// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef BASE_MESSAGE_PUMP_WIN_H_ #define BASE_MESSAGE_PUMP_WIN_H_ #include #include #include "base/basictypes.h" #include "base/lock.h" #include "base/message_pump.h" #include "base/observer_list.h" #include "base/scoped_handle.h" #include "base/time.h" namespace base { // MessagePumpWin serves as the base for specialized versions of the MessagePump // for Windows. It provides basic functionality like handling of observers and // controlling the lifetime of the message pump. class MessagePumpWin : public MessagePump { public: // An Observer is an object that receives global notifications from the // UI MessageLoop. // // NOTE: An Observer implementation should be extremely fast! // class Observer { public: virtual ~Observer() {} // This method is called before processing a message. // The message may be undefined in which case msg.message is 0 virtual void WillProcessMessage(const MSG& msg) = 0; // This method is called when control returns from processing a UI message. // The message may be undefined in which case msg.message is 0 virtual void DidProcessMessage(const MSG& msg) = 0; }; // Dispatcher is used during a nested invocation of Run to dispatch events. // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not // dispatch events (or invoke TranslateMessage), rather every message is // passed to Dispatcher's Dispatch method for dispatch. It is up to the // Dispatcher to dispatch, or not, the event. // // The nested loop is exited by either posting a quit, or returning false // from Dispatch. class Dispatcher { public: virtual ~Dispatcher() {} // Dispatches the event. If true is returned processing continues as // normal. If false is returned, the nested loop exits immediately. virtual bool Dispatch(const MSG& msg) = 0; }; MessagePumpWin() : have_work_(0), state_(NULL) {} virtual ~MessagePumpWin() {} // Add an Observer, which will start receiving notifications immediately. void AddObserver(Observer* observer); // Remove an Observer. It is safe to call this method while an Observer is // receiving a notification callback. void RemoveObserver(Observer* observer); // Give a chance to code processing additional messages to notify the // message loop observers that another message has been processed. void WillProcessMessage(const MSG& msg); void DidProcessMessage(const MSG& msg); // Like MessagePump::Run, but MSG objects are routed through dispatcher. void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher); // MessagePump methods: virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); } virtual void Quit(); protected: struct RunState { Delegate* delegate; Dispatcher* dispatcher; // Used to flag that the current Run() invocation should return ASAP. bool should_quit; // Used to count how many Run() invocations are on the stack. int run_depth; }; virtual void DoRunLoop() = 0; int GetCurrentDelay() const; ObserverList observers_; // The time at which delayed work should run. Time delayed_work_time_; // A boolean value used to indicate if there is a kMsgDoWork message pending // in the Windows Message queue. There is at most one such message, and it // can drive execution of tasks when a native message pump is running. LONG have_work_; // State for the current invocation of Run. RunState* state_; }; //----------------------------------------------------------------------------- // MessagePumpForUI extends MessagePumpWin with methods that are particular to a // MessageLoop instantiated with TYPE_UI. // // MessagePumpForUI implements a "traditional" Windows message pump. It contains // a nearly infinite loop that peeks out messages, and then dispatches them. // Intermixed with those peeks are callouts to DoWork for pending tasks, and // DoDelayedWork for pending timers. When there are no events to be serviced, // this pump goes into a wait state. In most cases, this message pump handles // all processing. // // However, when a task, or windows event, invokes on the stack a native dialog // box or such, that window typically provides a bare bones (native?) message // pump. That bare-bones message pump generally supports little more than a // peek of the Windows message queue, followed by a dispatch of the peeked // message. MessageLoop extends that bare-bones message pump to also service // Tasks, at the cost of some complexity. // // The basic structure of the extension (refered to as a sub-pump) is that a // special message, kMsgHaveWork, is repeatedly injected into the Windows // Message queue. Each time the kMsgHaveWork message is peeked, checks are // made for an extended set of events, including the availability of Tasks to // run. // // After running a task, the special message kMsgHaveWork is again posted to // the Windows Message queue, ensuring a future time slice for processing a // future event. To prevent flooding the Windows Message queue, care is taken // to be sure that at most one kMsgHaveWork message is EVER pending in the // Window's Message queue. // // There are a few additional complexities in this system where, when there are // no Tasks to run, this otherwise infinite stream of messages which drives the // sub-pump is halted. The pump is automatically re-started when Tasks are // queued. // // A second complexity is that the presence of this stream of posted tasks may // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. // Such paint and timer events always give priority to a posted message, such as // kMsgHaveWork messages. As a result, care is taken to do some peeking in // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork // is peeked, and before a replacement kMsgHaveWork is posted). // // NOTE: Although it may seem odd that messages are used to start and stop this // flow (as opposed to signaling objects, etc.), it should be understood that // the native message pump will *only* respond to messages. As a result, it is // an excellent choice. It is also helpful that the starter messages that are // placed in the queue when new task arrive also awakens DoRunLoop. // class MessagePumpForUI : public MessagePumpWin { public: // The application-defined code passed to the hook procedure. static const int kMessageFilterCode = 0x5001; MessagePumpForUI(); virtual ~MessagePumpForUI(); // MessagePump methods: virtual void ScheduleWork(); virtual void ScheduleDelayedWork(const Time& delayed_work_time); // Applications can call this to encourage us to process all pending WM_PAINT // messages. This method will process all paint messages the Windows Message // queue can provide, up to some fixed number (to avoid any infinite loops). void PumpOutPendingPaintMessages(); private: static LRESULT CALLBACK WndProcThunk( HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam); virtual void DoRunLoop(); void InitMessageWnd(); void WaitForWork(); void HandleWorkMessage(); void HandleTimerMessage(); bool ProcessNextWindowsMessage(); bool ProcessMessageHelper(const MSG& msg); bool ProcessPumpReplacementMessage(); // A hidden message-only window. HWND message_hwnd_; }; //----------------------------------------------------------------------------- // MessagePumpForIO extends MessagePumpWin with methods that are particular to a // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not // deal with Windows mesagges, and instead has a Run loop based on Completion // Ports so it is better suited for IO operations. // class MessagePumpForIO : public MessagePumpWin { public: struct IOContext; // Clients interested in receiving OS notifications when asynchronous IO // operations complete should implement this interface and register themselves // with the message pump. // // Typical use #1: // // Use only when there are no user's buffers involved on the actual IO, // // so that all the cleanup can be done by the message pump. // class MyFile : public IOHandler { // MyFile() { // ... // context_ = new IOContext; // context_->handler = this; // message_pump->RegisterIOHandler(file_, this); // } // ~MyFile() { // if (pending_) { // // By setting the handler to NULL, we're asking for this context // // to be deleted when received, without calling back to us. // context_->handler = NULL; // } else { // delete context_; // } // } // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, // DWORD error) { // pending_ = false; // } // void DoSomeIo() { // ... // // The only buffer required for this operation is the overlapped // // structure. // ConnectNamedPipe(file_, &context_->overlapped); // pending_ = true; // } // bool pending_; // IOContext* context_; // HANDLE file_; // }; // // Typical use #2: // class MyFile : public IOHandler { // MyFile() { // ... // message_pump->RegisterIOHandler(file_, this); // } // // Plus some code to make sure that this destructor is not called // // while there are pending IO operations. // ~MyFile() { // } // virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, // DWORD error) { // ... // delete context; // } // void DoSomeIo() { // ... // IOContext* context = new IOContext; // // This is not used for anything. It just prevents the context from // // being considered "abandoned". // context->handler = this; // ReadFile(file_, buffer, num_bytes, &read, &context->overlapped); // } // HANDLE file_; // }; // // Typical use #3: // Same as the previous example, except that in order to deal with the // requirement stated for the destructor, the class calls WaitForIOCompletion // from the destructor to block until all IO finishes. // ~MyFile() { // while(pending_) // message_pump->WaitForIOCompletion(INFINITE, this); // } // class IOHandler { public: virtual ~IOHandler() {} // This will be called once the pending IO operation associated with // |context| completes. |error| is the Win32 error code of the IO operation // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero // on error. virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, DWORD error) = 0; }; // An IOObserver is an object that receives IO notifications from the // MessagePump. // // NOTE: An IOObserver implementation should be extremely fast! class IOObserver { public: IOObserver() {} virtual void WillProcessIOEvent() = 0; virtual void DidProcessIOEvent() = 0; protected: virtual ~IOObserver() {} }; // The extended context that should be used as the base structure on every // overlapped IO operation. |handler| must be set to the registered IOHandler // for the given file when the operation is started, and it can be set to NULL // before the operation completes to indicate that the handler should not be // called anymore, and instead, the IOContext should be deleted when the OS // notifies the completion of this operation. Please remember that any buffers // involved with an IO operation should be around until the callback is // received, so this technique can only be used for IO that do not involve // additional buffers (other than the overlapped structure itself). struct IOContext { OVERLAPPED overlapped; IOHandler* handler; }; MessagePumpForIO(); virtual ~MessagePumpForIO() {} // MessagePump methods: virtual void ScheduleWork(); virtual void ScheduleDelayedWork(const Time& delayed_work_time); // Register the handler to be used when asynchronous IO for the given file // completes. The registration persists as long as |file_handle| is valid, so // |handler| must be valid as long as there is pending IO for the given file. void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); // Waits for the next IO completion that should be processed by |filter|, for // up to |timeout| milliseconds. Return true if any IO operation completed, // regardless of the involved handler, and false if the timeout expired. If // the completion port received any message and the involved IO handler // matches |filter|, the callback is called before returning from this code; // if the handler is not the one that we are looking for, the callback will // be postponed for another time, so reentrancy problems can be avoided. // External use of this method should be reserved for the rare case when the // caller is willing to allow pausing regular task dispatching on this thread. bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); void AddIOObserver(IOObserver* obs); void RemoveIOObserver(IOObserver* obs); private: struct IOItem { IOHandler* handler; IOContext* context; DWORD bytes_transfered; DWORD error; }; virtual void DoRunLoop(); void WaitForWork(); bool MatchCompletedIOItem(IOHandler* filter, IOItem* item); bool GetIOItem(DWORD timeout, IOItem* item); bool ProcessInternalIOItem(const IOItem& item); void WillProcessIOEvent(); void DidProcessIOEvent(); // The completion port associated with this thread. ScopedHandle port_; // This list will be empty almost always. It stores IO completions that have // not been delivered yet because somebody was doing cleanup. std::list completed_io_; ObserverList io_observers_; }; } // namespace base #endif // BASE_MESSAGE_PUMP_WIN_H_