWORD written; EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL)); Sleep(200); EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) << "handler1 has not been called"; EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL)); HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() }; DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000); EXPECT_EQ(WAIT_OBJECT_0, result); thread.Stop(); } #endif // defined(OS_WIN) } // namespace //----------------------------------------------------------------------------- // Each test is run against each type of MessageLoop. That way we are sure // that message loops work properly in all configurations. Of course, in some // cases, a unit test may only be for a particular type of loop. TEST(MessageLoopTest, PostTask) { RunTest_PostTask(MessageLoop::TYPE_DEFAULT); RunTest_PostTask(MessageLoop::TYPE_UI); RunTest_PostTask(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostTask_SEH) { RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT); RunTest_PostTask_SEH(MessageLoop::TYPE_UI); RunTest_PostTask_SEH(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_Basic) { RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) { RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_InPostOrder) { RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) { RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) { RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_SharedTimer) { RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO); } #if defined(OS_WIN) TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) { RunTest_PostDelayedTask_SharedTimer_SubPump(); } #endif // TODO(darin): MessageLoop does not support deleting all tasks in the // destructor. // Fails, http://crbug.com/50272. TEST(MessageLoopTest, FAILS_EnsureTaskDeletion) { RunTest_EnsureTaskDeletion(MessageLoop::TYPE_DEFAULT); RunTest_EnsureTaskDeletion(MessageLoop::TYPE_UI); RunTest_EnsureTaskDeletion(MessageLoop::TYPE_IO); } // TODO(darin): MessageLoop does not support deleting all tasks in the // destructor. // Fails, http://crbug.com/50272. TEST(MessageLoopTest, FAILS_EnsureTaskDeletion_Chain) { RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_DEFAULT); RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_UI); RunTest_EnsureTaskDeletion_Chain(MessageLoop::TYPE_IO); } #if defined(OS_WIN) TEST(MessageLoopTest, Crasher) { RunTest_Crasher(MessageLoop::TYPE_DEFAULT); RunTest_Crasher(MessageLoop::TYPE_UI); RunTest_Crasher(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, CrasherNasty) { RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT); RunTest_CrasherNasty(MessageLoop::TYPE_UI); RunTest_CrasherNasty(MessageLoop::TYPE_IO); } #endif // defined(OS_WIN) TEST(MessageLoopTest, Nesting) { RunTest_Nesting(MessageLoop::TYPE_DEFAULT); RunTest_Nesting(MessageLoop::TYPE_UI); RunTest_Nesting(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, RecursiveDenial1) { RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT); RunTest_RecursiveDenial1(MessageLoop::TYPE_UI); RunTest_RecursiveDenial1(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, RecursiveSupport1) { RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT); RunTest_RecursiveSupport1(MessageLoop::TYPE_UI); RunTest_RecursiveSupport1(MessageLoop::TYPE_IO); } #if defined(OS_WIN) // This test occasionally hangs http://crbug.com/44567 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) { RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT); RunTest_RecursiveDenial2(MessageLoop::TYPE_UI); RunTest_RecursiveDenial2(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, RecursiveSupport2) { // This test requires a UI loop RunTest_RecursiveSupport2(MessageLoop::TYPE_UI); } #endif // defined(OS_WIN) TEST(MessageLoopTest, NonNestableWithNoNesting) { RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT); RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI); RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, NonNestableInNestedLoop) { RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false); RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false); RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false); } TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) { RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true); RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true); RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true); } class DummyTask : public Task { public: explicit DummyTask(int num_tasks) : num_tasks_(num_tasks) {} virtual void Run() { if (num_tasks_ > 1) { MessageLoop::current()->PostTask( FROM_HERE, new DummyTask(num_tasks_ - 1)); } else { MessageLoop::current()->Quit(); } } private: const int num_tasks_; }; class DummyTaskObserver : public MessageLoop::TaskObserver { public: explicit DummyTaskObserver(int num_tasks) : num_tasks_started_(0), num_tasks_processed_(0), num_tasks_(num_tasks) {} virtual ~DummyTaskObserver() {} virtual void WillProcessTask(const Task* task) { num_tasks_started_++; EXPECT_TRUE(task != NULL); EXPECT_LE(num_tasks_started_, num_tasks_); EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1); } virtual void DidProcessTask(const Task* task) { num_tasks_processed_++; EXPECT_TRUE(task != NULL); EXPECT_LE(num_tasks_started_, num_tasks_); EXPECT_EQ(num_tasks_started_, num_tasks_processed_); } int num_tasks_started() const { return num_tasks_started_; } int num_tasks_processed() const { return num_tasks_processed_; } private: int num_tasks_started_; int num_tasks_processed_; const int num_tasks_; DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver); }; TEST(MessageLoopTest, TaskObserver) { const int kNumTasks = 6; DummyTaskObserver observer(kNumTasks); MessageLoop loop; loop.AddTaskObserver(&observer); loop.PostTask(FROM_HERE, new DummyTask(kNumTasks)); loop.Run(); loop.RemoveTaskObserver(&observer); EXPECT_EQ(kNumTasks, observer.num_tasks_started()); EXPECT_EQ(kNumTasks, observer.num_tasks_processed()); } #if defined(OS_WIN) TEST(MessageLoopTest, Dispatcher) { // This test requires a UI loop RunTest_Dispatcher(MessageLoop::TYPE_UI); } TEST(MessageLoopTest, DispatcherWithMessageHook) { // This test requires a UI loop RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI); } TEST(MessageLoopTest, IOHandler) { RunTest_IOHandler(); } TEST(MessageLoopTest, WaitForIO) { RunTest_WaitForIO(); } TEST(MessageLoopTest, HighResolutionTimer) { MessageLoop loop; const int kFastTimerMs = 5; const int kSlowTimerMs = 100; EXPECT_EQ(false, loop.high_resolution_timers_enabled()); // Post a fast task to enable the high resolution timers. loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kFastTimerMs); loop.Run(); EXPECT_EQ(true, loop.high_resolution_timers_enabled()); // Post a slow task and verify high resolution timers // are still enabled. loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs); loop.Run(); EXPECT_EQ(true, loop.high_resolution_timers_enabled()); // Wait for a while so that high-resolution mode elapses. Sleep(MessageLoop::kHighResolutionTimerModeLeaseTimeMs); // Post a slow task to disable the high resolution timers. loop.PostDelayedTask(FROM_HERE, new DummyTask(1), kSlowTimerMs); loop.Run(); EXPECT_EQ(false, loop.high_resolution_timers_enabled()); } #endif // defined(OS_WIN) #if defined(OS_POSIX) namespace { class QuitDelegate : public base::MessagePumpLibevent::Watcher { public: virtual void OnFileCanWriteWithoutBlocking(int fd) { MessageLoop::current()->Quit(); } virtual void OnFileCanReadWithoutBlocking(int fd) { MessageLoop::current()->Quit(); } }; TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) { // Simulate a MessageLoop that dies before an FileDescriptorWatcher. // This could happen when people use the Singleton pattern or atexit. // Create a file descriptor. Doesn't need to be readable or writable, // as we don't need to actually get any notifications. // pipe() is just the easiest way to do it. int pipefds[2]; int err = pipe(pipefds); ASSERT_EQ(0, err); int fd = pipefds[1]; { // Arrange for controller to live longer than message loop. base::MessagePumpLibevent::FileDescriptorWatcher controller; { MessageLoopForIO message_loop; QuitDelegate delegate; message_loop.WatchFileDescriptor(fd, true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate); // and don't run the message loop, just destroy it. } } if (HANDLE_EINTR(close(pipefds[0])) < 0) PLOG(ERROR) << "close"; if (HANDLE_EINTR(close(pipefds[1])) < 0) PLOG(ERROR) << "close"; } TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) { // Verify that it's ok to call StopWatchingFileDescriptor(). // (Errors only showed up in valgrind.) int pipefds[2]; int err = pipe(pipefds); ASSERT_EQ(0, err); int fd = pipefds[1]; { // Arrange for message loop to live longer than controller. MessageLoopForIO message_loop; { base::MessagePumpLibevent::FileDescriptorWatcher controller; QuitDelegate delegate; message_loop.WatchFileDescriptor(fd, true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate); controller.StopWatchingFileDescriptor(); } } if (HANDLE_EINTR(close(pipefds[0])) < 0) PLOG(ERROR) << "close"; if (HANDLE_EINTR(close(pipefds[1])) < 0) PLOG(ERROR) << "close"; } } // namespace #endif // defined(OS_POSIX)