// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "base/message_pump_win.h" #include #include "base/histogram.h" #include "base/win_util.h" namespace base { static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow"; // Message sent to get an additional time slice for pumping (processing) another // task (a series of such messages creates a continuous task pump). static const int kMsgHaveWork = WM_USER + 1; #ifndef NDEBUG // Force exercise of polling model. static const int kMaxWaitObjects = 8; #else static const int kMaxWaitObjects = MAXIMUM_WAIT_OBJECTS; #endif //----------------------------------------------------------------------------- // MessagePumpWin public: MessagePumpWin::MessagePumpWin() : have_work_(0), state_(NULL) { InitMessageWnd(); } MessagePumpWin::~MessagePumpWin() { DestroyWindow(message_hwnd_); } void MessagePumpWin::WatchObject(HANDLE object, Watcher* watcher) { DCHECK(object); DCHECK_NE(object, INVALID_HANDLE_VALUE); std::vector::iterator it = find(objects_.begin(), objects_.end(), object); if (watcher) { if (it == objects_.end()) { static size_t warning_multiple = 1; if (objects_.size() >= warning_multiple * MAXIMUM_WAIT_OBJECTS / 2) { LOG(INFO) << "More than " << warning_multiple * MAXIMUM_WAIT_OBJECTS / 2 << " objects being watched"; // This DCHECK() is an artificial limitation, meant to warn us if we // start creating too many objects. It can safely be raised to a higher // level, and the program is designed to handle much larger values. // Before raising this limit, make sure that there is a very good reason // (in your debug testing) to be watching this many objects. DCHECK(2 <= warning_multiple); ++warning_multiple; } objects_.push_back(object); watchers_.push_back(watcher); } else { watchers_[it - objects_.begin()] = watcher; } } else if (it != objects_.end()) { std::vector::difference_type index = it - objects_.begin(); objects_.erase(it); watchers_.erase(watchers_.begin() + index); } } void MessagePumpWin::AddObserver(Observer* observer) { observers_.AddObserver(observer); } void MessagePumpWin::RemoveObserver(Observer* observer) { observers_.RemoveObserver(observer); } void MessagePumpWin::WillProcessMessage(const MSG& msg) { FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg)); } void MessagePumpWin::DidProcessMessage(const MSG& msg) { FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg)); } void MessagePumpWin::PumpOutPendingPaintMessages() { // Create a mini-message-pump to force immediate processing of only Windows // WM_PAINT messages. Don't provide an infinite loop, but do enough peeking // to get the job done. Actual common max is 4 peeks, but we'll be a little // safe here. const int kMaxPeekCount = 20; bool win2k = win_util::GetWinVersion() <= win_util::WINVERSION_2000; int peek_count; for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) { MSG msg; if (win2k) { if (!PeekMessage(&msg, NULL, WM_PAINT, WM_PAINT, PM_REMOVE)) break; } else { if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT)) break; } ProcessMessageHelper(msg); if (state_->should_quit) // Handle WM_QUIT. break; } // Histogram what was really being used, to help to adjust kMaxPeekCount. DHISTOGRAM_COUNTS(L"Loop.PumpOutPendingPaintMessages Peeks", peek_count); } void MessagePumpWin::RunWithDispatcher( Delegate* delegate, Dispatcher* dispatcher) { RunState s; s.delegate = delegate; s.dispatcher = dispatcher; s.should_quit = false; s.run_depth = state_ ? state_->run_depth + 1 : 1; RunState* previous_state = state_; state_ = &s; DoRunLoop(); state_ = previous_state; } void MessagePumpWin::Quit() { DCHECK(state_); state_->should_quit = true; } void MessagePumpWin::ScheduleWork() { if (InterlockedExchange(&have_work_, 1)) return; // Someone else continued the pumping. // Make sure the MessagePump does some work for us. PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast(this), 0); } void MessagePumpWin::ScheduleDelayedWork(const Time& delayed_work_time) { // // We would *like* to provide high resolution timers. Windows timers using // SetTimer() have a 10ms granularity. We have to use WM_TIMER as a wakeup // mechanism because the application can enter modal windows loops where it // is not running our MessageLoop; the only way to have our timers fire in // these cases is to post messages there. // // To provide sub-10ms timers, we process timers directly from our run loop. // For the common case, timers will be processed there as the run loop does // its normal work. However, we *also* set the system timer so that WM_TIMER // events fire. This mops up the case of timers not being able to work in // modal message loops. It is possible for the SetTimer to pop and have no // pending timers, because they could have already been processed by the // run loop itself. // // We use a single SetTimer corresponding to the timer that will expire // soonest. As new timers are created and destroyed, we update SetTimer. // Getting a spurrious SetTimer event firing is benign, as we'll just be // processing an empty timer queue. // delayed_work_time_ = delayed_work_time; int delay_msec = GetCurrentDelay(); DCHECK(delay_msec >= 0); if (delay_msec < USER_TIMER_MINIMUM) delay_msec = USER_TIMER_MINIMUM; // Create a WM_TIMER event that will wake us up to check for any pending // timers (in case we are running within a nested, external sub-pump). SetTimer(message_hwnd_, reinterpret_cast(this), delay_msec, NULL); } //----------------------------------------------------------------------------- // MessagePumpWin private: // static LRESULT CALLBACK MessagePumpWin::WndProcThunk( HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) { switch (message) { case kMsgHaveWork: reinterpret_cast(wparam)->HandleWorkMessage(); break; case WM_TIMER: reinterpret_cast(wparam)->HandleTimerMessage(); break; } return DefWindowProc(hwnd, message, wparam, lparam); } void MessagePumpWin::InitMessageWnd() { HINSTANCE hinst = GetModuleHandle(NULL); WNDCLASSEX wc = {0}; wc.cbSize = sizeof(wc); wc.lpfnWndProc = WndProcThunk; wc.hInstance = hinst; wc.lpszClassName = kWndClass; RegisterClassEx(&wc); message_hwnd_ = CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0); DCHECK(message_hwnd_); } void MessagePumpWin::HandleWorkMessage() { // If we are being called outside of the context of Run, then don't try to do // any work. This could correspond to a MessageBox call or something of that // sort. if (!state_) { // Since we handled a kMsgHaveWork message, we must still update this flag. InterlockedExchange(&have_work_, 0); return; } // Let whatever would have run had we not been putting messages in the queue // run now. This is an attempt to make our dummy message not starve other // messages that may be in the Windows message queue. ProcessPumpReplacementMessage(); // Now give the delegate a chance to do some work. He'll let us know if he // needs to do more work. if (state_->delegate->DoWork()) ScheduleWork(); } void MessagePumpWin::HandleTimerMessage() { KillTimer(message_hwnd_, reinterpret_cast(this)); // If we are being called outside of the context of Run, then don't do // anything. This could correspond to a MessageBox call or something of // that sort. if (!state_) return; state_->delegate->DoDelayedWork(&delayed_work_time_); if (!delayed_work_time_.is_null()) { // A bit gratuitous to set delayed_work_time_ again, but oh well. ScheduleDelayedWork(delayed_work_time_); } } void MessagePumpWin::DoRunLoop() { // IF this was just a simple PeekMessage() loop (servicing all passible work // queues), then Windows would try to achieve the following order according // to MSDN documentation about PeekMessage with no filter): // * Sent messages // * Posted messages // * Sent messages (again) // * WM_PAINT messages // * WM_TIMER messages // // Summary: none of the above classes is starved, and sent messages has twice // the chance of being processed (i.e., reduced service time). for (;;) { // If we do any work, we may create more messages etc., and more work may // possibly be waiting in another task group. When we (for example) // ProcessNextWindowsMessage(), there is a good chance there are still more // messages waiting (same thing for ProcessNextObject(), which responds to // only one signaled object; etc.). On the other hand, when any of these // methods return having done no work, then it is pretty unlikely that // calling them again quickly will find any work to do. Finally, if they // all say they had no work, then it is a good time to consider sleeping // (waiting) for more work. bool more_work_is_plausible = ProcessNextWindowsMessage(); if (state_->should_quit) break; more_work_is_plausible |= state_->delegate->DoWork(); if (state_->should_quit) break; more_work_is_plausible |= ProcessNextObject(); if (state_->should_quit) break; more_work_is_plausible |= state_->delegate->DoDelayedWork(&delayed_work_time_); // If we did not process any delayed work, then we can assume that our // existing WM_TIMER if any will fire when delayed work should run. We // don't want to disturb that timer if it is already in flight. However, // if we did do all remaining delayed work, then lets kill the WM_TIMER. if (more_work_is_plausible && delayed_work_time_.is_null()) KillTimer(message_hwnd_, reinterpret_cast(this)); if (state_->should_quit) break; if (more_work_is_plausible) continue; more_work_is_plausible = state_->delegate->DoIdleWork(); if (state_->should_quit) break; if (more_work_is_plausible) continue; // We service APCs in WaitForWork, without returning. WaitForWork(); // Wait (sleep) until we have work to do again. } } // If we handle more than the OS limit on the number of objects that can be // waited for, we'll need to poll (sequencing through subsets of the objects // that can be passed in a single OS wait call). The following is the polling // interval used in that (unusual) case. (I don't have a lot of justifcation // for the specific value, but it needed to be short enough that it would not // add a lot of latency, and long enough that we wouldn't thrash the CPU for no // reason... especially considering the silly user probably has a million tabs // open, etc.) static const int kMultipleWaitPollingInterval = 20; void MessagePumpWin::WaitForWork() { // Wait until either an object is signaled or a message is available. Handle // (without returning) any APCs (only the IO thread currently has APCs.) // We do not support nested message loops when we have watched objects. This // is to avoid messy recursion problems. DCHECK(objects_.empty() || state_->run_depth == 1) << "Cannot nest a message loop when there are watched objects!"; int wait_flags = MWMO_ALERTABLE | MWMO_INPUTAVAILABLE; bool use_polling = false; // Poll if too many objects for one OS Wait call. for (;;) { // Do initialization here, in case APC modifies object list. size_t total_objs = objects_.size(); int delay; size_t polling_index = 0; // The first unprocessed object index. do { size_t objs_len = (polling_index < total_objs) ? total_objs - polling_index : 0; if (objs_len >= MAXIMUM_WAIT_OBJECTS) { objs_len = MAXIMUM_WAIT_OBJECTS - 1; use_polling = true; } HANDLE* objs = objs_len ? polling_index + &objects_.front() : NULL; // Only wait up to the time needed by the timer manager to fire the next // set of timers. delay = GetCurrentDelay(); if (use_polling && delay > kMultipleWaitPollingInterval) delay = kMultipleWaitPollingInterval; if (delay < 0) // Negative value means no timers waiting. delay = INFINITE; DWORD result; result = MsgWaitForMultipleObjectsEx(static_cast(objs_len), objs, delay, QS_ALLINPUT, wait_flags); if (WAIT_IO_COMPLETION == result) { // We'll loop here when we service an APC. At it currently stands, // *ONLY* the IO thread uses *any* APCs, so this should have no impact // on the UI thread. break; // Break to outer loop, and waitforwork() again. } // Use unsigned type to simplify range detection; size_t signaled_index = result - WAIT_OBJECT_0; if (signaled_index < objs_len) { SignalWatcher(polling_index + signaled_index); return; // We serviced a signaled object. } if (objs_len == signaled_index) return; // A WM_* message is available. DCHECK_NE(WAIT_FAILED, result) << GetLastError(); DCHECK(!objs || result == WAIT_TIMEOUT); if (!use_polling) return; polling_index += objs_len; } while (polling_index < total_objs); // For compatibility, we didn't return sooner. This made us do *some* wait // call(s) before returning. This will probably change in next rev. if (!delay || !GetCurrentDelay()) return; // No work done, but timer is ready to fire. } } bool MessagePumpWin::ProcessNextWindowsMessage() { MSG msg; if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)) return ProcessMessageHelper(msg); return false; } bool MessagePumpWin::ProcessMessageHelper(const MSG& msg) { if (WM_QUIT == msg.message) { // Repost the QUIT message so that it will be retrieved by the primary // GetMessage() loop. state_->should_quit = true; PostQuitMessage(static_cast(msg.wParam)); return false; } // While running our main message pump, we discard kMsgHaveWork messages. if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_) return ProcessPumpReplacementMessage(); WillProcessMessage(msg); if (state_->dispatcher) { if (!state_->dispatcher->Dispatch(msg)) state_->should_quit = true; } else { TranslateMessage(&msg); DispatchMessage(&msg); } DidProcessMessage(msg); return true; } bool MessagePumpWin::ProcessPumpReplacementMessage() { // When we encounter a kMsgHaveWork message, this method is called to peek // and process a replacement message, such as a WM_PAINT or WM_TIMER. The // goal is to make the kMsgHaveWork as non-intrusive as possible, even though // a continuous stream of such messages are posted. This method carefully // peeks a message while there is no chance for a kMsgHaveWork to be pending, // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to // possibly be posted), and finally dispatches that peeked replacement. Note // that the re-post of kMsgHaveWork may be asynchronous to this thread!! MSG msg; bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE)); DCHECK(!have_message || kMsgHaveWork != msg.message || msg.hwnd != message_hwnd_); // Since we discarded a kMsgHaveWork message, we must update the flag. InterlockedExchange(&have_work_, 0); // TODO(darin,jar): There is risk of being lost in a sub-pump within the call // to ProcessMessageHelper, which could result in no longer getting a // kMsgHaveWork message until the next out-of-band call to ScheduleWork. return have_message && ProcessMessageHelper(msg); } // Note: MsgWaitMultipleObjects() can't take a nil list, and that is why I had // to use SleepEx() to handle APCs when there were no objects. bool MessagePumpWin::ProcessNextObject() { size_t total_objs = objects_.size(); if (!total_objs) { return false; } size_t polling_index = 0; // The first unprocessed object index. do { DCHECK(polling_index < total_objs); size_t objs_len = total_objs - polling_index; if (objs_len >= kMaxWaitObjects) objs_len = kMaxWaitObjects - 1; HANDLE* objs = polling_index + &objects_.front(); // Identify 1 pending object, or allow an IO APC to be completed. DWORD result = WaitForMultipleObjectsEx(static_cast(objs_len), objs, FALSE, // 1 signal is sufficient. 0, // Wait 0ms. false); // Not alertable (no APC). // Use unsigned type to simplify range detection; size_t signaled_index = result - WAIT_OBJECT_0; if (signaled_index < objs_len) { SignalWatcher(polling_index + signaled_index); return true; // We serviced a signaled object. } // If an handle is invalid, it will be WAIT_FAILED. DCHECK_EQ(WAIT_TIMEOUT, result) << GetLastError(); polling_index += objs_len; } while (polling_index < total_objs); return false; // We serviced nothing. } bool MessagePumpWin::SignalWatcher(size_t object_index) { // Signal the watcher corresponding to the given index. DCHECK(objects_.size() > object_index); // On reception of OnObjectSignaled() to a Watcher object, it may call // WatchObject(). watchers_ and objects_ will be modified. This is expected, // so don't be afraid if, while tracing a OnObjectSignaled() function, the // corresponding watchers_[result] is non-existant. watchers_[object_index]->OnObjectSignaled(objects_[object_index]); // Signaled objects tend to be removed from the watch list, and then added // back (appended). As a result, they move to the end of the objects_ array, // and this should make their service "fair" (no HANDLEs should be starved). return true; } int MessagePumpWin::GetCurrentDelay() const { if (delayed_work_time_.is_null()) return -1; // Be careful here. TimeDelta has a precision of microseconds, but we want a // value in milliseconds. If there are 5.5ms left, should the delay be 5 or // 6? It should be 6 to avoid executing delayed work too early. double timeout = ceil((delayed_work_time_ - Time::Now()).InMillisecondsF()); // If this value is negative, then we need to run delayed work soon. int delay = static_cast(timeout); if (delay < 0) delay = 0; return delay; } } // namespace base