// Copyright (c) 2012 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "base/bind.h" #include "base/bind_helpers.h" #include "base/compiler_specific.h" #include "base/eintr_wrapper.h" #include "base/logging.h" #include "base/memory/ref_counted.h" #include "base/message_loop.h" #include "base/threading/platform_thread.h" #include "base/threading/thread.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(OS_WIN) #include "base/message_pump_win.h" #include "base/win/scoped_handle.h" #endif using base::PlatformThread; using base::Thread; using base::Time; using base::TimeDelta; using base::TimeTicks; // TODO(darin): Platform-specific MessageLoop tests should be grouped together // to avoid chopping this file up with so many #ifdefs. namespace { class MessageLoopTest : public testing::Test {}; class Foo : public base::RefCounted { public: Foo() : test_count_(0) { } void Test0() { ++test_count_; } void Test1ConstRef(const std::string& a) { ++test_count_; result_.append(a); } void Test1Ptr(std::string* a) { ++test_count_; result_.append(*a); } void Test1Int(int a) { test_count_ += a; } void Test2Ptr(std::string* a, std::string* b) { ++test_count_; result_.append(*a); result_.append(*b); } void Test2Mixed(const std::string& a, std::string* b) { ++test_count_; result_.append(a); result_.append(*b); } int test_count() const { return test_count_; } const std::string& result() const { return result_; } private: friend class base::RefCounted; ~Foo() {} int test_count_; std::string result_; }; void RunTest_PostTask(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Add tests to message loop scoped_refptr foo(new Foo()); std::string a("a"), b("b"), c("c"), d("d"); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test0, foo.get())); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test1ConstRef, foo.get(), a)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test1Ptr, foo.get(), &b)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test1Int, foo.get(), 100)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test2Ptr, foo.get(), &a, &c)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test2Mixed, foo.get(), a, &d)); // After all tests, post a message that will shut down the message loop MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &MessageLoop::Quit, base::Unretained(MessageLoop::current()))); // Now kick things off MessageLoop::current()->Run(); EXPECT_EQ(foo->test_count(), 105); EXPECT_EQ(foo->result(), "abacad"); } void RunTest_PostTask_SEH(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Add tests to message loop scoped_refptr foo(new Foo()); std::string a("a"), b("b"), c("c"), d("d"); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test0, foo.get())); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test1ConstRef, foo.get(), a)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test1Ptr, foo.get(), &b)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test1Int, foo.get(), 100)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test2Ptr, foo.get(), &a, &c)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &Foo::Test2Mixed, foo.get(), a, &d)); // After all tests, post a message that will shut down the message loop MessageLoop::current()->PostTask(FROM_HERE, base::Bind( &MessageLoop::Quit, base::Unretained(MessageLoop::current()))); // Now kick things off with the SEH block active. MessageLoop::current()->set_exception_restoration(true); MessageLoop::current()->Run(); MessageLoop::current()->set_exception_restoration(false); EXPECT_EQ(foo->test_count(), 105); EXPECT_EQ(foo->result(), "abacad"); } // This function runs slowly to simulate a large amount of work being done. static void SlowFunc(TimeDelta pause, int* quit_counter) { PlatformThread::Sleep(pause); if (--(*quit_counter) == 0) MessageLoop::current()->Quit(); } // This function records the time when Run was called in a Time object, which is // useful for building a variety of MessageLoop tests. static void RecordRunTimeFunc(Time* run_time, int* quit_counter) { *run_time = Time::Now(); // Cause our Run function to take some time to execute. As a result we can // count on subsequent RecordRunTimeFunc()s running at a future time, // without worry about the resolution of our system clock being an issue. SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter); } void RunTest_PostDelayedTask_Basic(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that PostDelayedTask results in a delayed task. const TimeDelta kDelay = TimeDelta::FromMilliseconds(100); int num_tasks = 1; Time run_time; loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time, &num_tasks), kDelay); Time time_before_run = Time::Now(); loop.Run(); Time time_after_run = Time::Now(); EXPECT_EQ(0, num_tasks); EXPECT_LT(kDelay, time_after_run - time_before_run); } void RunTest_PostDelayedTask_InDelayOrder( MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that two tasks with different delays run in the right order. int num_tasks = 2; Time run_time1, run_time2; loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time1, &num_tasks), TimeDelta::FromMilliseconds(200)); // If we get a large pause in execution (due to a context switch) here, this // test could fail. loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), TimeDelta::FromMilliseconds(10)); loop.Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time2 < run_time1); } void RunTest_PostDelayedTask_InPostOrder( MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that two tasks with the same delay run in the order in which they // were posted. // // NOTE: This is actually an approximate test since the API only takes a // "delay" parameter, so we are not exactly simulating two tasks that get // posted at the exact same time. It would be nice if the API allowed us to // specify the desired run time. const TimeDelta kDelay = TimeDelta::FromMilliseconds(100); int num_tasks = 2; Time run_time1, run_time2; loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time1, &num_tasks), kDelay); loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), kDelay); loop.Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time1 < run_time2); } void RunTest_PostDelayedTask_InPostOrder_2( MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that a delayed task still runs after a normal tasks even if the // normal tasks take a long time to run. const TimeDelta kPause = TimeDelta::FromMilliseconds(50); int num_tasks = 2; Time run_time; loop.PostTask(FROM_HERE, base::Bind(&SlowFunc, kPause, &num_tasks)); loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time, &num_tasks), TimeDelta::FromMilliseconds(10)); Time time_before_run = Time::Now(); loop.Run(); Time time_after_run = Time::Now(); EXPECT_EQ(0, num_tasks); EXPECT_LT(kPause, time_after_run - time_before_run); } void RunTest_PostDelayedTask_InPostOrder_3( MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that a delayed task still runs after a pile of normal tasks. The key // difference between this test and the previous one is that here we return // the MessageLoop a lot so we give the MessageLoop plenty of opportunities // to maybe run the delayed task. It should know not to do so until the // delayed task's delay has passed. int num_tasks = 11; Time run_time1, run_time2; // Clutter the ML with tasks. for (int i = 1; i < num_tasks; ++i) loop.PostTask(FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time1, &num_tasks)); loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), TimeDelta::FromMilliseconds(1)); loop.Run(); EXPECT_EQ(0, num_tasks); EXPECT_TRUE(run_time2 > run_time1); } void RunTest_PostDelayedTask_SharedTimer( MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); // Test that the interval of the timer, used to run the next delayed task, is // set to a value corresponding to when the next delayed task should run. // By setting num_tasks to 1, we ensure that the first task to run causes the // run loop to exit. int num_tasks = 1; Time run_time1, run_time2; loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time1, &num_tasks), TimeDelta::FromSeconds(1000)); loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time2, &num_tasks), TimeDelta::FromMilliseconds(10)); Time start_time = Time::Now(); loop.Run(); EXPECT_EQ(0, num_tasks); // Ensure that we ran in far less time than the slower timer. TimeDelta total_time = Time::Now() - start_time; EXPECT_GT(5000, total_time.InMilliseconds()); // In case both timers somehow run at nearly the same time, sleep a little // and then run all pending to force them both to have run. This is just // encouraging flakiness if there is any. PlatformThread::Sleep(TimeDelta::FromMilliseconds(100)); loop.RunAllPending(); EXPECT_TRUE(run_time1.is_null()); EXPECT_FALSE(run_time2.is_null()); } #if defined(OS_WIN) void SubPumpFunc() { MessageLoop::current()->SetNestableTasksAllowed(true); MSG msg; while (GetMessage(&msg, NULL, 0, 0)) { TranslateMessage(&msg); DispatchMessage(&msg); } MessageLoop::current()->Quit(); } void RunTest_PostDelayedTask_SharedTimer_SubPump() { MessageLoop loop(MessageLoop::TYPE_UI); // Test that the interval of the timer, used to run the next delayed task, is // set to a value corresponding to when the next delayed task should run. // By setting num_tasks to 1, we ensure that the first task to run causes the // run loop to exit. int num_tasks = 1; Time run_time; loop.PostTask(FROM_HERE, base::Bind(&SubPumpFunc)); // This very delayed task should never run. loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordRunTimeFunc, &run_time, &num_tasks), TimeDelta::FromSeconds(1000)); // This slightly delayed task should run from within SubPumpFunc). loop.PostDelayedTask( FROM_HERE, base::Bind(&PostQuitMessage, 0), TimeDelta::FromMilliseconds(10)); Time start_time = Time::Now(); loop.Run(); EXPECT_EQ(1, num_tasks); // Ensure that we ran in far less time than the slower timer. TimeDelta total_time = Time::Now() - start_time; EXPECT_GT(5000, total_time.InMilliseconds()); // In case both timers somehow run at nearly the same time, sleep a little // and then run all pending to force them both to have run. This is just // encouraging flakiness if there is any. PlatformThread::Sleep(TimeDelta::FromMilliseconds(100)); loop.RunAllPending(); EXPECT_TRUE(run_time.is_null()); } #endif // defined(OS_WIN) // This is used to inject a test point for recording the destructor calls for // Closure objects send to MessageLoop::PostTask(). It is awkward usage since we // are trying to hook the actual destruction, which is not a common operation. class RecordDeletionProbe : public base::RefCounted { public: RecordDeletionProbe(RecordDeletionProbe* post_on_delete, bool* was_deleted) : post_on_delete_(post_on_delete), was_deleted_(was_deleted) { } ~RecordDeletionProbe() { *was_deleted_ = true; if (post_on_delete_) MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&RecordDeletionProbe::Run, post_on_delete_.get())); } void Run() {} private: scoped_refptr post_on_delete_; bool* was_deleted_; }; void RunTest_EnsureDeletion(MessageLoop::Type message_loop_type) { bool a_was_deleted = false; bool b_was_deleted = false; { MessageLoop loop(message_loop_type); loop.PostTask( FROM_HERE, base::Bind(&RecordDeletionProbe::Run, new RecordDeletionProbe(NULL, &a_was_deleted))); // TODO(ajwong): Do we really need 1000ms here? loop.PostDelayedTask( FROM_HERE, base::Bind(&RecordDeletionProbe::Run, new RecordDeletionProbe(NULL, &b_was_deleted)), TimeDelta::FromMilliseconds(1000)); } EXPECT_TRUE(a_was_deleted); EXPECT_TRUE(b_was_deleted); } void RunTest_EnsureDeletion_Chain(MessageLoop::Type message_loop_type) { bool a_was_deleted = false; bool b_was_deleted = false; bool c_was_deleted = false; { MessageLoop loop(message_loop_type); // The scoped_refptr for each of the below is held either by the chained // RecordDeletionProbe, or the bound RecordDeletionProbe::Run() callback. RecordDeletionProbe* a = new RecordDeletionProbe(NULL, &a_was_deleted); RecordDeletionProbe* b = new RecordDeletionProbe(a, &b_was_deleted); RecordDeletionProbe* c = new RecordDeletionProbe(b, &c_was_deleted); loop.PostTask(FROM_HERE, base::Bind(&RecordDeletionProbe::Run, c)); } EXPECT_TRUE(a_was_deleted); EXPECT_TRUE(b_was_deleted); EXPECT_TRUE(c_was_deleted); } void NestingFunc(int* depth) { if (*depth > 0) { *depth -= 1; MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&NestingFunc, depth)); MessageLoop::current()->SetNestableTasksAllowed(true); MessageLoop::current()->Run(); } MessageLoop::current()->Quit(); } #if defined(OS_WIN) LONG WINAPI BadExceptionHandler(EXCEPTION_POINTERS *ex_info) { ADD_FAILURE() << "bad exception handler"; ::ExitProcess(ex_info->ExceptionRecord->ExceptionCode); return EXCEPTION_EXECUTE_HANDLER; } // This task throws an SEH exception: initially write to an invalid address. // If the right SEH filter is installed, it will fix the error. class Crasher : public base::RefCounted { public: // Ctor. If trash_SEH_handler is true, the task will override the unhandled // exception handler with one sure to crash this test. explicit Crasher(bool trash_SEH_handler) : trash_SEH_handler_(trash_SEH_handler) { } void Run() { PlatformThread::Sleep(TimeDelta::FromMilliseconds(1)); if (trash_SEH_handler_) ::SetUnhandledExceptionFilter(&BadExceptionHandler); // Generate a SEH fault. We do it in asm to make sure we know how to undo // the damage. #if defined(_M_IX86) __asm { mov eax, dword ptr [Crasher::bad_array_] mov byte ptr [eax], 66 } #elif defined(_M_X64) bad_array_[0] = 66; #else #error "needs architecture support" #endif MessageLoop::current()->Quit(); } // Points the bad array to a valid memory location. static void FixError() { bad_array_ = &valid_store_; } private: bool trash_SEH_handler_; static volatile char* bad_array_; static char valid_store_; }; volatile char* Crasher::bad_array_ = 0; char Crasher::valid_store_ = 0; // This SEH filter fixes the problem and retries execution. Fixing requires // that the last instruction: mov eax, [Crasher::bad_array_] to be retried // so we move the instruction pointer 5 bytes back. LONG WINAPI HandleCrasherException(EXCEPTION_POINTERS *ex_info) { if (ex_info->ExceptionRecord->ExceptionCode != EXCEPTION_ACCESS_VIOLATION) return EXCEPTION_EXECUTE_HANDLER; Crasher::FixError(); #if defined(_M_IX86) ex_info->ContextRecord->Eip -= 5; #elif defined(_M_X64) ex_info->ContextRecord->Rip -= 5; #endif return EXCEPTION_CONTINUE_EXECUTION; } void RunTest_Crasher(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); if (::IsDebuggerPresent()) return; LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter = ::SetUnhandledExceptionFilter(&HandleCrasherException); MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&Crasher::Run, new Crasher(false))); MessageLoop::current()->set_exception_restoration(true); MessageLoop::current()->Run(); MessageLoop::current()->set_exception_restoration(false); ::SetUnhandledExceptionFilter(old_SEH_filter); } void RunTest_CrasherNasty(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); if (::IsDebuggerPresent()) return; LPTOP_LEVEL_EXCEPTION_FILTER old_SEH_filter = ::SetUnhandledExceptionFilter(&HandleCrasherException); MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&Crasher::Run, new Crasher(true))); MessageLoop::current()->set_exception_restoration(true); MessageLoop::current()->Run(); MessageLoop::current()->set_exception_restoration(false); ::SetUnhandledExceptionFilter(old_SEH_filter); } #endif // defined(OS_WIN) void RunTest_Nesting(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); int depth = 100; MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&NestingFunc, &depth)); MessageLoop::current()->Run(); EXPECT_EQ(depth, 0); } const wchar_t* const kMessageBoxTitle = L"MessageLoop Unit Test"; enum TaskType { MESSAGEBOX, ENDDIALOG, RECURSIVE, TIMEDMESSAGELOOP, QUITMESSAGELOOP, ORDERERD, PUMPS, SLEEP, }; // Saves the order in which the tasks executed. struct TaskItem { TaskItem(TaskType t, int c, bool s) : type(t), cookie(c), start(s) { } TaskType type; int cookie; bool start; bool operator == (const TaskItem& other) const { return type == other.type && cookie == other.cookie && start == other.start; } }; std::ostream& operator <<(std::ostream& os, TaskType type) { switch (type) { case MESSAGEBOX: os << "MESSAGEBOX"; break; case ENDDIALOG: os << "ENDDIALOG"; break; case RECURSIVE: os << "RECURSIVE"; break; case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break; case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break; case ORDERERD: os << "ORDERERD"; break; case PUMPS: os << "PUMPS"; break; case SLEEP: os << "SLEEP"; break; default: NOTREACHED(); os << "Unknown TaskType"; break; } return os; } std::ostream& operator <<(std::ostream& os, const TaskItem& item) { if (item.start) return os << item.type << " " << item.cookie << " starts"; else return os << item.type << " " << item.cookie << " ends"; } class TaskList { public: void RecordStart(TaskType type, int cookie) { TaskItem item(type, cookie, true); DVLOG(1) << item; task_list_.push_back(item); } void RecordEnd(TaskType type, int cookie) { TaskItem item(type, cookie, false); DVLOG(1) << item; task_list_.push_back(item); } size_t Size() { return task_list_.size(); } TaskItem Get(int n) { return task_list_[n]; } private: std::vector task_list_; }; // Saves the order the tasks ran. void OrderedFunc(TaskList* order, int cookie) { order->RecordStart(ORDERERD, cookie); order->RecordEnd(ORDERERD, cookie); } #if defined(OS_WIN) // MessageLoop implicitly start a "modal message loop". Modal dialog boxes, // common controls (like OpenFile) and StartDoc printing function can cause // implicit message loops. void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) { order->RecordStart(MESSAGEBOX, cookie); if (is_reentrant) MessageLoop::current()->SetNestableTasksAllowed(true); MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK); order->RecordEnd(MESSAGEBOX, cookie); } // Will end the MessageBox. void EndDialogFunc(TaskList* order, int cookie) { order->RecordStart(ENDDIALOG, cookie); HWND window = GetActiveWindow(); if (window != NULL) { EXPECT_NE(EndDialog(window, IDCONTINUE), 0); // Cheap way to signal that the window wasn't found if RunEnd() isn't // called. order->RecordEnd(ENDDIALOG, cookie); } } #endif // defined(OS_WIN) void RecursiveFunc(TaskList* order, int cookie, int depth, bool is_reentrant) { order->RecordStart(RECURSIVE, cookie); if (depth > 0) { if (is_reentrant) MessageLoop::current()->SetNestableTasksAllowed(true); MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant)); } order->RecordEnd(RECURSIVE, cookie); } void RecursiveSlowFunc(TaskList* order, int cookie, int depth, bool is_reentrant) { RecursiveFunc(order, cookie, depth, is_reentrant); PlatformThread::Sleep(TimeDelta::FromMilliseconds(10)); } void QuitFunc(TaskList* order, int cookie) { order->RecordStart(QUITMESSAGELOOP, cookie); MessageLoop::current()->Quit(); order->RecordEnd(QUITMESSAGELOOP, cookie); } void SleepFunc(TaskList* order, int cookie, TimeDelta delay) { order->RecordStart(SLEEP, cookie); PlatformThread::Sleep(delay); order->RecordEnd(SLEEP, cookie); } #if defined(OS_WIN) void RecursiveFuncWin(MessageLoop* target, HANDLE event, bool expect_window, TaskList* order, bool is_reentrant) { target->PostTask(FROM_HERE, base::Bind(&RecursiveFunc, order, 1, 2, is_reentrant)); target->PostTask(FROM_HERE, base::Bind(&MessageBoxFunc, order, 2, is_reentrant)); target->PostTask(FROM_HERE, base::Bind(&RecursiveFunc, order, 3, 2, is_reentrant)); // The trick here is that for recursive task processing, this task will be // ran _inside_ the MessageBox message loop, dismissing the MessageBox // without a chance. // For non-recursive task processing, this will be executed _after_ the // MessageBox will have been dismissed by the code below, where // expect_window_ is true. target->PostTask(FROM_HERE, base::Bind(&EndDialogFunc, order, 4)); target->PostTask(FROM_HERE, base::Bind(&QuitFunc, order, 5)); // Enforce that every tasks are sent before starting to run the main thread // message loop. ASSERT_TRUE(SetEvent(event)); // Poll for the MessageBox. Don't do this at home! At the speed we do it, // you will never realize one MessageBox was shown. for (; expect_window;) { HWND window = FindWindow(L"#32770", kMessageBoxTitle); if (window) { // Dismiss it. for (;;) { HWND button = FindWindowEx(window, NULL, L"Button", NULL); if (button != NULL) { EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0)); EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0)); break; } } break; } } } #endif // defined(OS_WIN) void RunTest_RecursiveDenial1(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed()); TaskList order; MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&RecursiveFunc, &order, 1, 2, false)); MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&RecursiveFunc, &order, 2, 2, false)); MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&QuitFunc, &order, 3)); MessageLoop::current()->Run(); // FIFO order. ASSERT_EQ(14U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false)); } void RunTest_RecursiveDenial3(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); EXPECT_TRUE(MessageLoop::current()->NestableTasksAllowed()); TaskList order; MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&RecursiveSlowFunc, &order, 1, 2, false)); MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&RecursiveSlowFunc, &order, 2, 2, false)); MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&OrderedFunc, &order, 3), TimeDelta::FromMilliseconds(5)); MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&QuitFunc, &order, 4), TimeDelta::FromMilliseconds(5)); MessageLoop::current()->Run(); // FIFO order. ASSERT_EQ(16U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(6), TaskItem(ORDERERD, 3, true)); EXPECT_EQ(order.Get(7), TaskItem(ORDERERD, 3, false)); EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 4, true)); EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 4, false)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 2, false)); } void RunTest_RecursiveSupport1(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); TaskList order; MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&RecursiveFunc, &order, 1, 2, true)); MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&RecursiveFunc, &order, 2, 2, true)); MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&QuitFunc, &order, 3)); MessageLoop::current()->Run(); // FIFO order. ASSERT_EQ(14U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); EXPECT_EQ(order.Get(6), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(7), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(8), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 2, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 2, false)); } #if defined(OS_WIN) // TODO(darin): These tests need to be ported since they test critical // message loop functionality. // A side effect of this test is the generation a beep. Sorry. void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); Thread worker("RecursiveDenial2_worker"); Thread::Options options; options.message_loop_type = message_loop_type; ASSERT_EQ(true, worker.StartWithOptions(options)); TaskList order; base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL)); worker.message_loop()->PostTask(FROM_HERE, base::Bind(&RecursiveFuncWin, MessageLoop::current(), event.Get(), true, &order, false)); // Let the other thread execute. WaitForSingleObject(event, INFINITE); MessageLoop::current()->Run(); ASSERT_EQ(order.Size(), 17); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false)); // When EndDialogFunc is processed, the window is already dismissed, hence no // "end" entry. EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true)); EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true)); EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false)); EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false)); } // A side effect of this test is the generation a beep. Sorry. This test also // needs to process windows messages on the current thread. void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); Thread worker("RecursiveSupport2_worker"); Thread::Options options; options.message_loop_type = message_loop_type; ASSERT_EQ(true, worker.StartWithOptions(options)); TaskList order; base::win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL)); worker.message_loop()->PostTask(FROM_HERE, base::Bind(&RecursiveFuncWin, MessageLoop::current(), event.Get(), false, &order, true)); // Let the other thread execute. WaitForSingleObject(event, INFINITE); MessageLoop::current()->Run(); ASSERT_EQ(order.Size(), 18); EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true)); // Note that this executes in the MessageBox modal loop. EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false)); EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true)); EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false)); EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false)); /* The order can subtly change here. The reason is that when RecursiveFunc(1) is called in the main thread, if it is faster than getting to the PostTask(FROM_HERE, base::Bind(&QuitFunc) execution, the order of task execution can change. We don't care anyway that the order isn't correct. EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true)); EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false)); EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false)); */ EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false)); EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true)); EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false)); EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true)); EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false)); } #endif // defined(OS_WIN) void FuncThatPumps(TaskList* order, int cookie) { order->RecordStart(PUMPS, cookie); { MessageLoop::ScopedNestableTaskAllower allow(MessageLoop::current()); MessageLoop::current()->RunAllPending(); } order->RecordEnd(PUMPS, cookie); } // Tests that non nestable tasks run in FIFO if there are no nested loops. void RunTest_NonNestableWithNoNesting( MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); TaskList order; MessageLoop::current()->PostNonNestableTask( FROM_HERE, base::Bind(&OrderedFunc, &order, 1)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&OrderedFunc, &order, 2)); MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&QuitFunc, &order, 3)); MessageLoop::current()->Run(); // FIFO order. ASSERT_EQ(6U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(ORDERERD, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(ORDERERD, 1, false)); EXPECT_EQ(order.Get(2), TaskItem(ORDERERD, 2, true)); EXPECT_EQ(order.Get(3), TaskItem(ORDERERD, 2, false)); EXPECT_EQ(order.Get(4), TaskItem(QUITMESSAGELOOP, 3, true)); EXPECT_EQ(order.Get(5), TaskItem(QUITMESSAGELOOP, 3, false)); } // Tests that non nestable tasks don't run when there's code in the call stack. void RunTest_NonNestableInNestedLoop(MessageLoop::Type message_loop_type, bool use_delayed) { MessageLoop loop(message_loop_type); TaskList order; MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&FuncThatPumps, &order, 1)); if (use_delayed) { MessageLoop::current()->PostNonNestableDelayedTask( FROM_HERE, base::Bind(&OrderedFunc, &order, 2), TimeDelta::FromMilliseconds(1)); } else { MessageLoop::current()->PostNonNestableTask( FROM_HERE, base::Bind(&OrderedFunc, &order, 2)); } MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&OrderedFunc, &order, 3)); MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&SleepFunc, &order, 4, TimeDelta::FromMilliseconds(50))); MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&OrderedFunc, &order, 5)); if (use_delayed) { MessageLoop::current()->PostNonNestableDelayedTask( FROM_HERE, base::Bind(&QuitFunc, &order, 6), TimeDelta::FromMilliseconds(2)); } else { MessageLoop::current()->PostNonNestableTask( FROM_HERE, base::Bind(&QuitFunc, &order, 6)); } MessageLoop::current()->Run(); // FIFO order. ASSERT_EQ(12U, order.Size()); EXPECT_EQ(order.Get(0), TaskItem(PUMPS, 1, true)); EXPECT_EQ(order.Get(1), TaskItem(ORDERERD, 3, true)); EXPECT_EQ(order.Get(2), TaskItem(ORDERERD, 3, false)); EXPECT_EQ(order.Get(3), TaskItem(SLEEP, 4, true)); EXPECT_EQ(order.Get(4), TaskItem(SLEEP, 4, false)); EXPECT_EQ(order.Get(5), TaskItem(ORDERERD, 5, true)); EXPECT_EQ(order.Get(6), TaskItem(ORDERERD, 5, false)); EXPECT_EQ(order.Get(7), TaskItem(PUMPS, 1, false)); EXPECT_EQ(order.Get(8), TaskItem(ORDERERD, 2, true)); EXPECT_EQ(order.Get(9), TaskItem(ORDERERD, 2, false)); EXPECT_EQ(order.Get(10), TaskItem(QUITMESSAGELOOP, 6, true)); EXPECT_EQ(order.Get(11), TaskItem(QUITMESSAGELOOP, 6, false)); } #if defined(OS_WIN) class DispatcherImpl : public MessageLoopForUI::Dispatcher { public: DispatcherImpl() : dispatch_count_(0) {} virtual bool Dispatch(const MSG& msg) { ::TranslateMessage(&msg); ::DispatchMessage(&msg); // Do not count WM_TIMER since it is not what we post and it will cause // flakiness. if (msg.message != WM_TIMER) ++dispatch_count_; // We treat WM_LBUTTONUP as the last message. return msg.message != WM_LBUTTONUP; } int dispatch_count_; }; void MouseDownUp() { PostMessage(NULL, WM_LBUTTONDOWN, 0, 0); PostMessage(NULL, WM_LBUTTONUP, 'A', 0); } void RunTest_Dispatcher(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&MouseDownUp), TimeDelta::FromMilliseconds(100)); DispatcherImpl dispatcher; MessageLoopForUI::current()->RunWithDispatcher(&dispatcher); ASSERT_EQ(2, dispatcher.dispatch_count_); } LRESULT CALLBACK MsgFilterProc(int code, WPARAM wparam, LPARAM lparam) { if (code == base::MessagePumpForUI::kMessageFilterCode) { MSG* msg = reinterpret_cast(lparam); if (msg->message == WM_LBUTTONDOWN) return TRUE; } return FALSE; } void RunTest_DispatcherWithMessageHook(MessageLoop::Type message_loop_type) { MessageLoop loop(message_loop_type); MessageLoop::current()->PostDelayedTask( FROM_HERE, base::Bind(&MouseDownUp), TimeDelta::FromMilliseconds(100)); HHOOK msg_hook = SetWindowsHookEx(WH_MSGFILTER, MsgFilterProc, NULL, GetCurrentThreadId()); DispatcherImpl dispatcher; MessageLoopForUI::current()->RunWithDispatcher(&dispatcher); ASSERT_EQ(1, dispatcher.dispatch_count_); UnhookWindowsHookEx(msg_hook); } class TestIOHandler : public MessageLoopForIO::IOHandler { public: TestIOHandler(const wchar_t* name, HANDLE signal, bool wait); virtual void OnIOCompleted(MessageLoopForIO::IOContext* context, DWORD bytes_transfered, DWORD error); void Init(); void WaitForIO(); OVERLAPPED* context() { return &context_.overlapped; } DWORD size() { return sizeof(buffer_); } private: char buffer_[48]; MessageLoopForIO::IOContext context_; HANDLE signal_; base::win::ScopedHandle file_; bool wait_; }; TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait) : signal_(signal), wait_(wait) { memset(buffer_, 0, sizeof(buffer_)); memset(&context_, 0, sizeof(context_)); context_.handler = this; file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, NULL)); EXPECT_TRUE(file_.IsValid()); } void TestIOHandler::Init() { MessageLoopForIO::current()->RegisterIOHandler(file_, this); DWORD read; EXPECT_FALSE(ReadFile(file_, buffer_, size(), &read, context())); EXPECT_EQ(ERROR_IO_PENDING, GetLastError()); if (wait_) WaitForIO(); } void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context, DWORD bytes_transfered, DWORD error) { ASSERT_TRUE(context == &context_); ASSERT_TRUE(SetEvent(signal_)); } void TestIOHandler::WaitForIO() { EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this)); EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this)); } void RunTest_IOHandler() { base::win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL)); ASSERT_TRUE(callback_called.IsValid()); const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe"; base::win::ScopedHandle server( CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); ASSERT_TRUE(server.IsValid()); Thread thread("IOHandler test"); Thread::Options options; options.message_loop_type = MessageLoop::TYPE_IO; ASSERT_TRUE(thread.StartWithOptions(options)); MessageLoop* thread_loop = thread.message_loop(); ASSERT_TRUE(NULL != thread_loop); TestIOHandler handler(kPipeName, callback_called, false); thread_loop->PostTask(FROM_HERE, base::Bind(&TestIOHandler::Init, base::Unretained(&handler))); // Make sure the thread runs and sleeps for lack of work. base::PlatformThread::Sleep(TimeDelta::FromMilliseconds(100)); const char buffer[] = "Hello there!"; DWORD written; EXPECT_TRUE(WriteFile(server, buffer, sizeof(buffer), &written, NULL)); DWORD result = WaitForSingleObject(callback_called, 1000); EXPECT_EQ(WAIT_OBJECT_0, result); thread.Stop(); } void RunTest_WaitForIO() { base::win::ScopedHandle callback1_called( CreateEvent(NULL, TRUE, FALSE, NULL)); base::win::ScopedHandle callback2_called( CreateEvent(NULL, TRUE, FALSE, NULL)); ASSERT_TRUE(callback1_called.IsValid()); ASSERT_TRUE(callback2_called.IsValid()); const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1"; const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2"; base::win::ScopedHandle server1( CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); base::win::ScopedHandle server2( CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL)); ASSERT_TRUE(server1.IsValid()); ASSERT_TRUE(server2.IsValid()); Thread thread("IOHandler test"); Thread::Options options; options.message_loop_type = MessageLoop::TYPE_IO; ASSERT_TRUE(thread.StartWithOptions(options)); MessageLoop* thread_loop = thread.message_loop(); ASSERT_TRUE(NULL != thread_loop); TestIOHandler handler1(kPipeName1, callback1_called, false); TestIOHandler handler2(kPipeName2, callback2_called, true); thread_loop->PostTask(FROM_HERE, base::Bind(&TestIOHandler::Init, base::Unretained(&handler1))); // TODO(ajwong): Do we really need such long Sleeps in ths function? // Make sure the thread runs and sleeps for lack of work. TimeDelta delay = TimeDelta::FromMilliseconds(100); base::PlatformThread::Sleep(delay); thread_loop->PostTask(FROM_HERE, base::Bind(&TestIOHandler::Init, base::Unretained(&handler2))); base::PlatformThread::Sleep(delay); // At this time handler1 is waiting to be called, and the thread is waiting // on the Init method of handler2, filtering only handler2 callbacks. const char buffer[] = "Hello there!"; DWORD written; EXPECT_TRUE(WriteFile(server1, buffer, sizeof(buffer), &written, NULL)); base::PlatformThread::Sleep(2 * delay); EXPECT_EQ(WAIT_TIMEOUT, WaitForSingleObject(callback1_called, 0)) << "handler1 has not been called"; EXPECT_TRUE(WriteFile(server2, buffer, sizeof(buffer), &written, NULL)); HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() }; DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000); EXPECT_EQ(WAIT_OBJECT_0, result); thread.Stop(); } #endif // defined(OS_WIN) } // namespace //----------------------------------------------------------------------------- // Each test is run against each type of MessageLoop. That way we are sure // that message loops work properly in all configurations. Of course, in some // cases, a unit test may only be for a particular type of loop. TEST(MessageLoopTest, PostTask) { RunTest_PostTask(MessageLoop::TYPE_DEFAULT); RunTest_PostTask(MessageLoop::TYPE_UI); RunTest_PostTask(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostTask_SEH) { RunTest_PostTask_SEH(MessageLoop::TYPE_DEFAULT); RunTest_PostTask_SEH(MessageLoop::TYPE_UI); RunTest_PostTask_SEH(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_Basic) { RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_Basic(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_InDelayOrder) { RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_InDelayOrder(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_InPostOrder) { RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_InPostOrder(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_InPostOrder_2) { RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_InPostOrder_2(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_InPostOrder_3) { RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_InPostOrder_3(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, PostDelayedTask_SharedTimer) { RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_DEFAULT); RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_UI); RunTest_PostDelayedTask_SharedTimer(MessageLoop::TYPE_IO); } #if defined(OS_WIN) TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) { RunTest_PostDelayedTask_SharedTimer_SubPump(); } #endif // TODO(darin): MessageLoop does not support deleting all tasks in the // destructor. // Fails, http://crbug.com/50272. TEST(MessageLoopTest, FAILS_EnsureDeletion) { RunTest_EnsureDeletion(MessageLoop::TYPE_DEFAULT); RunTest_EnsureDeletion(MessageLoop::TYPE_UI); RunTest_EnsureDeletion(MessageLoop::TYPE_IO); } // TODO(darin): MessageLoop does not support deleting all tasks in the // destructor. // Fails, http://crbug.com/50272. TEST(MessageLoopTest, FAILS_EnsureDeletion_Chain) { RunTest_EnsureDeletion_Chain(MessageLoop::TYPE_DEFAULT); RunTest_EnsureDeletion_Chain(MessageLoop::TYPE_UI); RunTest_EnsureDeletion_Chain(MessageLoop::TYPE_IO); } #if defined(OS_WIN) TEST(MessageLoopTest, Crasher) { RunTest_Crasher(MessageLoop::TYPE_DEFAULT); RunTest_Crasher(MessageLoop::TYPE_UI); RunTest_Crasher(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, CrasherNasty) { RunTest_CrasherNasty(MessageLoop::TYPE_DEFAULT); RunTest_CrasherNasty(MessageLoop::TYPE_UI); RunTest_CrasherNasty(MessageLoop::TYPE_IO); } #endif // defined(OS_WIN) TEST(MessageLoopTest, Nesting) { RunTest_Nesting(MessageLoop::TYPE_DEFAULT); RunTest_Nesting(MessageLoop::TYPE_UI); RunTest_Nesting(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, RecursiveDenial1) { RunTest_RecursiveDenial1(MessageLoop::TYPE_DEFAULT); RunTest_RecursiveDenial1(MessageLoop::TYPE_UI); RunTest_RecursiveDenial1(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, RecursiveDenial3) { RunTest_RecursiveDenial3(MessageLoop::TYPE_DEFAULT); RunTest_RecursiveDenial3(MessageLoop::TYPE_UI); RunTest_RecursiveDenial3(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, RecursiveSupport1) { RunTest_RecursiveSupport1(MessageLoop::TYPE_DEFAULT); RunTest_RecursiveSupport1(MessageLoop::TYPE_UI); RunTest_RecursiveSupport1(MessageLoop::TYPE_IO); } #if defined(OS_WIN) // This test occasionally hangs http://crbug.com/44567 TEST(MessageLoopTest, DISABLED_RecursiveDenial2) { RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT); RunTest_RecursiveDenial2(MessageLoop::TYPE_UI); RunTest_RecursiveDenial2(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, RecursiveSupport2) { // This test requires a UI loop RunTest_RecursiveSupport2(MessageLoop::TYPE_UI); } #endif // defined(OS_WIN) TEST(MessageLoopTest, NonNestableWithNoNesting) { RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_DEFAULT); RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_UI); RunTest_NonNestableWithNoNesting(MessageLoop::TYPE_IO); } TEST(MessageLoopTest, NonNestableInNestedLoop) { RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, false); RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, false); RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, false); } TEST(MessageLoopTest, NonNestableDelayedInNestedLoop) { RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_DEFAULT, true); RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_UI, true); RunTest_NonNestableInNestedLoop(MessageLoop::TYPE_IO, true); } void PostNTasksThenQuit(int posts_remaining) { if (posts_remaining > 1) { MessageLoop::current()->PostTask( FROM_HERE, base::Bind(&PostNTasksThenQuit, posts_remaining - 1)); } else { MessageLoop::current()->Quit(); } } class DummyTaskObserver : public MessageLoop::TaskObserver { public: explicit DummyTaskObserver(int num_tasks) : num_tasks_started_(0), num_tasks_processed_(0), num_tasks_(num_tasks) {} virtual ~DummyTaskObserver() {} virtual void WillProcessTask(TimeTicks time_posted) OVERRIDE { num_tasks_started_++; EXPECT_TRUE(time_posted != TimeTicks()); EXPECT_LE(num_tasks_started_, num_tasks_); EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1); } virtual void DidProcessTask(TimeTicks time_posted) OVERRIDE { num_tasks_processed_++; EXPECT_TRUE(time_posted != TimeTicks()); EXPECT_LE(num_tasks_started_, num_tasks_); EXPECT_EQ(num_tasks_started_, num_tasks_processed_); } int num_tasks_started() const { return num_tasks_started_; } int num_tasks_processed() const { return num_tasks_processed_; } private: int num_tasks_started_; int num_tasks_processed_; const int num_tasks_; DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver); }; TEST(MessageLoopTest, TaskObserver) { const int kNumPosts = 6; DummyTaskObserver observer(kNumPosts); MessageLoop loop; loop.AddTaskObserver(&observer); loop.PostTask(FROM_HERE, base::Bind(&PostNTasksThenQuit, kNumPosts)); loop.Run(); loop.RemoveTaskObserver(&observer); EXPECT_EQ(kNumPosts, observer.num_tasks_started()); EXPECT_EQ(kNumPosts, observer.num_tasks_processed()); } #if defined(OS_WIN) TEST(MessageLoopTest, Dispatcher) { // This test requires a UI loop RunTest_Dispatcher(MessageLoop::TYPE_UI); } TEST(MessageLoopTest, DispatcherWithMessageHook) { // This test requires a UI loop RunTest_DispatcherWithMessageHook(MessageLoop::TYPE_UI); } TEST(MessageLoopTest, IOHandler) { RunTest_IOHandler(); } TEST(MessageLoopTest, WaitForIO) { RunTest_WaitForIO(); } TEST(MessageLoopTest, HighResolutionTimer) { MessageLoop loop; const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5); const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100); EXPECT_FALSE(loop.high_resolution_timers_enabled()); // Post a fast task to enable the high resolution timers. loop.PostDelayedTask(FROM_HERE, base::Bind(&PostNTasksThenQuit, 1), kFastTimer); loop.Run(); EXPECT_TRUE(loop.high_resolution_timers_enabled()); // Post a slow task and verify high resolution timers // are still enabled. loop.PostDelayedTask(FROM_HERE, base::Bind(&PostNTasksThenQuit, 1), kSlowTimer); loop.Run(); EXPECT_TRUE(loop.high_resolution_timers_enabled()); // Wait for a while so that high-resolution mode elapses. base::PlatformThread::Sleep(TimeDelta::FromMilliseconds( MessageLoop::kHighResolutionTimerModeLeaseTimeMs)); // Post a slow task to disable the high resolution timers. loop.PostDelayedTask(FROM_HERE, base::Bind(&PostNTasksThenQuit, 1), kSlowTimer); loop.Run(); EXPECT_FALSE(loop.high_resolution_timers_enabled()); } #endif // defined(OS_WIN) #if defined(OS_POSIX) && !defined(OS_NACL) namespace { class QuitDelegate : public MessageLoopForIO::Watcher { public: virtual void OnFileCanWriteWithoutBlocking(int fd) { MessageLoop::current()->Quit(); } virtual void OnFileCanReadWithoutBlocking(int fd) { MessageLoop::current()->Quit(); } }; TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) { // Simulate a MessageLoop that dies before an FileDescriptorWatcher. // This could happen when people use the Singleton pattern or atexit. // Create a file descriptor. Doesn't need to be readable or writable, // as we don't need to actually get any notifications. // pipe() is just the easiest way to do it. int pipefds[2]; int err = pipe(pipefds); ASSERT_EQ(0, err); int fd = pipefds[1]; { // Arrange for controller to live longer than message loop. MessageLoopForIO::FileDescriptorWatcher controller; { MessageLoopForIO message_loop; QuitDelegate delegate; message_loop.WatchFileDescriptor(fd, true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate); // and don't run the message loop, just destroy it. } } if (HANDLE_EINTR(close(pipefds[0])) < 0) PLOG(ERROR) << "close"; if (HANDLE_EINTR(close(pipefds[1])) < 0) PLOG(ERROR) << "close"; } TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) { // Verify that it's ok to call StopWatchingFileDescriptor(). // (Errors only showed up in valgrind.) int pipefds[2]; int err = pipe(pipefds); ASSERT_EQ(0, err); int fd = pipefds[1]; { // Arrange for message loop to live longer than controller. MessageLoopForIO message_loop; { MessageLoopForIO::FileDescriptorWatcher controller; QuitDelegate delegate; message_loop.WatchFileDescriptor(fd, true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate); controller.StopWatchingFileDescriptor(); } } if (HANDLE_EINTR(close(pipefds[0])) < 0) PLOG(ERROR) << "close"; if (HANDLE_EINTR(close(pipefds[1])) < 0) PLOG(ERROR) << "close"; } } // namespace #endif // defined(OS_POSIX) && !defined(OS_NACL) namespace { // Inject a test point for recording the destructor calls for Closure objects // send to MessageLoop::PostTask(). It is awkward usage since we are trying to // hook the actual destruction, which is not a common operation. class DestructionObserverProbe : public base::RefCounted { public: DestructionObserverProbe(bool* task_destroyed, bool* destruction_observer_called) : task_destroyed_(task_destroyed), destruction_observer_called_(destruction_observer_called) { } virtual ~DestructionObserverProbe() { EXPECT_FALSE(*destruction_observer_called_); *task_destroyed_ = true; } virtual void Run() { // This task should never run. ADD_FAILURE(); } private: bool* task_destroyed_; bool* destruction_observer_called_; }; class MLDestructionObserver : public MessageLoop::DestructionObserver { public: MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called) : task_destroyed_(task_destroyed), destruction_observer_called_(destruction_observer_called), task_destroyed_before_message_loop_(false) { } virtual void WillDestroyCurrentMessageLoop() { task_destroyed_before_message_loop_ = *task_destroyed_; *destruction_observer_called_ = true; } bool task_destroyed_before_message_loop() const { return task_destroyed_before_message_loop_; } private: bool* task_destroyed_; bool* destruction_observer_called_; bool task_destroyed_before_message_loop_; }; } // namespace TEST(MessageLoopTest, DestructionObserverTest) { // Verify that the destruction observer gets called at the very end (after // all the pending tasks have been destroyed). MessageLoop* loop = new MessageLoop; const TimeDelta kDelay = TimeDelta::FromMilliseconds(100); bool task_destroyed = false; bool destruction_observer_called = false; MLDestructionObserver observer(&task_destroyed, &destruction_observer_called); loop->AddDestructionObserver(&observer); loop->PostDelayedTask( FROM_HERE, base::Bind(&DestructionObserverProbe::Run, new DestructionObserverProbe(&task_destroyed, &destruction_observer_called)), kDelay); delete loop; EXPECT_TRUE(observer.task_destroyed_before_message_loop()); // The task should have been destroyed when we deleted the loop. EXPECT_TRUE(task_destroyed); EXPECT_TRUE(destruction_observer_called); }