// Copyright (c) 2011 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_pump_glib.h" #include #include #include #include "base/callback.h" #include "base/memory/ref_counted.h" #include "base/message_loop.h" #include "base/threading/thread.h" #include "testing/gtest/include/gtest/gtest.h" #if defined(TOOLKIT_USES_GTK) #include #endif namespace { // This class injects dummy "events" into the GLib loop. When "handled" these // events can run tasks. This is intended to mock gtk events (the corresponding // GLib source runs at the same priority). class EventInjector { public: EventInjector() : processed_events_(0) { source_ = static_cast(g_source_new(&SourceFuncs, sizeof(Source))); source_->injector = this; g_source_attach(source_, NULL); g_source_set_can_recurse(source_, TRUE); } ~EventInjector() { g_source_destroy(source_); g_source_unref(source_); } int HandlePrepare() { // If the queue is empty, block. if (events_.empty()) return -1; base::TimeDelta delta = events_[0].time - base::Time::NowFromSystemTime(); return std::max(0, static_cast(ceil(delta.InMillisecondsF()))); } bool HandleCheck() { if (events_.empty()) return false; return events_[0].time <= base::Time::NowFromSystemTime(); } void HandleDispatch() { if (events_.empty()) return; Event event = events_[0]; events_.erase(events_.begin()); ++processed_events_; if (!event.callback.is_null()) { event.callback.Run(); } else if (event.task) { event.task->Run(); delete event.task; } } // Adds an event to the queue. When "handled", executes |callback|. // delay_ms is relative to the last event if any, or to Now() otherwise. void AddEvent(int delay_ms, const base::Closure& callback) { AddEventHelper(delay_ms, callback, NULL); } void AddDummyEvent(int delay_ms) { AddEventHelper(delay_ms, base::Closure(), NULL); } void AddEventAsTask(int delay_ms, Task* task) { AddEventHelper(delay_ms, base::Closure(), task); } void Reset() { processed_events_ = 0; events_.clear(); } int processed_events() const { return processed_events_; } private: struct Event { base::Time time; base::Closure callback; Task* task; }; struct Source : public GSource { EventInjector* injector; }; void AddEventHelper(int delay_ms, const base::Closure& callback, Task* task) { base::Time last_time; if (!events_.empty()) { last_time = (events_.end()-1)->time; } else { last_time = base::Time::NowFromSystemTime(); } base::Time future = last_time + base::TimeDelta::FromMilliseconds(delay_ms); EventInjector::Event event = { future, callback, task }; events_.push_back(event); } static gboolean Prepare(GSource* source, gint* timeout_ms) { *timeout_ms = static_cast(source)->injector->HandlePrepare(); return FALSE; } static gboolean Check(GSource* source) { return static_cast(source)->injector->HandleCheck(); } static gboolean Dispatch(GSource* source, GSourceFunc unused_func, gpointer unused_data) { static_cast(source)->injector->HandleDispatch(); return TRUE; } Source* source_; std::vector events_; int processed_events_; static GSourceFuncs SourceFuncs; DISALLOW_COPY_AND_ASSIGN(EventInjector); }; GSourceFuncs EventInjector::SourceFuncs = { EventInjector::Prepare, EventInjector::Check, EventInjector::Dispatch, NULL }; // Does nothing. This function can be called from a task. void DoNothing() { } void IncrementInt(int *value) { ++*value; } // Checks how many events have been processed by the injector. void ExpectProcessedEvents(EventInjector* injector, int count) { EXPECT_EQ(injector->processed_events(), count); } // Posts a task on the current message loop. void PostMessageLoopTask(const tracked_objects::Location& from_here, Task* task) { MessageLoop::current()->PostTask(from_here, task); } // Test fixture. class MessagePumpGLibTest : public testing::Test { public: MessagePumpGLibTest() : loop_(NULL), injector_(NULL) { } virtual void SetUp() { loop_ = new MessageLoop(MessageLoop::TYPE_UI); injector_ = new EventInjector(); } virtual void TearDown() { delete injector_; injector_ = NULL; delete loop_; loop_ = NULL; } MessageLoop* loop() const { return loop_; } EventInjector* injector() const { return injector_; } private: MessageLoop* loop_; EventInjector* injector_; DISALLOW_COPY_AND_ASSIGN(MessagePumpGLibTest); }; } // namespace // EventInjector is expected to always live longer than the runnable methods. DISABLE_RUNNABLE_METHOD_REFCOUNT(EventInjector); TEST_F(MessagePumpGLibTest, TestQuit) { // Checks that Quit works and that the basic infrastructure is working. // Quit from a task loop()->PostTask(FROM_HERE, MessageLoop::QuitClosure()); loop()->Run(); EXPECT_EQ(0, injector()->processed_events()); injector()->Reset(); // Quit from an event injector()->AddEvent(0, MessageLoop::QuitClosure()); loop()->Run(); EXPECT_EQ(1, injector()->processed_events()); } TEST_F(MessagePumpGLibTest, TestEventTaskInterleave) { // Checks that tasks posted by events are executed before the next event if // the posted task queue is empty. // MessageLoop doesn't make strong guarantees that it is the case, but the // current implementation ensures it and the tests below rely on it. // If changes cause this test to fail, it is reasonable to change it, but // TestWorkWhileWaitingForEvents and TestEventsWhileWaitingForWork have to be // changed accordingly, otherwise they can become flaky. injector()->AddEventAsTask(0, NewRunnableFunction(DoNothing)); Task* check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 2); Task* posted_task = NewRunnableFunction(PostMessageLoopTask, FROM_HERE, check_task); injector()->AddEventAsTask(0, posted_task); injector()->AddEventAsTask(0, NewRunnableFunction(DoNothing)); injector()->AddEvent(0, MessageLoop::QuitClosure()); loop()->Run(); EXPECT_EQ(4, injector()->processed_events()); injector()->Reset(); injector()->AddEventAsTask(0, NewRunnableFunction(DoNothing)); check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 2); posted_task = NewRunnableFunction(PostMessageLoopTask, FROM_HERE, check_task); injector()->AddEventAsTask(0, posted_task); injector()->AddEventAsTask(10, NewRunnableFunction(DoNothing)); injector()->AddEvent(0, MessageLoop::QuitClosure()); loop()->Run(); EXPECT_EQ(4, injector()->processed_events()); } TEST_F(MessagePumpGLibTest, TestWorkWhileWaitingForEvents) { int task_count = 0; // Tests that we process tasks while waiting for new events. // The event queue is empty at first. for (int i = 0; i < 10; ++i) { loop()->PostTask(FROM_HERE, NewRunnableFunction(IncrementInt, &task_count)); } // After all the previous tasks have executed, enqueue an event that will // quit. loop()->PostTask( FROM_HERE, NewRunnableMethod(injector(), &EventInjector::AddEvent, 0, MessageLoop::QuitClosure())); loop()->Run(); ASSERT_EQ(10, task_count); EXPECT_EQ(1, injector()->processed_events()); // Tests that we process delayed tasks while waiting for new events. injector()->Reset(); task_count = 0; for (int i = 0; i < 10; ++i) { loop()->PostDelayedTask( FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 10*i); } // After all the previous tasks have executed, enqueue an event that will // quit. // This relies on the fact that delayed tasks are executed in delay order. // That is verified in message_loop_unittest.cc. loop()->PostDelayedTask( FROM_HERE, NewRunnableMethod(injector(), &EventInjector::AddEvent, 10, MessageLoop::QuitClosure()), 150); loop()->Run(); ASSERT_EQ(10, task_count); EXPECT_EQ(1, injector()->processed_events()); } TEST_F(MessagePumpGLibTest, TestEventsWhileWaitingForWork) { // Tests that we process events while waiting for work. // The event queue is empty at first. for (int i = 0; i < 10; ++i) { injector()->AddDummyEvent(0); } // After all the events have been processed, post a task that will check that // the events have been processed (note: the task executes after the event // that posted it has been handled, so we expect 11 at that point). Task* check_task = NewRunnableFunction(ExpectProcessedEvents, injector(), 11); Task* posted_task = NewRunnableFunction(PostMessageLoopTask, FROM_HERE, check_task); injector()->AddEventAsTask(10, posted_task); // And then quit (relies on the condition tested by TestEventTaskInterleave). injector()->AddEvent(10, MessageLoop::QuitClosure()); loop()->Run(); EXPECT_EQ(12, injector()->processed_events()); } namespace { // This class is a helper for the concurrent events / posted tasks test below. // It will quit the main loop once enough tasks and events have been processed, // while making sure there is always work to do and events in the queue. class ConcurrentHelper : public base::RefCounted { public: explicit ConcurrentHelper(EventInjector* injector) : injector_(injector), event_count_(kStartingEventCount), task_count_(kStartingTaskCount) { } void FromTask() { if (task_count_ > 0) { --task_count_; } if (task_count_ == 0 && event_count_ == 0) { MessageLoop::current()->Quit(); } else { MessageLoop::current()->PostTask( FROM_HERE, NewRunnableMethod(this, &ConcurrentHelper::FromTask)); } } void FromEvent() { if (event_count_ > 0) { --event_count_; } if (task_count_ == 0 && event_count_ == 0) { MessageLoop::current()->Quit(); } else { injector_->AddEventAsTask( 0, NewRunnableMethod(this, &ConcurrentHelper::FromEvent)); } } int event_count() const { return event_count_; } int task_count() const { return task_count_; } private: friend class base::RefCounted; ~ConcurrentHelper() {} static const int kStartingEventCount = 20; static const int kStartingTaskCount = 20; EventInjector* injector_; int event_count_; int task_count_; }; } // namespace TEST_F(MessagePumpGLibTest, TestConcurrentEventPostedTask) { // Tests that posted tasks don't starve events, nor the opposite. // We use the helper class above. We keep both event and posted task queues // full, the helper verifies that both tasks and events get processed. // If that is not the case, either event_count_ or task_count_ will not get // to 0, and MessageLoop::Quit() will never be called. scoped_refptr helper = new ConcurrentHelper(injector()); // Add 2 events to the queue to make sure it is always full (when we remove // the event before processing it). injector()->AddEventAsTask( 0, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromEvent)); injector()->AddEventAsTask( 0, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromEvent)); // Similarly post 2 tasks. loop()->PostTask( FROM_HERE, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromTask)); loop()->PostTask( FROM_HERE, NewRunnableMethod(helper.get(), &ConcurrentHelper::FromTask)); loop()->Run(); EXPECT_EQ(0, helper->event_count()); EXPECT_EQ(0, helper->task_count()); } namespace { void AddEventsAndDrainGLib(EventInjector* injector) { // Add a couple of dummy events injector->AddDummyEvent(0); injector->AddDummyEvent(0); // Then add an event that will quit the main loop. injector->AddEvent(0, MessageLoop::QuitClosure()); // Post a couple of dummy tasks MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing)); // Drain the events while (g_main_context_pending(NULL)) { g_main_context_iteration(NULL, FALSE); } } } // namespace TEST_F(MessagePumpGLibTest, TestDrainingGLib) { // Tests that draining events using GLib works. loop()->PostTask( FROM_HERE, NewRunnableFunction(AddEventsAndDrainGLib, injector())); loop()->Run(); EXPECT_EQ(3, injector()->processed_events()); } namespace { #if defined(TOOLKIT_USES_GTK) void AddEventsAndDrainGtk(EventInjector* injector) { // Add a couple of dummy events injector->AddDummyEvent(0); injector->AddDummyEvent(0); // Then add an event that will quit the main loop. injector->AddEvent(0, MessageLoop::QuitClosure()); // Post a couple of dummy tasks MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing)); MessageLoop::current()->PostTask(FROM_HERE, NewRunnableFunction(DoNothing)); // Drain the events while (gtk_events_pending()) { gtk_main_iteration(); } } #endif } // namespace #if defined(TOOLKIT_USES_GTK) TEST_F(MessagePumpGLibTest, TestDrainingGtk) { // Tests that draining events using Gtk works. loop()->PostTask( FROM_HERE, NewRunnableFunction(AddEventsAndDrainGtk, injector())); loop()->Run(); EXPECT_EQ(3, injector()->processed_events()); } #endif namespace { // Helper class that lets us run the GLib message loop. class GLibLoopRunner : public base::RefCounted { public: GLibLoopRunner() : quit_(false) { } void RunGLib() { while (!quit_) { g_main_context_iteration(NULL, TRUE); } } void RunLoop() { #if defined(TOOLKIT_USES_GTK) while (!quit_) { gtk_main_iteration(); } #else while (!quit_) { g_main_context_iteration(NULL, TRUE); } #endif } void Quit() { quit_ = true; } void Reset() { quit_ = false; } private: friend class base::RefCounted; ~GLibLoopRunner() {} bool quit_; }; void TestGLibLoopInternal(EventInjector* injector) { // Allow tasks to be processed from 'native' event loops. MessageLoop::current()->SetNestableTasksAllowed(true); scoped_refptr runner = new GLibLoopRunner(); int task_count = 0; // Add a couple of dummy events injector->AddDummyEvent(0); injector->AddDummyEvent(0); // Post a couple of dummy tasks MessageLoop::current()->PostTask( FROM_HERE, NewRunnableFunction(IncrementInt, &task_count)); MessageLoop::current()->PostTask( FROM_HERE, NewRunnableFunction(IncrementInt, &task_count)); // Delayed events injector->AddDummyEvent(10); injector->AddDummyEvent(10); // Delayed work MessageLoop::current()->PostDelayedTask( FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 30); MessageLoop::current()->PostDelayedTask( FROM_HERE, NewRunnableMethod(runner.get(), &GLibLoopRunner::Quit), 40); // Run a nested, straight GLib message loop. runner->RunGLib(); ASSERT_EQ(3, task_count); EXPECT_EQ(4, injector->processed_events()); MessageLoop::current()->Quit(); } void TestGtkLoopInternal(EventInjector* injector) { // Allow tasks to be processed from 'native' event loops. MessageLoop::current()->SetNestableTasksAllowed(true); scoped_refptr runner = new GLibLoopRunner(); int task_count = 0; // Add a couple of dummy events injector->AddDummyEvent(0); injector->AddDummyEvent(0); // Post a couple of dummy tasks MessageLoop::current()->PostTask( FROM_HERE, NewRunnableFunction(IncrementInt, &task_count)); MessageLoop::current()->PostTask( FROM_HERE, NewRunnableFunction(IncrementInt, &task_count)); // Delayed events injector->AddDummyEvent(10); injector->AddDummyEvent(10); // Delayed work MessageLoop::current()->PostDelayedTask( FROM_HERE, NewRunnableFunction(IncrementInt, &task_count), 30); MessageLoop::current()->PostDelayedTask( FROM_HERE, NewRunnableMethod(runner.get(), &GLibLoopRunner::Quit), 40); // Run a nested, straight Gtk message loop. runner->RunLoop(); ASSERT_EQ(3, task_count); EXPECT_EQ(4, injector->processed_events()); MessageLoop::current()->Quit(); } } // namespace TEST_F(MessagePumpGLibTest, TestGLibLoop) { // Tests that events and posted tasks are correctly exectuted if the message // loop is not run by MessageLoop::Run() but by a straight GLib loop. // Note that in this case we don't make strong guarantees about niceness // between events and posted tasks. loop()->PostTask(FROM_HERE, NewRunnableFunction(TestGLibLoopInternal, injector())); loop()->Run(); } TEST_F(MessagePumpGLibTest, TestGtkLoop) { // Tests that events and posted tasks are correctly exectuted if the message // loop is not run by MessageLoop::Run() but by a straight Gtk loop. // Note that in this case we don't make strong guarantees about niceness // between events and posted tasks. loop()->PostTask(FROM_HERE, NewRunnableFunction(TestGtkLoopInternal, injector())); loop()->Run(); }